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SOURCE BOOKS IN THE HISTORY
OF THE SCIENCES

General Editor's Preface

THIS series of Source Books aims to present the most significant

passages from the works of the most important contributors

to the major sciences during the last three or four centuries.

So much material has accumulated that a demand for selected

sources has arisen in several fields. Source books in philosophy

have been in use for nearly a quarter of a century, and history,

economics, ethics, and sociology utilize carefully selected source

material. Recently, too, such works have appeared in the fields

of psychology and eugenics. It is the purpose of this series, there-

fore, to deal in a similar way with the leading physical and biologi-

cal sciences.

The general plan is for each volume to present a treatment of a

particular science with as much finality of scholarship as possible

from the Renaissance to the end of the nineteenth century. In

all, it is expected that the series will consist of eight or ten vol-

umes, which will appear as rapidly as may be consistent with

sound scholarship.

In June, 1924, the General Editor began to organize the follow-

ing Advisory Board:
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VIII EDITOR'S PREFACE

Each of the scientists on this board, in addition to acting in a

general advisory capacity, is chairman of a committee of four or

five men, whose business it is to make a survey of their special

field and to determine the number of volumes required and the

contents of eacli volume.

In December, 1925, the General Editor presented the project to

the Eastern Division of the American Philosophical Association.

After some discussion by the Executive Committee, it was

approved and the philosophers of the board, with the General

Editor as chairman, were appointed a committee to have charge

of it. In November, 1927, the Carnegie Corporation of New York

granted $10,000 to the American Philosophical Association as a

revolving fund to help finance the series. In December, 1927,

the American Association for the Advancement of Science approved

the project, and appointed the General Editor and Professors

Edwin G. Conklin and Harlow Shapley a committee to represent

that Association in cooperation with the Advisory Board. In

February, 1928, the History of Science Society officially endorsed

the enterprise. Endorsements have also been given by the Ameri-

can Anthropological Association, the Mathematical Association of

America, the American Mathematical Society, and the American

Astronomical Society w'ithin their respective fields.

The General Editor wishes to thank the members of the Advisory

Board for their assistance in launching this undertaking; Dr. J.

McKeen Cattell for helpful advice in the early days of the project

and later; Dr. William S. Learned for many valuable suggestions;

the several societies and associations that have given their endorse-

ments; and the Carnegie Corporation for the necessary initial

financial assistance.

Gregory D. Walcott.
Long Island University,

Brooklyn, N. Y.

December, 1928.



A SOURCE BOOK IN MATHEMATICS

Author^s Preface

The purpose of a source book is to supply teachers and students

with a selection of excerpts from the works of the makers of the

subject considered. The purpose of supplying such excerpts is

to stimulate the study of the various branches of this subject—in

the present case, the subject of mathematics. By knowing the

beginnings of these branches, the reader is encouraged to follow

the growth of the science, to see how it has developed, to appre-

ciate more clearly its present status, and thus to see its future

possibilities.

It need hardly be said that the preparation of a source book

has many difficulties. In this particular case, one of these lies

in the fact that the general plan allows for no sources before the

advent of printing or after the close of the nineteenth century.

On the one hand, this eliminates most of mathematics before the

invention of the calculus and modern geometry; while on the

other hand, it excludes all recent activities in this field. The
latter fact is not of great consequence for the large majority of

readers, but the former is more serious for all who seek the sources

of elementary mathematics. It is to be hoped that the success

of the series will permit of a volume devoted to this important

phase of the development of the science.

In the selection of material in the four and a half centuries

closing with the year 1900, it is desirable to touch upon a wide

range of interests. In no other way can any source book be made
to meet the needs, the interests, and the tastes of a wide range of

readers. To make selections from the field, however, is to neglect

many more sources than can possibly be selected. It would be

an easy thing for anyone to name a hundred excerpts that he

would wish to see, and to eliminate selections in which he has no
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special interest. Some may naturally seek for more light on our

symbols, but Professor Cajori's recent work furnishes this with a

Siitisfactory approach to completeness. Others may wish for a

worthy treatment of algebraic equations, but Matthiessen's

Grundziige contains such a wealth of material as to render the

undertaking unnecessary. The extensive field of number theory

will appeal to many readers, but the monumental work of Professor

Dickson, while not a source book in the ordinary sense of the

term, satisfies most of the needs in this respect. Consideration

must always be given to the demands of readers, and naturally

these demands change as the literature of the history of mathe-

matics becomes more extensive. Furthermore, the possibility

of finding source material that is stated succinctly enough for

purposes of quotation has to be considered, and also that of finding

material that is not so ultra-technical as to serve no useful purpose

for any considerable number of readers. Such are a few of the

many difficulties which will naturally occur to everyone and

which will explain some of the reasons which compel all source

books to be matters of legitimate compromise.

Although no single department of "the science venerable" can

or should be distinct from any other, and although the general

trend is strongly in the direction of unity of both purpose and

method, it will still serve to assist the reader if his attention is

called to the rough classification set forth in the Contents.

The selections in the field of Number vary in content from the

first steps in printed arithmetic, through the development of a

few selected number systems, to the early phases of number

theory. It seems proper, also, to consider the mechanics of com-

putation in the early stages of the subject, extending the topic to

include even as late a theory as nomography. There remains,

of course, a large field that is untouched, but this is a necessary

condition in each branch.

The field of Algebra is arbitrarily bounded. Part of the articles

classified under Number might have been included here, but such

questions of classification are of little moment in a work of this

nature. In general the articles relate to equations, symbolism, and
series, and include such topics as imaginary roots, the early

methods of solving the cubic and biquadratic algebraic equations

and numerical equations of higher degree, and the Fundamental

Theorem of Algebra. Trigonometry, which is partly algebraic,

has been considered briefly under Geometry. Probability, which
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is even more algebraic, is treated by itself, and is given somewhat
more space than would have been allowed were it not for the

present interest in the subject in connection with statistics.

The field of Geometry is naturally concerned chiefly with the

rise of the modern branches. The amount of available material

is such that in some cases merely a single important theorem or

statement of purpose has been all that could be included. The
topics range from the contributions of such sixteenth-century

writers as Fermat, Desargues, Pascal, and Descartes, to a few

of those who, in the nineteenth century, revived the study of the

subject and developed various forms of modern geometry.

The majority of the selections thus far mentioned have been

as non-technical as possible. In the field of Probability, however,

it has been found necessary to take a step beyond the elementary

bounds if the selections are to serve the purposes of those who
have a special interest in the subject.

The fields of the Calculus, Function Theory, Quaternions, and

the general range of Mathematics belong to a region so extensive

as to permit of relatively limited attention. It is essential that

certain early sources of the Calculus should be considered, and

that some attention should be given to such important advances

as relate to the commutative law in Quaternions and Ausdehnungs-

lehre, but most readers in such special branches as are now the

subject of research in our universities will have at hand the material

relating to the origins of their particular subjects. The limits

of this work would not, in any case, permit of an extensive offering

of extracts from such sources.

It should be stated that all the translations in this work have

been contributed without other reward than the satisfaction of

assisting students and teachers in knowing the sources of certain

phases of mathematics. Like the editor and the advisory com-

mittee, those who have prepared the articles have given their

services gratuitously. Special mention should, however, be

made of the unusual interest taken by a few who have devoted

much time to assisting the editor and committee in the somewhat

difficult labor of securing and assembling the material. Those

to whom they are particularly indebted for assistance beyond the

preparation of special articles are Professor Lao G. Simons, head of

the department of mathematics in Hunter College, Professor

Jekuthiel Ginsburg, of the Yeshiva College, Professor Vera

Sanford of Western Reserve University, and Professor Helen M.
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Walker, of Teachers College, Columbia University. To Professor

Sanford special thanks are due for her generous sacrifice of time

and effort in the reading of the proofs during the editor's prolonged

absence abroad.

The advisory committee, consisting of Professors Raymond
Clare Archibald of Brown University, Professor Florian Cajori of

the University of California, and Professor Leonard Eugene

Dickson of the University of Chicago, have all contributed of

their time and knowledge in the selection of topics and in the

securing of competent translators. Without their aid the labor

of preparing this work would have been too great a burden to

have been assumed by the editor.

In the text and the accompanying notes, the remarks of the

translators, elucidating the text or supplying historical notes of

value to the reader, are inclosed in brackets
[ ]. To these con-

tributors, also, are due slight variations in symbolism and in the

spelling of proper names, it being felt that they should give the

final decision in such relatively unimportant matters.

David Eugene Smith.
New York,

September, 1929.
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MATHEMATICS

I. FIELD OF NUMBER

The First Printed Arithmetic

Treviso, Italy, 1478

(Translated from the Italian by Professor David Eugene Smith, Teachers

College, Columbia University, New York City.)

Although it may justly be said that mere computation and its simple appli-

cations in the lives of most people are not a part of the science of mathematics,

it seems proper that, in a source book of this kind, some little attention should

be given to its status in the early days of printing. For this reason, these

extracts are selected from the first book on arithmetic to appear from the

newly established presses of the Renaissance period. ^ The author of the

work is unknown, and there is even some question as to the publisher, although

he seems to have been one Manzolo or Manzolino. It is a source in the

chronological rather than the material sense, since the matter which it con-

tains had apparently but little influence up>on the other early writers on

arithmetic. The work is in the Venetian dialect and is exceedingly rare.^

The copy from which this translation was made is in the library of George A.

Plimpton of New York City. As with many other incunabula, the book has no

title. It simply begins with the words, Incommincia vna practica molto bona

et vtilez a ciascbaduno cbi vuole vxare larte dela mercbadantia. chiamata vulgarmente

larte de labbacbo. It was published at Treviso, a city not far to the north of

Venice, and the colophon has the words "At Treviso, on the 10th day of

December, 1478."

Here beginneth a Practica, very helpful to all who have to do

with that commercial art commonly known as the abacus.

I have often been asked by certain youths in whom I have much
interest, and who look forward to mercantile pursuits, to put

into writing the fundamental principles of arithmetic, commonly

1 For the most part, these selections are taken from an article by this translator which

appeared in Isis, Vol. VI (3), pp. 311-331, 1924, and are here published by permission

of the editor. For a more extended account of the book, the reader is referred to this

periodical.

- A critical study of it from the bibliographical standpoint was made by Prince Boncom-
pagni in the Alti delC Accademia Pontificia de' Nuovi Lined, tomo XVI, 1862-1863.

1
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called the abacus. Therefore, being impelled by my affection for

them, and by the value of the subject, I have to the best of my
small ability undertaken to satisfy them in some slight degree, to

the end that their laudable desires may bear useful fruit. There-

fore in the name of God I take for my subject this work in algorism,

and proceed as follows:

All things which have existed since the beginning of time have

owed their origin to number. Furthermore, such as now exist

are subject to its laws, and

therefore in all domains of

knowledge this Practica is

necessary. To enter into the

subject, the reader must first

know the basis of our science.

Number is a multitude brought

together or assembled from sev-

eral units, and always from two

at least, as in the case of 2,

which is the first and the

smallest number. Unity is

that by virtue of which any-

thing is said to be one. Fur-

thermore be it known that

there are three kinds of num-

bers, of which the first is called

a simple number, the second an

article, and the third a com-

posite or mixed number. A
simple number is one that con-

tains no tens, and it is repre-

sented by a single figure, like

i, 2, 3, etc. An article is a number that is exactlydivisibleby ten,

like iO, 20, 30 and similar numbers. A mixed number is one that

exceeds ten but that cannot be divided by ten without a remainder,

such as ii, i2, i3, etc. Furthermore be it known that there are five

fundamental operations which must be understood in the Practica,

viz., numeration, addition, subtraction, multiplication, and division.

Of these we shall first treat of numeration, and then of the others

in order.

Numeration is the representation of numbers by figures. This

is done by means of ten letters or figures, as here shown, .i., .2.,

Jnremmincta wia ptacfia moltobo«a ttttiet

a dafcbaduno cbi vuole v^are larrc «fla nirrcba^'

dqniujbianiaM vul<;amiriite lane ice Ubbacfco*

1 "RfSoto ptu e p'u rolte ta a!cl:ur<

^ouani e mi tnolto ciUca/Timi : li

I qiuii p:rtmdfuano a vourr rokr
Uare la mercbadanriatcbe per loio

Munoiemcfiaafff aflTadigarme o
'no ptioc}:0:'oe «arg[i in Tcntco qualcbc roiidairicta

cerca lam vr arifmetrura:*bianiata rulgarmc nte"

labbacbo.Unde to ronftrrtto prr amo: vi I020: rt

eoadic^ad vnljtati cutt cbi prmndiiiio a qiiella:ri2

gondola picola intrlligcntia vcl injegno mio:^
drLberato fe non in tu(o:in parte tame fanffjre a
lo:o.ario cbe I020 rirtiiofi cffidfm rale frutto re.

ceuere pofTeano.Jn nomew uio adoncba : tojjLo

per {Qinpto mio el cirto wr algoJifm* coft vuedo.

t ' Vte quelle core:cbe va la p^ima o:igtne

baiio babuto p:oduninfto:per ratone «e
nuniero fono fta formade.^ co(T come fo/

nottanoM fircognofaidr.pcrone la cogiiinonc

cc fuce le coff -.cjucfta p:actica e nrcrffatia . £ ^cr

tntrarnel^poficomioiprmio fapi lccto:c*.fbe qn/
to fa al pjopofito noftro:Outnfro e t na moltitu.

^ine congrrgata cncro inftmbiada tsa moltc xnU
tade.eta! menova 70 vnitadr.come e.i.ti quale
c lo p:jmo c meno:c nuniero:cbe fe truoiia.La v*
ruffde e que lla cofa : t)a la qiK le Cfm cofa fj ntta
tma.Sesodano fapr.cbe fe truona numcn vc tre

nianicre.^1 prime fe cbiama numr.ro fimpbce.Ul

(TOnamno srdculo • •£! terjo fe cbuma mmcn
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.3., A., .5., .6., .7., .8., .9., .0.. Of these the first figure, i, is not

called a number but the source of number. The tenth figure, 0, is

called cipher or "nulla," i. e., the figure of nothing, since by itself it

has no value, although when joined with others it increases their

value. Furthermore you should note that when you find a figure

by itself its value cannot exceed nine, t. e., 9; and from that figure

on, if you wish to express a number you must use at least two

figures, thus: ten is expressed by iO, eleven by ii, and so on. And
this can be understood from the following figures.^

'6
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To understand the figures it is necessary to have well in mind the

following table :^

i times i makes i i times iO makes iO

i times 2 makes 2 2 times iO makes 20

i times 3 makes 3 3 times iO makes 30

i times 4 makes 4 4 times iO makes 40

i times 5 makes 5 5 times iO makes SO

i times 6 makes 6 6 times iO makes 60

i times 7 makes 7 7 times iO makes 70

i times 8 makes 8 8 times iO makes 80

i times 9 makes 9 9 times iO makes 90

i times makes times iO makes

And to understand the preceding table it is necessary to observe

that the words written at the top^ give the names of the places

occupied by the figures beneath. For example, below 'units' are

the figures designating units, below 'tens' are the tens, below

'hundreds' are the hundreds, and so on. Hence if we take each

figure by its own name, and multiply this by its place value, we
shall have its true value. For instance, if we multiply i, which is

beneath the word 'units,' by its place,—that is, by units,—we

shall have *i time i gives i,' meaning that we have one unit. Again,

if we take the 2 which is found in the same column, and multiply

by its place, we shall have 'i time 2 gives 2,' meaning that we have

two units, . . . and so on for the other figures found in this column . . .

This rule applies to the various other figures, each of which is to

be multiplied by its place value.

And this suffices for a statement concerning the 'act*^ of

numeration.

Having now considered the first operation, viz. numeration, let

us proceed to the other four, which are addition, subtraction,

multiplication, and division. To differentiate between these

operations it is well to note that each has a characteristic word, as

follows

:

^ [The tabic continues from "i times iOO makes iOO" to "0 times iOO makes 0."]

* [That is, the numeration table shown on p. 3.]

3 [The fundamental operations, which the author calls "acts" (atti) went by
various names. The medieval Latin writers called them "species," a word

that appears in The Crajte oj Nombryng, the oldest English manuscript on

arithmetic, where the author speaks of " 7 spices or partes of this craft." This

word, in one form or another, is also found in various languages. The Italians

used both 'atti' and 'passioni.'J
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Addition has the word andt

Subtraction has the word from.

Multiplication has the word times,

Division has the word in.

It should also be noticed that in taking two numbers, since at

least two are necessary in each operation, there may be determined

by these numbers any one of the above named operations.

Furthermore each operation gives rise to a different number, with

the exception that 2 times 2 gives the same result as 2 and 2, since

each is 4. Taking, then, 3 and 9 we have:

Addition: 3 and 9 make i2

Subtraction

:

3 from 9 leaves 6

MuItipHcation: 3 times 9 makes 27

Division: 3 in 9 gives 3

We thus see how the different operations with their distinctive

words lead to different results.

In order to understand the second operation, addition, it is

necessary to know that this is the union of several numbers, at

least of two, in a single one, to the end that we may know the sum
arising from this increase. It is also to be understood that, in

the operation of adding, two numbers at least are necessary, namely

the number to which we add the other, which should be the larger,

and the number which is to be added, which should be the smaller.

Thus we always add the smaller number to the larger, a more

convenient plan than to follow the contrary order, although the

latter is possible, the result being the same in either case. For

example, if we add 2 to 8 the sum is iO, and the same result is

obtained by adding 8 to 2. Therefore if we wish to add one

number to another we write the larger one above and the smaller

one below, placing the figures in convenient order, i. e., the units

under units, tens under tens, hundreds under hundreds, etc. We
always begin to add with the lowest order, which is of least value.

Therefore if we wish to add 38 and 59 we write the numbers thus:

59

38

Sum 97

We then say, '8 and 9 make i7,* writing 7 in the column which

was added, and carrying the i (for when there are two figures in

one place we always write the one of the lower order and carry

the other to the next higher place). This i we now add to 3,
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making 4, and this to the 5, making 9, which is written in the

column from which it is derived. The two together make 97.

The proof of this work consists in subtracting either addend

from the sum, the remainder being the other. Since subtraction

proves addition, and addition proves subtraction, I leave the

method of proof until the latter topic is studied, when the proof

of each operation by the other will be understood.

Besides this proof there is another. If you wish to check the

sum by casting out nines, add the units, paying no attention to 9

or 0, but always considering each as nothing. And whenever

the sum exceeds 9, subtract 9, and consider the remainder as the

sum. Then the number arising from the sum will equal the sum
of the numbers arising from the addends. For example, suppose

that you wish to prove the following sum:

.59.

.38.

Sum .97.
I

7

The excess of nines in 59 Is 5; 5 and 3 are 8; 8 and 8 are i6;

subtract 9 and 7 remains. Write this after the sum, separated by

a bar. The excess of nines in 97 is 7, and the excess of nines in 7

equals 7, since neither contains 9. In this way it is possible to

prove the result of any addition of abstract numbers or of those

having no reference to money, measure, or weight. I shall show

you another plan of proof according to the nature of the case. If

you have to add 816 and 1916,^ arrange the numbers as follows:

1916

816

Sum 2732

Since the sum of 6 and 6 is 12, write the 2 and carry the 1.

Then add this 1 to that which follows to the left, saying, *1 and 1

are 2, and the other 1 makes 3.' Write this 3 In the proper place,

and add 8 and 9. The sum of this 8 and 9 is 17, the 7 being written

and the 1 carried to the other 1, making 2, which Is written in the

proper place, the sum being now complete. If you wish to prove

by 9 arrange the work thus:

1916

816

The sum 2732
|
5

> [From now on, the figure 1 will be used in the translation instead of the

letter *i' which appears always in the original.]
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You may now effect the proof by beginning with the upper number,

saying '1 and 1 are 2, and 6 are 8, and 8 are 16. Subtract 9, and

7 remains. The 7 and 1 are 8, and 6 are 14. Subtract 9, and 5

remains,' which should be written after the sum, separated by a

bar. Look now for the excess of nines in the sum : 2 and 7 are 9,

the excess being 0; 3 and 2 are 5, so that the result is correct.^

Having now considered the second operation of the Practica of

arithmetic, namely the operation of addition, the reader should give

attention to the third, namely the operation of subtraction.

Therefore I say that the operation of subtraction is nothing else

than this: that of two numbers we are to find how much difference

there is from the less to the greater, to the end that we may know

this difference. For example, take 3 from 9 and there remains 6.

It is necessary that there should be two numbers in subtraction,

the number from which we subtract and the number which is

subtracted from it.

The number from which the other is subtracted is written above,

and the number which is subtracted below, in convenient order,

viz., units under units and tens under tens, and so on. If we then

wish to subtract one number of any order from another we shall

find that the number from which we are to subtract is equal to it,

or greater, or less. If it is equal, as in the case of 8 and 8, the

remainder is 0, which we write underneath in the proper column.

If the number from which we subtract is greater, then take away
the number of units in the smaller number, writing the remainder

below, as in the case of 3 from 9, where the remainder is 6. If,

however, the number is less, since we cannot take a greater number

from a less one, take the complement of the larger number with

respect to 10, and to this add the other, but with this condition:

that you add one to the next left-hand figure. And be very careful

that whenever you take a larger number from a smaller, using the

complement, you remember the condition above mentioned. Take

now an example: Subtract 348 from 452, arranging the work thus:

452

348

Remainder 104

First we have to take a greater number from a less, and then an

equal from an equal, and third, a less from a greater. We proceed

^ (The addition of larger numbers and of the compound numbers like 916 lire

14 soldi plus 1945 lire 15 soldi are now considered.]
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as follows: We cannot take 8 from 2, but 2 is the complement of 8

with respect to 10, and this we add to the other 2 which is above

the 8, thus: 2 and 2 make 4, which we write beneath the 8 for the

remainder. There is, however, this condition, that to the figure

following the 8 (viz., to 4), we add 1, making it 5. Then 5 from 5,

which is an equal, leaves 0, which we write beneath.

Then 3 from 4, which is a less from a greater, is 1, which 1 we
write under the 3, so that the remainder is 104.

If we wish to prove this result, add the number subtracted to the

remainder, and the result will be the number from which we
subtracted. We may arrange the work as follows:

452

348

104

452

Now add, 4 and 8 are 12; write 2 under the 4 and carry 1; then

1 and 4 are 5 ; write this 5 under the 0; then add 1 and 3, making 4,

and write this 4 under the 1, and the work checks. Thus is found

that which was promised you, as you can see^. .

.

Having now explained the third operation, namely that of sub-

traction, the reader should give attention to the fourth, namely

that of multiplication. To understand this it is necessary to know
that to multiply one number by itself or by another is to fmd from

two given numbers a third number which contains one of these

numbers as many times as there are units in the other. For

example, 2 times 4 are 8, and 8 contains 4 as many times as there

are units in 2, so that 8 contains 4 in itself twice. Also the 8

contains 2 as many times as there are units in 4, and 4 has in itself

four units, so that 8 contains 2 four times. It should be well

understood that in multiplication two numbers are necessary,

namely the multiplying number and the number multiplied, and

also that the multiplying number may itself be the number

multiplied, and vice versa, the result being the same in both cases.

Nevertheless usage and practice demand that the smaller number

shall be taken as the multiplying number, and not the larger.

Thus we should say, 2 times 4 makes 8, and not 4 times 2 makes 8,

' [The author now gives a further proof of subtraction by tlie casting out of

nines, after which he devotes about six or seven pages to checks on subtraction

and to the subtraction of lire, soldi, grossi, pizoli, and the like.]
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although the results are the same. Now not to speak at too great

length I say in brief, but sufficiently for the purposes of a Practica,

that there are three methods of multiplication, viz., by the tables,

cross multiplication, and the chess-board plan. These three

methods I will explain to you as briefly as I am able. But before

I give you a rule or any method, it is necessary that you commit

to memory the following state-
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ments, without which no one

can understand all of this oper-

ation of multiplication^ . .

I have now given you to learn

by heart all the statements

needed in the Practica of arith-

metic, without which no one

is able to master the Art. We
should not complain, however,

at having to learn these things

by heart in order to acquire

readiness; for I assure you that

these things which I have set

forth are necessary to any one

who would be proficient in this

art, and no one can get along

with less. Those facts which

are to be learned besides these

are valuable, but they are not

necessary.

Having learned by heart all

of the above facts, the pupil

may with zeal begin to multiply by the table. This operation arises

when the multiplier is a simple number, and the number multiplied

has at least two figures, but as many more as we wish. And that

we may more easily understand this operation we shall call the

first figure toward the right, units; the second toward the left,

tens, and the third shall be called hundreds. This being under-

stood, attend to the rule of working by the table, which is as

follows: First multiply together the units of the multiplier and

' [The author now gives the multiplication table, omitting all duplications

like 3X2 after 2X3 has been given, but extending for "those who are of

scholarly tastes" the table to include multiples of 12, 20, 24, 32 and 36, as

needed in the monetary systems used by merchants of the time.]
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the number multiplied. If from this multiplication you get a

simple number, write it under its proper place; if an article, write

a and reserve the tens to add to the product of the tens; but if a

mixed number is found, write its units in the proper place, and

save the tens to add to the product of the tens, proceeding in the

same way with all the other orders. Then multiply together the

units of the muItipHer with the tens; then with the hundreds, and

so on in regular order^ . .

In order to understand the fourth operation, viz., division, three

things are to be observed, viz., what is meant by division; second,

how many numbers are necessary in division; third, which of these

numbers is the greater. As to the first I say that division is the

operation of finding, from two given numbers, a third number,

which is contained as many times in the greater number as unity

is contained in the less number. You will find this number when
you see how many times the less number is contained in the

greater. Suppose, for example, that we have to divide 8 by 2;

here 2 is contained 4 times in 8, so we say that 4 is the quotient

demanded. Also, divide 8 by 4. Here the 4 is contained 2 times

in 8, so that 2 is the quotient demanded.

Second, it is to be noticed that three numbers are necessary in

division,—the number to be divided, the divisor, and the quotient,

as you have understood from the example above given, where 2 is

the divisor, 8 the number to be divided, and 4 the quotient.

From this is derived the knowledge of the third thing which is to

be noted, that the number which is to be divided is always greater

than, or at least is equal to, the divisor. When the numbers are

equal the quotient is always 1.

Now to speak briefly, it is sufficient in practice to say that there

are two ways of dividing,—by the table and the galley method.

In this operation you should begin with the figure of highest value,

that is by the one which is found at the left, proceeding thence to

the right. If you can divide by the table you will be able to divide

by the galley method, and it is well, for brevity, to avoid the latter

when you can. Therefore this is the method of dividing by the

table: See how many times your divisor is found in the first

^ [The author now gives an example in multiplying by a one-figure number,
proving the work by casting out nines. He then gives a proof by casting out

sevens, after which he sets forth various methods of multiplication, such as

that of the chessboard, that of the quadrilateral, or the one known by the name
of gelosia, all of which were in common use at the time.]
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left-hand figure, if it is contained in it, and write the quotient

beneath it. If it is not so contained, consider this figure as tens

and take together with it the following figure; then, finding the

quotient write it beneath the smaller of the two figures. If there

is any remainder, consider this as tens, and add it to the next

number to the right, and see how many times your divisor is found

in these two figures, writing the quotient under the units. In this

same way proceed with the rest of the figures to the right. And
when you have exhausted them all, having set down the quotient,

write the remainder at the right, separated by a bar; and if the

remainder is 0, place it where I have said. In the name of God
I propose the first example, so attend well.

Divide 7624 ducats into two parts, viz. by 2, arranging your

work as follows:

The divisor .2. 7624

The quotient 3812

the remainder*

The operations which I have set forth above being understood,

it is necessary to take up the method and the rules of using them.

The rule you must now study is the rule of the three things.

Therefore that you may have occasion to sharpen your under-

standing in the four operations above mentioned,—addition,

subtraction, muItipHcation, and division,—I shall compare them.

As a carpenter (wishing to do well in his profession) needs to have

his tools very sharp, and to know what tools to use first, and what

next to use, &c., to the end that he may have honor from his work,

so it is in the work of this Practica. Before you take the rule of

the three things it is necessary that you should be very skilled in

the operations which have been set forth in addition, subtraction,

multiplication, and division, so that you may enter enthusiastically

into your work. Furthermore, that the rule of the three things,

which is of utmost importance in this art, may be at your com-

mand, you must have at hand this tool of the operations, so that

you can begin your labors without spoiling your instruments and

without failing. Thus will your labors command high praise.

* [The author now devotes twelve quarto pages to completing the explana-

tion of division, which shows the degree of difficulty which the subject then

offered. The rest of the text is devoted largely to the solution of mercantile

problems by the Rule of Three. The preliminary statement and four problems

will suffice to show the nature of the work. The subject is treated much more
fully in Isis, Vol. VI (3), pp. 311-331, 1924.]
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The rule of the three things is this: that you should multiply

the thing which you wish to know, by that which is not like it, and

divide by the other. And the quotient which arises will be of the

nature of the thing which has no term like it. And the divisor

will always be dissimilar (in weight, in measure, or in other differ-

ence) to the thing which we wish to know.

In setting forth this rule, note first that in every case which

comes under it there are only two things of different nature, of

which one is named twice,—by two different numbers,—and the

other thing is named once, by one number alone. For example:

If 1 lira of saffron is worth 7 lire of pizoli, what will 25 lire of this

same saffron be worth? Here are not mentioned together both saf-

fron and money, but the saffron is mentioned twice by two different

numbers, 1 and 25; and the money is mentioned once, b}'^ the one

number 7. So this is not called the rule ofthree things because there

are three things of different nature, for one thing is mentioned twice.

Three merchants have invested their money in a partnership,

whom to make the problem clearer I will mention by name. The

first was called Piero, the second Polo, and the third Zuanne.

Piero put in 112 ducats. Polo 200 ducats, and Zuanne 142 ducats.

At the end of a certain period they found that they had gained 563

ducats. Required to know how much falls to each man so that

no one shall be cheated.

There are two merchants of whom the one has cloth worth 22

soldi a yard, but who holds it in barter at 27 soldi. The other has

wool which is worth in the country 19 lire per hundredweight.

Required to know how much he must ask per hundredweight in

barter so that he may not be cheated.

The Holy Father sent a courier from Rome to Venice, command-

ing him that he should reach Venice in 7 days. And the most

illustrious Signoria of Venice also sent another courier to Rome,

who should reach Rome in 9 days. And from Rome to Venice is 250

miles. It happened that by order of these lords the couriers

started on their journeys at the same time. It is required to find

in how many days they will meet.

What availeth virtue to him who does not labor? Nothing.

At Treviso, on the 10th day of December, 1478.



RECORDE

On "The Declaration of the Profit of Arithmeticke"

(Selected by Professor David Eugene Smith, Teachers College, Columbia
University, New York City.)

Robert Recorde (c. 1510-1558), a student and later a private teacher at

both Oxford and Cambridge, wrote several works on mathematics. His

arithmetic, The Grovnd oj Artes, was not the first one published in England,

but it was by far the most influential of the early books upon the subject as

far as the English-speaking peoples are concerned. This is not because of its

catechetic style, although it doubtless influenced other writers to adopt this

form of textbook instruction, but rather because through its subject matter

and style of problems it set a standard that has been followed until com-

paratively recent times. On the principle that a source book should touch

at least lightly upon the elementary branches, "The declaration of the profit of

Arithmeticke" is here set forth. The exact date of the first edition is uncer-

tain, but it was about 1540 to 1542. Although a number of the early editions

are available in the library of George A. Plimpton of New York City, it has

been thought best to select one which represents the results of Recorde's

influence for a full century,—that of 1646. As the title page says, this was
"afterward augmented by M. John Dee," the promoter of the first English

edition of Euclid; "enlarged—By John Mellis," and "diligently perused, cor-

rected, illustrated and enlarged by R. C", and its tables "diligently calculated

by Rv: Hartwell, Philomathemat." It therefore represents the best efforts of

the teaching profession for a hundred years.

The following is an extract from Recorde's preface:

TO THE LOVING Readers,

The Preface of Mr. Robert Record

Sore oft times have I lamented with my self the unfortunate

condition of England, seeing so many great Clerks to arise in

sundry other parts of the world, and so few to appear in this our

Nation: whereas for pregnancy of naturall wit (I think) few

Nations do excell Englishmen: But I cannot impute the cause to

any other thing, then to be contempt, or misregard of learning.

For as Englishmen are inferiour to no men in mother wit, so they

passe all men in vain pleasures, to which they may attain with

great pain and labour: and are as slack to any never so great

13
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commodity; if there hang of it any painfull study or travelsome

labour.

Howbeit, yet all men are not of that sort, though the most part

be, the more pity it is: but of them that are so glad, not onely with

painfull study, and studious pain to attain learning, but also with

as great study and pain to communicate their learning to other,

and make all England (if it might be) partakers of the same; the

most part are such, that unneath they can support their own
necessary charges, so that they are not able to bear any charges

in doing of that good, that else they desire to do.

But a greater cause of lamentation is this, that when learned

men have taken pains to do things for the aid of the unlearned,

scarce they shall be allowed for their wel-doing, but derided and

scorned, and so utterly discouraged to take in hand any like

enterprise again.

The following is "The declaration of the profit of Arithmeticke " and con-

stitutes the first ten pages of the text. It may be said to represent the influ-

ence of this text upon establishing for a long period what educators at present

sjjeak of as "the objectrves" of elementary arithmetic.

A Dialogue between the Master and the Scholar: teaching the Art

and use of Aritbmetick u-itb Pen.

The Scholar speaketh.

SIR, such is your authority in mine estimation, that I am content

to consent to your saying, and to receive it as truth, though I see none

other reason that doth lead me thereunto: uhereas else in mine own

conceit it appearetb but vain, to bestow ariy time privately in learning

oj that thing, that every childe may, and doth learn at all times and

hours, when he doth any thing himself alone, and much more when

he talketh or reasoneth with others.

Master. Lo, this is the fashion and chance of all them that seek

to defend their blinde ignorance, that when they think they have

made strong reason for themselves, then have they proved quite

contrary. For if numbring be so common (as you grant it to be)

that no man can do anything alone, and much lesse talk or bargain

with other, but he shall still have to do with number: this proveth

not number to be contemptible and vile, but rather right excellent

and of high reputation, sith it is the ground of all mens affairs, in

that without it no tale can be told, no communication without it

can be continued, no bargaining without it can duely be ended, or

no businesse that man hath, justly completed. These commodi-
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ties, if there were none other, are sufficient to approve the worthi-

nesse of number. But there are other innumerable, farre passing

all these, which declare number to exceed all praise. Wherefore

in all great works are Clerks so much desired? Wherefore are

Auditors so richly fed? What causeth Geometricians so highly

to be enhaunsed? W^hy are Astronomers so greatly advanced?

Because that by number such things they finde, which else would

farre excell mans minde.

Scholar. Verily, sir, if it bee so, that these men by numbring,

their cunning do attain, at whose great works most men do wonder,

then I see well I was much deceived, and numbring is a more

cunning thing then I took it to be.

Master. If number were so vile a thing as you did esteem it,

then need it not to be used so much in mens communication.

Exclude number, and answer to this question: How many years

old are you?

Scholar. Mum.
Master. How many dayes in a weeke? How many weeks in

a year? What lands hath your Father? How many men doth

hee keep? How long is it since you came from him to me?

Scholar. Mum.
Master. So that if number want, you answer all by Mummes:

How many miles to London?

Scholar. A poak full of plums.

Master. Why, thus you may see, what rule number beareth,

and that if number bee lacking it maketh men dumb, so that to

most questions they must answer Mum.
Scholar. This is the cause, sir, that I judged it so vile, because

it is so common in talking every w^hile: Nor plenty is not dainty,

as the common saying is.

Master. No, nor store is no sore, perceive you this? The more

common that the thing is, being needfully required, the better is

the thing, and the more to be desired. But in numbring, as

some of it is light and plain, so the most part is difficult, and not

easie to attain. The easier part serv^eth all men in common, and

the other requireth some learning. Wherefore as without num-

bring a man can do almost nothing, so with the help of it, you may
attain to all things.

Scholar. Yes, sir, why then it were best to learn the Art of

numbring, first of all other learning, and then a man need learn

no more, if all other come with it.
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Master. Nay not so: but if it be first learned, then shall a man
be able (I mean) to learn, perceive, and attain to other Sciences;

which without it he could never get.

Scholar. I perceive by your former words, that Astronomy

and Geometry depend much on the help of numbring: but that

other Sciences, as Musick, Physick, Law, Grammer, and such like,

have any help of Arithmetick, I p>erceive not.

Master. I may perceive your great Clerk-Iinesse by the

ordering of your Sciences: but I will let that passe now, because

it toucheth not the matter that I intend, and I will shew you how

Arithmetick doth profit in all these somewhat grosly, according

to your small understanding, omitting other reasons more

substantial!.

First (as you reckon them) Musick hath not onely great help

of Arithmetick, but is made, and hath his perfectnesse of it: for

all Musick standeth by number and proportion: And in Physick,

beside the calculation of critical! dayes, with other things, which

I omit, how can any man judge the pulse rightly, that is ignorant

of the proportion of numbers?

And so for the Law, it is plain, that the man that is ignorant of

Arithmetick, is neither meet to be a Judge, neither an Advocate,

nor yet a Proctor. For how can hee well understand another

mans cause, appertaining to distribution of goods, or other debts,

or of summes of money, if he be ignorant of Arithmetick? This

oftentimes causeth right to bee hindered, when the Judge either

delighteth not to hear of a matter that hee perceiveth not, or

cannot judge for lack of understanding: this commeth by ignorance

of Arithmetick.

Now, as for Grammer, me thinketh you would not doubt in

what it needeth number, sith you have learned that Nouns of all

sorts. Pronouns, Verbs, and Participles are distinct diversly by

numbers: besides the variety of Nouns of Numbers, and Adverbs.

And if you take away number from Grammer, then is all the

quantity of Syllables lost. And many other ways doth number

help Grammer. Whereby were all kindes of Meeters found and

made? was it not by number?

But how needfull Arithmetick is to all parts of Philosophy, they

may soon see, that do read either Aristotle, Plato, or any other

Philosophers writings. For all their examples almost, and their

probations, depend of Arithmetick. It is the saying of Aristotle,

that hee that is ignorant of Arithmetick, is meet for no Science.
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And Plato his Master wrote a little sentence over his Schoolhouse

door, Let none enter in hither (quoth he) that is ignorant of

Geometry. Seeing hee would have all his Scholars expert in

Geometry, much rather he would the same in Arithmetick, with-

out which Geometry cannot stand.

And how needfull Arithmetick is to Divinity, it appeareth, seeing

so many Doctors gather so great mysteries out of number, and so

much do write of it. And if I should go about to write all the

commodities of Arithmetick in civill acts, as in governance of

Common-weales in time of peace, and in due provision & order

of Armies, in time of war, for numbering of the Host, summing of

their wages, provision of victuals, viewing of Artillery, with other

Armour; beside the cunningest point of all, for casting of ground,

for encamping of men, with such other like: And how many wayes

also Arithmetick is conducible for all private Weales, of Lords

and all Possessioners, of Merchants, and ail other occupiers, and

generally for all estates of men, besides Auditors, Treasurers,

Receivers, Stewards, Bailiffes, and such like, whose Offices without

Arithmetick are nothing: If I should (I say) particularly repeat

all such commodities of the noble Science of Arithmetick, it were

enough to make a very great book.

Scholar. No, no sir, you shall not need: For I doubt not, but

this, that you have said, were enough to perswade any man to

think this Art to be right excellent and good, and so necessary for

man, that (as I think now) so much as a man lacketh of it, so

much hee lacketh of his sense and wit.

Master. What, are you so farre changed since, by hearing

these few commodities in generall: by likelihood you would be

farre changed if you knew all the particular Commodities.

Scholar. I beseech you Sir, reserve those Commodities that

rest yet behinde unto their place more convenient: and if yee will

bee so good as to utter at this time this excellent treasure, so that

I may be somewhat inriched thereby, if ever I shall be able, I will

requite your pain.

Master. I am very glad of your request, and will do it speedily,

sith that to learn it you bee so ready.

Scholar. And I to your authority my wit do subdue; whatso-

ever you say, I take it for true.

Master. That is too much; and meet for no man to bee beleeved

in all things, without shewing of reason. Though I might of my
Scholar some credence require, yet except I shew reason, I do it
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not desire. But now sith you are so earnestly set this Art to

attaine, best it is to omit no time, lest some other passion coole

this great heat, and then you leave off before you see the end.

Scholar. Though many there bee so unconstant of mind, that

flitter and turn with every winde, which often begin, and never

come to the end, I am none of this sort, as I trust you partly know.

For by my good will what I once begin, till I have it fully ended,

I would never blin.

Master. So have I found you hitherto indeed, and I trust you

will increase rather then go back. For, better it were never to

assay, then to shrink and flie in the mid way: But I trust 30U will

not do so; therefore tell mee briefly: What call you the Science

that you desire so greatly.

Scholar. Why sir, you know.

Master. That maketh no matter, I would hear whether you

know, and therefore I ask you. For great rebuke it were to have

studied a Science, and yet cannot tell how it is named.

Scholar. Some call it Arsemetrick, and some Augrime.

Master. And what do these names betoken?

Scholar. That, if it please you, of you would I learn.

Master. Both names are corruptly written: Arsemetrick for

Arithmetick, as the Greeks call it, and Augrime for Algorisme,

as the Arabians found it: which both betoken the Science of

Numbring: for Arithmos in Greek is called Number: and of it

commeth Arithmetick, the Art of Numbring. So that Arithmetick

is a Science or Art teaching the manner and use of Numbring:

This Art may be wrought diversly, with Pen or with Counters.

But I will first shew you the working with the Pen, and then the

other in order.

Scholar. This I will remember. But how many things are

to bee learned to attain this Art fully?

Master. There are reckoned commonly seven parts or works of it.

Numeration, Addition, Subtraction, MultipHcation, Division,

Progression, and Extraction of roots: to these some men adde

Duphcation, Triplation, and Mediation. But as for these three

last they are contained under the other seven. For Duplication,

and Triplation are contained under Multiplication; as it shall

appear in their place: And Mediation is contained under Division,

as I will declare in his place also.

Scholar. Yet then there remain the first seven kinds of

Numbring.
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Master. So there doth: Howbeit if I shall speak exactly of the

parts of Numbrlng, I must make but five of them: for Progression

is a compound operation of Addition, Multiplication and Division.

And so is the Extractions of roots. But it is no harme to name
them as kindes severall, seeing they appear to have some several!

working. For it forceth not so much to contend for the number
of them, as for the due knowledge and practising of them.

Scholar. Then you will that I shall name them as seven kindes

distinct. But now I desire you to instruct mee in the use of each

of them.

Master. So I will, but it must be done in order: for you may
not learn the last so soon as the first, but you must learn them in

that order, as I did rehearse them, if you will learn them speedily,

and well.

Scholar. Even as you please. Then to begin; Numeration is

the first in order: what shall I do with it?

Master. First, you must know what the thing is, and then after

learn the use of the same.
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On Decimal Fractions

(Translated from the French by Professor Vera Sanford, Western
Reserve University, Qeveland, Ohio.)

The invention of the decimal fraction cannot be assigned to any single

individual. Pellos (1492) used a decimal point to set off one, two, or three

places in the dividend when the divisor was a multiple of 10, 100, or 1000.

Adam Reise (1522) printed a table of square roots in which values to three

places were computed for the irrationals. Most imjxtrtant of all, Rudolfl

(1530) used the symbol
|

as a decimal point in a compound interest table.^

The first person to discuss the theory of decimal fractions and their arithme-

tic was Simon Stevin (c.l548-c.l620), a native of Bruges and a firmsupp>orterof

William the Silent in the struggle of the Low Countries against Spain. Stevin

was tutor to Maurice of Nassau, served as quartermaster general in the

Dutch army, and acted as commissioner of certain public works, especially

of the dikes. He is reported to have been the first to adapt the principles of

commercial bookkeeping to national accounts, and his studies in hydraulics

resulted in theorems which foreshadowed the integral calculus.

Stevin's work on decimal fractions was published in 1585, two editions

appearing in that year—one in Flemish with the title La Tbiende, the other in

French with the title La LHsme,

The translation that follows was made from Les Oeuvres Matbematiques de

Simon Stevin, edited by Girard and published in Leyden in 1634.*

La Disme

Teaching how all Computations that are met in Business may be performed

by Integers alone without the aid of Fractions

Written first in Flemish and now done into French

by

Simon Stevin of Bruges

To Astrologers, Surveyors, Measurers of Tapestry, Gaugers, Stereometers in

General, Mint-masters, and to All Merchants Simon Stevin Sends Greeting

A person who contrasts the small size of this book with your

greatness, my most honorable sirs to whom it is dedicated, will

'These instances are discussed with facsimiles of the cases in point in "The Invention

of the Decimal Fraction," by David Eugene Smith, Ttacbcrs College Bulletin, First Series.

No. 5.

- A facsimile of the original edition with an introduction by the late Father Bosmans was

printed by the Soci6t6 des Bibliophiles Anversois in Antwerp, in 1924, with the title La
"Tbiende" de Simon Stevin.

20
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think my idea absurd, especially if he imagines that the size of this

volume bears the same ratio to human ignorance that its usefulness

has to men of your outstanding ability; but, in so doing, he will

have compared the extreme terms of the proportion which may not

be done. Let him rather compare the third term with the fourth.

What is it that is here propounded? Some wonderful inven-

tion? Hardly that, but a thing so simple that it scarce deserves

the name invention; for it is as if some stupid country lout chanced

upon great treasure without using any skill in the finding. If

anyone thinks that, in expounding the usefulness of decimal

numbers, I am boasting of my cleverness in devising them, he

shows without doubt that he has neither the judgment nor the

intelligence to distinguish simple things from difficult, or else that

he is jealous of a thing that is for the common good. However this

may be, I shall not fail to mention the usefulness of these numbers

even in the face of this man's empty calumny. But, just as the

mariner who has found by chance an unknown isle, may declare

all its riches to the king, as, for instance, its having beautiful

fruits, pleasant plains, precious minerals, etc., without its being

imputed to him as conceit; so may I speak freely of the great

usefulness of this invention, a usefulness greater than I think any

of you anticipates, without constantly priding myself on my
achievements.

As your daily experience. Messieurs, makes you sufficiently

aware of the usefulness of number, which is the subject of La

Disme, it will not be necessary to say many words with reference

to this. The astrologer^ knows that, by computation, using tables

of declinations, the pilot may describe the true latitude and longi-

tude of a place and that by such means every point upon the

earth's surface may be located. But as the sweet is never without

the bitter, the labor of such computations cannot be disguised, for

they involve tedious multipfications and divisions of sexagesimal

fractions, 2 degrees, minutes, seconds, thirds, etc. The surveyor

* [This is used for "astrologer" and for "astronomer" as well.]

* [Fractions whose denominators were the powers of sixty. They were

not restricted to the measurement of time or angles but were used by scientists

and mathematicians in all sorts of computations. They afforded a convenient

way of expressing the approximate root of an equation,—in one case, for

instance a root is given to the tenth sexagesimal,—but although their use

facilitated the comparing of one number with another and although they were

well suited to addition and subtraction, multiplication, division, and square

root were difficult and were frequently performed by tables.]
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knows the great benefit which the world receives from his science

by which it avoids many disputes concerning the unknown areas

of land. And he who deals in large matters, cannot be ignorant

of the tiresome multiplications of rods, feet, and inches^ the one

by the other, which often give rise to error tending to the injury

of one of the parties, and to the ruin of the reputation of the sur-

veyor. So too, with mint-masters, merchants, etc., each in his

own business. The more important these calculations are, and the

more laborious their execution, so much the greater is this dis-

covery of decimal numbers which does away with all these diffi-

culties. To speak briefly. La Disme teaches how all computations

of the type of the four principles of arithmetic—addition, sub-

traction, multiplication and division—may be performed by whole

numbers with as much ease as in counter-reckoning.

^

If by these means, time may be saved which would otherwise

be lost, if work may be avoided, as well as disputes, mistakes,

lawsuits, and other mischances commonly joined thereto, I

willingly submit La Disme to your consideration. Someone may
raise the point that many inventions which seem good at first

sight are of no eff"ect when one wishes to use them, and as often

happens, new methods good in a few minor cases are worthless in

more important ones. No such doubt exists in this instance, for

we have shown this method to expert surveyors in Holland and

they have abandoned the devices which they have invented to

lighten the work of their computations and now use this one to their

great satisfaction. The same satisfaction will come to each of

you, my most honorable sirs, who will do as they have done.

Argument

La Disme consists of two parts,—definitions and operations.

In the first part, the first definition explains what decimal numbers'

are, the second, third, and fourth explain the meaning of the

terms unit,^ prime, second, etc., and the other decimal numbers.

1 [Here Stevin uses the units verge, pied, doigt.]

^ [That is, reckoning with jetons or counters, a method of reckoning that was

still in vogue in Stevin's time.]

' [In this translation, the words "decimal numbers" are used where the

literal translation would be "the numbers of La Disme."]

* [In the Flemish version, Stevin uses the word Begbin and in the French

one. Commencement.]
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In the operations, four propositions show the addition, subtrac-

tion, multiplication, and division of decimal numbers. The order

of these topics may be succinctly represented in a table.

Decimals

j Unit
Definitions \ pj-ime. Second, etc.

Decimal Numbers
La Disme has two divisions.

Operations.

Addition

Subtraction

Multiplication

Division

At the end of this discussion, there will be added an appendix

setting forth the use of decimal numbers in real problems.

The First Division of La Disme

Of Definitions

Definition I

Decimal numbers^ are a kind of arithmetic based on the idea

of the progression by tens, making use of the ordinary Arabic

numerals, in which any number may be written and by which all

computations that are met in business may be performed by

integers alone without the aid of fractions.

Explanation

Let the number one thousand one hundred eleven be written

in Arabic numerals 1111, in which form it appears that each 1 is

the tenth part of the next higher figure. Similarly, in the number

2378, each unit of the 8 is the tenth part of each unit of the 7, and

so for all the others. But since it is convenient that the things

which we study have names, and since this type of computation

is based solely upon the idea of the progression by tens^ as will be

seen in our later discussion, we may properly speak of this treatise

as La Disme and we shall see that by it we may perform all the

computations we meet in business without the aid of fractions.

^ [Disme est une espece d'arithmetique.]

* [Disme: "tithe," later the word was contracted into dime. Earlier forms

in English use are dyme and dessime. Disme came into the language when

Stevin's work was translated in 1608. It was used as a noun meaning a

tenth and as a synonym for decimal arithmetic; also as a verb, to divide into

tenths.]
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Definition II

Any given number is called the unit and has the sign (5).

Explanation

In the number three hundred sixty four, for example, we call

the three hundred sixty four units and write the number 364(0).

Similarly for other cases.

Definition III

The tenth part of a unit is called a Prime, and has the sign ®,
and the tenth of a prime is called a Second, and has the sign 0.
Similarly for each tenth part of the unit of the next higher figure.

Explanation

Thus 3(T)7@509® is 3 primes, 7 seconds, 3 thirds, 9 fourths, and

we might continue this indefinitely. It is evident from the defini-

tion that the latter numbers are ^o» l^io6> /-fooo. ^fo»ooo. and

that this number is 375^^q,qqq. Likewise 8(0)9®3®7@ has the

value 8^^o. Koo. Kooo. or S^^Kooo- And so for other numbers.

We must also realize that in these numbers we use no fractions

and that the number under each sign except the "unit" never

exceeds the 9. For instance, we do not write 7012@ but 8020
instead, for it has the same value.

Definition IV

The numbers of the 2nd and 3d definitions are called Decimal

Numbers.
The End of the Definitions^

1 [These same names and symbols are given a more general application in

Stevin's other works. The following discussion is from his work on the

subject in VArilbmetique where geometric progressions, or geometric numbers

play a prominent part.

He says, " When the ancients realized the value of progressions of the sort

where the first term multiplied by itself gives the second term. . ., they saw

that it would be necessary to choose meaningful names for these numbers so

that they might the more readily distinguish them. Thus they called the first

term Prime which we denote by ©, the next Second which wc write as (2) etc.

"For example,

®2®4{D 8®16...

®3@9®27®81...

"We intend that the Unit of a quantity shall mean something distinct

from the first quantity or prime. Any arithmetic number or radical which

one uses in algebraic computation as 6 or \/3 or 2 -f V^I. . ., wc will call



STEVIN 25

The Second Division of La Disme

Of Operations

Proposition I.—To add decimal numbers. Given three decimal

numbers, 27@8®4@7®, 37(o)6®7®5®, 875(o)7®8©2®.
Required to find their sum.

Construction.—Arrange the numbers as in the accompanying
figure, adding them in the usual manner of adding (Q)®@®
integers. This (by the first problem of rArithme- 2 7 8 4 7

tique^) gives the sum 941304,^ which, as the signs 3 7 6 7 5

above the numbers show^ is 941(o)3®0@4®. And 8 7 5 7 8 2

this is the sum required.
9 4 13 4

Proof.—By the third definition of this book, the given number

27@8®4©7® is 27^1o. ^loo, Kooo, or 27S4y^ooo- Similarly,

the 37(o)6®7®5® is 3767^^ooo. and the 875(o)7®8@3® is

87578^000- These three numbers 27847^^^^^ 37675,^^^^^

g7578^^QQQ added, according to the 10th problem of rArithmetique,

make 94130^^qqq, but 941(o)3®0®4® has this same value, and

is therefore the true sum which was to be shown.

Conclusion.—Having been given decimal numbers to add, we
have found their sum which was to be done.

Note.— If, in the numbers in question, some figure of the natural

order be lacking, fill its place with a zero. For example, in the

numbers 8(0)5®6® and 5@7@ where the second lacks a (Q)®@
figure of order prime, insert 0® and take 5(5)0®7® as 8 5 6

the given number and add as before. This note applies 5 7

to the three following propositions also. ~T'3~6~3

the Unit and we will give it the symbol @: but this symbol shall be used

only when the arithmetic number or radical is not denominate, (quand les

nombres Arithmetiques ou radicaux ne sont pas absoluement descripts)."

Stevin writes denominate numbers as 1 hour 3®5©, 5 degrees 4® 18®,
2790 verges 5®9@. He later notes (rAritbmetique, p. 8) that Bombelli has

used this symbolism also except for the (o). In Bombelli's Algebra (1572) the

symbols vL', k2j, ksj. . . are used for the p>owers of the unknown quantity just

as Stevin used his ®, @, ®, . .
. , i. e., a specialized form of the geometric

progression.

The names for these quantities except that of the unit, are easily traced

to the pars minuta prima, etc., of the sexagesimals.]

' [La Pratiqve D'Aritbmktiqve De Simon Stevin De Brvges, Leyden, 1585.]

^ [Stevin has three ways of writing these numbers, depending upon the

exigencies of the c^: 27@8®4@7@. ®®®®; g^^^'j
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Proposition II.—To subtract decimal numbers.

Given the number 237(o)5©7@8® from which the number

59(0)7®4@9@ is to be subtracted.

Required to find the remainder. (Q)®@@

Construction.—Place the numbers in order as m ^
the adjoining figure, subtracting after the usual

manner of subtracting integers (by the 2nd problem 1 7 7 8 2 9

of I'Arithmkique) . There remains 177829 which,

as indicated by the signs above the numbers, is 1 77(0)8®2@90;
and this is the remainder required.

Proof.—By the third definition of la Disme, the 237

@

5®7®8(D is 237^^0, Koo. ^looo or 23757^fooo. And, by the

same reasoning, the 59@7®4(2)9@ is 59'^4^^qqq; subtracting this

from 2375'7^-{qqq, according to the tenth problem of l'Aritbmetique,

leaves 177^^^000- But the aforesaid 1 77(0)8®2®9® has this

same value and is, therefore, the true remainder, which was to

be proved.

Conclusion.—Having been given a decimal number and a

similar number which is to be subtracted from it, we have found

the remainder which was to be done.

Proposition III.—To multiply decimal numbers.

Given the number 32(o)5®7@ and the multiplier 89®4®6®.
Required to find their product.

Construction.—Place the numbers in order and multiply in the

ordinary way of multiplying whole numbers (by (OXD®
the third problem of I'Arithmetique). This gives 3 2 5 7

the product 29137122. To find what this is, add 8 9 4 6

the last two signs of the given numbers, the one 1~9~5~4~2~

@ and the other ® also, which together are ®. 13 2 8
We say, then, that the sign of the last figure of 2 9 3 13
the product will be ®. Once this is estabhshed, 2 6 5 6
ail the signs are known on account of their con-

tinuous order. Therefore, 2913(0)7®1@2®2® ^ ^ ll^ll^
IS the required product.

Proof.—As appears by the third definition of La Disme, the

given number 32(0)5®7@ is 32^^o» Koo. or 325J.foo. andfikewise

the multipfier 89@4®6® is 894^foo- Multiplying the aforesaid

32^}ioo by this number gives the product 2913 "^12^^^^^^^ (by

the twelfth problem of I'Arithmetique). But the aforesaid product

291 3(0)7®1®2®2® has this value and is, therefore, the true
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product which we were required to prove. We will now explain

why second multiplied by second gives the product fourths, which

is the sum of their signs, and why fourth by fifth gives the product

ninth and why unit by third gives the product third and so forth.

Let us take for example %o ^^^ Moo which, by the definitions

of La Disme, are the values of 2(i) and 30. Their product is

Mooo> w'hich by the third defintion given above is 6®. Hence,

multiplying prime by second gives a product in thirds, that is,

a number whose sign is the sum of the given signs.

Conclusion.—Having been given a decimal number to multiply

and the multiplier we have found the product, which was to be done.

Note.—If the last sign of the multiplicand is not equal to the

last sign of the multiplier, for example, 3®706® 0®®
and 5040, proceed as above. The placing of the 3 7 8

figures will appear as here shown. 5 40
15 12

18 9

2 4 12
®0®®0

Proposition IV.—To divide decimal numbers.

Given 3(0)4040305020 to be divided by 9060.
Required to find their quotient.

Construction.—Omitting their signs, divide ).

the given numbers in the ordinary way of J?)

dividing whole numbers by the fourth problem p/^^

of rAritbmkique. This gives the quotient 7^^J (0)000
3587. To determine the signs, subtract the ^^^^^ (3587
last sign of the divisor from the last sign of P^^0f5

the dividend 0, leaving as the sign of the 9^^

last digit of the quotient. Once this is determined, all the other

signs are known because of their continuous order. 3(0)508070
is, therefore, the quotient required.

Proof.—By the third definition of La Disme the dividend

3(0)4040305020 is 3 fio, Moo. Mooo, Mo.ooo Moo.ooo or

344.35^^00,000. The divisor 9©60_is Ho, Moo or Q^foo- By
the thirteenth problem of I'Arithmetique, the quotient of these

numbers is 3^^}iooo. The aforesaid 3(0)508070 is therefore

the true quotient which was to be shown.

Conclusion.—Having been given a decimal number to be divided

and the divisor, we have found the quotient, which was to be done.
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Note I.—If the signs of the divisor be higher than the signs of

tlie dividend, add to the dividend as many zeros as may be neces-

sary. For example, in dividing 7@ by 40, I place zeros after

the 7 and divide as above getting the quotient 1750.

It sometimes happens that the quotient cannot ^^ @
be expressed by whole numbers as in the case of 4® 7PPP (175

divided by 30. Here, it appears that the quotient ^4^
will be infinitely many threes with always one third in addition.

In such a case, we may approach as near to Xl)^ (§)®©
the real quotient as the problem requires and ^PPPOOO (13 3 3

omit the remainder. It is true indeed that ^>?i.3^

13(0)3030 or 13(o)30303>^0 is the exact result, but in this

work we propose to use whole numbers only, and, moreover, we

notice that in business one does not take account of the thou-

sandth part of a maille^ or of a grain. Omissions such as these are

made by the principal Geometricians and Arithmeticians even in

computations of great consequence. Ptolemy and Jehan de

Montroyal, for instance, did not make up their tables with the

utmost accuracy that could be reached with mixed numbers, for

in view of the purpose of these tables, approximation is more useful

than perfection.

Note II.—Decimal numbers may be used in the extraction of

roots. For example, to find the square root of 502090, work

according to the ordinary method of extracting square root and

the root will be 2030. The last sign of the root is always
J.

one half the last sign of the given number. If, however, the ^^^
last sign is odd, add (a zero in place of) the next sign and 2, 3

extract the root of the resulting number as above. By a Aqn

similar method with cube root, the third of the last sign

of the given number will be the sign of ther oot—similarly for all

other roots.

The End of La Disme

Appendix

Decimal numbers have been described above. We now come

to their applications and in the following six articles we shall show

how all computations which arise in business may be performed

by them. We shall begin with the computations of surveying

as this subject was the first one mentioned in the introduction.

' [H ounce.)
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Article One

Of the Computations of Surveying

When decimal numbers are used in surveying, the verge^ is

called the unit, and it is divided into ten equal parts or primes,

each prime is divided into seconds and, if smaller units are required,

the seconds into thirds and so on so far as may be necessary. For

the purposes of surveying the divisions into seconds are sufficiently

small but in matters that require greater accuracy as in the measur-

ing of lead roofs, thicknesses etc., one may need to use the thirds.

Many surveyors, however, do not use the verge, but a chain

three, four, or five verges long, and a cross-staffs with its shaft

marked in five or six feet divided into inches. These men may
follow the same practise here substituting five or six primes with

their seconds. They should use these markings of the cross-staff

without regard to the number of feet and inches that the verge

contains in that locality, and add, subtract, multiply, and divide

the resulting numbers as in the preceding examples. Suppose,

for instance, four areas' are to be added: 34S(o)708@, and 872(0)-

5®3(2), 615(0)408®, and 956(g)8®6®. Add these as in the

first proposition of La Disme. This gives the sum (Q)®@
2790 verges 5 primes, 9 seconds. This number, 3 4 5 7 2

divided by the number of verges in an arpent^ gives 8 7 2 5 3

the number of arpents required. To find the number 6 15 4 8

of small divisions in 5 primes 9 seconds, look on the 9 5 6 8 6

other side of the verge to see how many feet and inches
2 7 9 5

match with them; but this is a thing which the sur-

veyor must do but once, i. e., at the end of the account which he

* [The word verge was used for a measuring rod of that length.]

2 [The cross-staff was a piece of wood mounted at its mid-point p>erpendicular

to a shaft and free to move along this shaft to positions parallel to the first one.

To use this instrument, the observer adjusts it so the lines of sight from the

ends of the staff to the tip of the cross-piece coincide with the end-points of the

line to be measured, and the distances are computed from one measurment and

similar triangles. When neither point of the required line is accessible, the

distance is computed from two observations at known distances from each

other.]

' [Stevin's area units evidently proceed directly from his decimal scheme.

Thus the prime of the area unit is one tenth of the unit itself, not a square

whose side is the prime of the linear unit.]

* fThe arpent was the common unit of area. It varied from about 3000 to

5100 square meters, according to the locality.]
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gives to the proprietaries, and often not then, as the majority

think it useless to mention the smaller units.

Secondly, to subtract 32(O)5®70 from 57(0)3©2©, work

according to the second proposition of La Disme, and (0)®@
there remains 24 verges, 7 primes, 5 seconds. 5 7 3 2

3 2 5 7

24 75
Thirdly, to multiply 8(0)703(2) by 7(o)5®40 (these might be

the sides of a rectangle or quadrangle), proceed as (0)00
above according to the third proposition of La Disme, 8 7 3

getting the product, or area, 65 verges 8 primes etc. 7 5 4

3 4 9 2

4 3 6 5

6 111
65824 2

©000
Fourthly, suppose that the rectangle ABCD has the side AD

26(0)30. From what point on AB should a 1

line be drawn parallel to AD to cut off a ^^

rectangle of area 367(0)60? Divide 367(0)60 7^

by 26(0)30 according to the fourth proposition ^,508

of La Disme getting the quotient 13(5)9070 ^^^Ji

which is the required distance AE. If greater 70^7^9 @(J)®
accuracy is desired, this division may be carried ^^7^PP (13 9 7

further, although such accuracy does not seem

necessary. The proofs of these problems are

given above in the propositions to which we have ^^

referred.

Article Two

0/ the Computations oj the Measuring of Tapestry

The aiine^ is the unit of the measurer of tapestry. The blank

side of the aune should be divided into ten equal parts each of

which is 1 prime, just as is done in the case of the verge of the

surveyor. Then each prime is divided into ten equal parts, each

1 second etc. It is not necessary to discuss the use of this measure

as examples of it would be similar in every respect to those given

in the article on surveying.

1 [About 46 inches.]
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Article Three

Of Computations Used in Gauging and in the Measuring of all Casks

Article Four

0/ Computations of Volume Measurement in General

It is true, indeed, that gauging is stereometry that is the science

of measuring volumes, but all stereometry is not gauging. We
therefore distinguish them in this treatise. The stereometer who
uses the method of La Disme, should mark the customary measure

of his town, whether this be the verge or the aune, with the

decimal divisions described in the first and second articles above.

Let us suppose that he is to find the volume of a rectangular

column whose length is 3®2@, breadth 2©4(2), 3 2

2@3®5@. He should multiply the length by the 2 4

breadth (according to the 4th proposition of La 12 8

Disme) and this product by the height, getting as 6 4

his result 108(2)408©. 7 68
2 35

3 8 40
2 3 4

15 3 6

18 4 80
©00000

Note.—Someone who is ignorant of the fundamentals of stereo-

metry—for it is such a man that we are addressing now—may
wonder why we say that the volume of the above column is but 1©
etc., for it contains more than 180 cubes of side 1 prime. He
should realize that a cubic verge is not 10 but 1000 cubes of side

1 prime. Similarly, 1 prime of the volume unit is 100 cubes each

of side 1 prime. The like is well known to surveyors for when one

says 2 verges 3 feet of earth, he does not mean 2 verges 3 feet square,

but 2 verges and (counting 12 feet to the verge) 36 feet square.

If however the question had been how many cubes of side 1 prime

are in the above column, the result would have been changed to

conform to this requirement, bearing in mind that each prime of

volume units is 100 cubes of side 1 prime, and each second is 10

such cubes. If the tenth part of the verge is the greatest measure

that the stereometer intends using, he should call it the unit and

proceed as above.
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Article Five

Of Astronomical Computations

The ancient astronomers who divided the circle into 360 degrees,

saw that computations with these and their fractional parts were

too laborious. They divided the degree, therefore, into sub-

multiples and these again into the same number of equal parts,

and in order to always work with integers, they chose for this

division the sexagesimal progression for sixty is a number com-

mensurate with many whole numbers, to wit with 1, 2, 3, 4, 5, 6,

10, 12, 15, 20, 30. If we may trust to experience, however, and

we say this with all reverence for the past, the decimal and not the

sexagesimal is the most convenient of all the progressions that

exist potentially in nature. Thus, we would call the 360 degrees

the unit and we would divide the degree into ten equal parts, or

primes, and the prime in turn into ten parts and so forth, as has

been done several times above. Having once agreed upon this

division, we might describe the easy methods of adding, sub-

tracting, multiplying, and dividing these numbers, but as this

does not differ from the preceding propositions such a recital would

be but a waste of time. We therefore let those examples illustrate

this article. Moreover we would use this division of the degree in

all astronomical tables and we hope to publish one such^ in our

own Flemish language which is the richest, the most ornate, and

the most perfect of all languages. Of its exquisite uniqueness, we
contemplate a fuller proof than the brief one which Pierre and

Jehan made in the Beivysconst or Dialectique^ which was recently

published.

1 [Stevin did not make this promise good, however, for in his work on

astronomy, the Wiscontige Gedacbtenissen (1608), he keeps to the old partition

of the degree. Father Bosmans is of the opinion that this was due to the

tremendous labor involved, but he also points out that the errors incident to

converting readings to the decimal system for computation and then shifting

back again would be greater than those involved in the mere computation with

sexagesimals.]

2 [Dialectike Ojte Beivysconst. Leerende van alien saeken recbt ende constelick

Oirdeelen; Oock openende den wecb tot de alderiepste verborgentbeden der Nature-

ren. Bescbreven int Neerdytacb door Simon Stevin van Brugghe. Tot Leyden

by Cbristoffel Plantijn M.D.LXXXV.
In this book, which was an imitation of Gcero's Tusculan Disputations,

Pierre and Jehan discuss the beauties of the Flemish tongue. (First edition,

pp. 141-166.)

The more complete proof comes as a digression at the end of the preface of

Stevin's Begbinselen der Weegbconst, 1596.)
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Article Six

Of the Computations of Mint-masters, Merchants, and in General

of All States

To summarize this article, we might say that all measures

—

linear, liquid, dry, and monetary—may be divided decimally,

and that each large unit may be called the unit. Thus the marc is

the unit of weight for gold and silver; the Hvre, for other common
weights; and the livre gros in Flanders, the Hvre esterlain in

England, and the ducat in Spain, are the units of money in those

countries. In the case of the money, the highest sj^mbol (and

the lowest denomination) of the marc would be the fourth, for the

prime weighs half the Es of Antwerp. The third suffices for the

highest symbol of the livre gros, for the third is less than the fourth

of a penny.

Instead of the demi-Iivre, once, demi-once, esterlain, grain etc.

the subdivisions of the weights should be the 5, 3, 2, 1 of each sign,

that is to say, after a livre would follow a weight of 5 primes (or

3^ lb.) then 3 primes, then 2, then 1. Similar parts of other

weights would have the 5 and the other multiples of the division

following.

We think it essential that each subdivision should be named
prime, second, third etc., whatever sort of measure it may be, for

it is evident to us that second multiplied by third gives the product

fifth (2 & 3 make 5 as was said above), and third divided by second

gives the quotient prime, facts which cannot be shown so neatly

by other names. But when one wishes to name them so as to

distinguish the systems of measure, as we say demi-aune, demi-

livre, demi-pinte, etc., we may call them prime of marc, second of

marc, second of livre, second of aune, etc.

As examples of this, let us suppose that 1 marc of gold is

worth 36 lb. 5®3@, how much is 8 marcs 3®5(2)40 worth?

Multiply 3653 by 8354 getting the product 305 lb. 1®7®10 which

is the required solution.^ As for the 602®, these are of no

account here.

Again, take the case of 2 aunes 3® (of cloth) which cost 3 lb.

2®5@, what would be the cost of 7 aunes 5®3@? To find this,

multiply the last of the given numbers by the second and divide

this product by the third according to the usual custom, that is to

^ [Stevin is not consistent in his approximation of results. When he com-

putes his interest tables, he says he considers ^°9^oi an extra unit 'for it is

more than one half.']
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say 753 by 325 which gives 244725. This divided by 23 gives the

quotient and solution 10 lb. 6®4(D.
We might give examples of all the common rules of arithmetic

that pertain to business, as the rules of partnership, interest,

exchange etc., and show how they may be carried out by integers

alone and also how they may be performed by easy operations

with counters, but as these may be deduced from the preceding,

we shall not elaborate them here. We might also show by com-

parison with vexing problems with fractions the great difference

in ease between working with ordinary numbers and with decimal

numbers, but we omit this in the interest of brevity.

Finally, we must speak of one difference between the sixth

article and the five preceding articles, namely that any individual

may make the divisions set forth in the five articles, but this is not

the case in the last article where the results must be accepted by

every one as being good and lawful. In view of the great useful-

ness of the decimal division, it would be a praiseworthy thing if

the people would urge having this put into effect so that in addition

to the common divisions of measures, weights, and money that

now exist, the state would declare the decimal division of the large

units legitimate to the end that he who wished might use them.

It would further this cause also, if all new money should be based

on this system of primes, seconds, thirds, etc. If this is not put

into operation so soon as we might wish, we have the consolation

that it will be of use to posterity, for it is certain that if men of

the future are like men of the past, they will not always be neglect-

ful of a thing of such great value.

Secondly, it is not the most discouraging thing to know that

men may free themselves from great labor at any hour they wish.

Lastly, though the sixth article may not go into effect for some

time, individuals may always use the five preceding articles indeed

it is evident that some are already in operation.

The End of the Appendix
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On Irrational Numbers

(Translated from the German by the Late Professor Wooster WoodruflF

Beman, University of Michigan, Ann Arbor, Michigan. Selection

made and edited by Professor Vera Sanford, Western

Reserve University, Cleveland, Ohio)

Julius Wilhelm Richard Dedekind (1831-1916) studied at Gi)ttingen and

later taught in Zurich and Braunschweig. His essay Stetigkeit und irra-

tionale Zablen published in 1872 was the outcome of researches begun in

Zurich in 1858 when Dedekind, teaching differential calculus for the first

time, became increasingly conscious of the need for a scientific discussion of the

concept ot continuity.

This work is included in Essays on the Theory of Numbers, by Richard

Dedekind, translated by the late Professor Wooster Woodruff Beman (Open

Court Publishing Company, Chicago, 1901). The extract here given is on

pages 6 to 24 of this translation and is reproduced by the consent of the

publishers.

The author begins with a statement of three properties of rational numbers

and of the three corresponding properties of the points on a straight line.

These properties are as follows:

For Numbers

I. If a > b, and b > c, then a > c.

II. If a, c are two different numbers, there are infinitely many different

numbers lying between a, c.

III. If a is any definite number, then all numbers of the system R fall into

two classes, Ai and A2, each of which contains infinitely many individuals;

the first class Ai comprises all numbers ai that are < a, the second class A2

comprises all numbers 02 that are > a; the number a itself may be assigned

at pleasure to the first or second class, being respectively the greatest number

of the first class or the least of the second.

For the Points on a Line

I. Ifp lies to the right of q, and q to the right of r, then p lies to the right of r ;

and we say that q lies between the points p and r.

II. If p, r are two different points, then there always exist infinitely many
points that lie between p and r.

III. If p is a definite point in L, then all points in L fall into two classes. Pi

and P2 each of which contains infinitely many individuals; the first class Pi

contains all the points pi that lie to the left of p, and the second class Pt

contains all the points pj that lie to the right of p; the point p itself may be

assigned at pleasure to the first or second class. In every case, the separation

35
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of the straight line L into the two classes or portions Pi, Pj is of such a charac-

ter that every point of the first class Pi lies to the left of every point of the

second class P2.

III.

CONTINUITY OF THE STRAIGHT LINE.

Of the greatest importance, however, is the fact that in the

straight line L there are infinitely many points which correspond

to no rational number. If the point p corresponds to the rational

number a, then, as is well known, the length op is commensurable

with the invariable unit of measure used in the construction, i. e.,

there exists a third length, a so-called common measure, of which

these two lengths are integral multiples. But the ancient Greeks

already knew and had demonstrated that there are lengths

incommensurable with a given unit of length, e. g., the diagonal

of the square whose side is the unit of length. If we lay off such

a length from the point upon the hne we obtain an end-point

which corresponds to no rational number. Since further it can

be easily shown that there are infinitely many lengths which are

incommensurable with the unit of length, we may affirm: The
straight line L is infinitely richer in point-individuals than the

domain R of rational numbers in number individuals.

If now, as is our desire, we try to follow up arithmetically all

phenomena in the straight line, the domain of rational numbers is

insufficient and it becomes absolutely necessary that the instru-

ment R constructed by the creation of the rational numbers be

essentially improved by the creation of new numbers such that

the domain of numbers shall gain the same completeness, or as we
may say at once, the same continuity, as the straight fine.

The previous considerations are so familiar and well known to

all that many will regard their repetition quite superfluous. Still

I regarded this recapitulation as necessary to prepare properly

for the main question. For, the way in which the irrational

numbers are usually introduced is based directly upon the con-

ception of extensive magnitudes—which itself is nowhere carefully

defined—and explains number as the result of measuring such a

magnitude by another of the same kind.^ Instead of this I

demand that arithmetic shall be developed out of itself.

^The apparent advantage of the generality of this definition of number

disappears as soon as we consider complex numbers. According to my view,

on the other hand, the notion of the ratio between two numbers of the same

kind can be clearly develojjed only after the introduction of irrational numbers.
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That such comparisons with non-arithmetic notions have

furnished the immediate occasion for the extension of the number-

concept may, in a general way, be granted (though this was

certainly not the case in the introduction of complex numbers);

but this surely is no sufficient ground for introducing these foreign

notions into arithmetic, the science of numbers. Just as negative

and fractional rational numbers are formed by a new creation,

and as the laws of operating with these numbers must and can be

reduced to the laws of operating with positive integers, so we must

endeavor completely to define irrational numbers by means of the

rational numbers alone. The question only remains how to do this.

The above comparison of the domain R of rational numbers

with a straight hne hf's led to the recognition of the existence of

gaps, of a certain incompleteness or discontinuity of the former,

while we ascribe to the straight line completeness, absence of gaps,

or continuity. In what then does this continuity consist? Every-

thing must depend on the answer to this question, and only

through it shall we obtain a scientific basis for the investigation

of all continuous domains. By vague remarks upon the unbroken

connection in the smallest parts obviously nothing is gained; the

problem is to indicate a precise characteristic of continuity that

can serve as the basis for vahd deductions. For a long time I

pondered over this in vain, but finally I found what I was seeking.

This discovery will, perhaps, be differently estimated by different

people; the majority may find its substance very commonplace.

It consists of the following. In the preceding section attention

was called to the fact that every point p of the straight line pro-

duces a separation of the same into two portions such that every

point of one portion lies to the left of every point of the other.

I find the essence of continuity in the converse, i. e., in the follow-

ing principle:

"If all points of the straight line fall into two classes such that

every point of the first class lies to the left of every point of the

second class, then there exists one and only one point which pro-

duces this division of all points into two classes, this severing of

the straight line into two portions."

As already said I think I shall not err in assuming that every

one will at once grant the truth of this statement; the majority of

my readers will be very much disappointed in learning that by this

commonplace remark the secret of continuity is to be revealed.

To this I may say that I am glad if every one finds the above
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principle so obvious and so in harmony with his own ideas of a

line; for I am utterly unable to adduce any proof of its correctness,

nor has any one the power. The assumption of this property of

the line is nothing else than an axiom by which we attribute to the

line its continuity, by which we find continuity in the line. If

space has at all a real existence it is not necessary for it to be con-

tinuous; many of its properties would remain the same even were

it discontinuous. And if we knew for certain that space was

discontinuous there would be nothing to prevent us, in case we so

desired, from filling up its gaps, in thought, and thus making it

continuous; this filling up would consist in a creation of new point-

individuals and would have to be effected in accordance with the

above principle.

IV.

CREATION OF IRRATIONAL NUMBERS.

From the last remarks it is sufficiently obvious how the discon-

tinuous domain R of rational numbers may be rendered complete

so as to form a continuous domain. In Section I it was pointed

out that every rational number o effects a separation of the system

R into two classes such that every number oi of the first class Ai

is less than every number a2 of the second class A2; the number a

is either the greatest number of the class Ai or the least number of

the class A 2. If now any separation of the system R into two

classes Ai, A2, is given which possesses only this characteristic

property that every number oi in Ai is less than every number

02 in A 2, then for brevity we shall call such a separation a cut

[Schnitt] and designate it by (Ai, A2). We can then say that

every rational number a produces one cut or, strictly speaking,

two cuts, which, however, we shall not look upon as essentially

different; this cut possesses, besides, the property that either

among the numbers of the first class there exists a greatest or

among the numbers of the second class a least number. And
conversely, if a cut possesses this property, then it is produced by

this greatest or least rational number.

But it is easy to show that there exist infinitely many cuts not

produced by rational numbers. The following example suggests

itself most readily.

Let D be a positive integer but not the square of an integer, then

there exists a positive integer X such that

X2<D<(X+ 1)2.
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If we assign to the second class A 2, every positive rational

number 02 whose square is >D, to the first class Ai all other

rational numbers ai, this separation forms a cut (Ai, A2), i. e.,

every number ai is less than every number 02. For if ai = 0, or is

negative, then on that ground Oi is less than any number 02,

because, by definition, this last is positive; if ai is positive, then

is its square ^D, and hence ai is less than any positive number

02 whose square is >D.
But this cut is produced by no rational number. To demon-

strate this it must be shown first of all that there exists no rational

number whose square =D. Although this is known from the

first elements of the theory of numbers, still the following indirect

proof may find place here. If there exist a rational number
whose square = D, then there exist two positive integers t, u, that

satisfy the equation
f2-Du2 = 0,

and we may assume that u is the least positive integer possessing

the property that its square, by multiphcation by D, may be

converted into the square of an integer t. Since evidently

\u<t<{\+l)u,

the number u' = t—\u is a positive integer certainly less than u.

If further we put
t' = Du-\t,

t' is likewise a positive Integer, and we have

f'2_Du'2=(X2-D)(f2-Du2) = 0,

which is contrary to the assumption respecting u.

Hence the square of every rational number x is either <D or

>D. From this it easily follows that there is neither in the class

A I a greatest, nor in the class A2 a least number. For if we put

x(x2+3D)
y =

we have
3x^+D

^ 2x{D-x^)
^ ^ 3x2+D

and

^ (3x2+D)2

If In this we assume x to be a positive number from the class Ai,

then x^<D, and hence y>x and y^<D. Therefore y likewise

belongs to the class Ai. But if we assume x to be a number from
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the class As, then x^>D, and hence y<x, y>0, and y^>D.
Therefore y likewise belongs to the class A 2. This cut is therefore

produced by no rational number.

In this property that not all cuts are produced by rational

numbers consists the incompleteness ordiscontinuity of the domain

R of all rational numbers.

Whenever, then, we have to do with a cut (Ai, A 2) produced

by no rational number, we create a new, an irrational number a,

which we regard as completely defined by this cut (Ai, A2); we
shall say that the number a corresponds to this cut, or that it

produces this cut. From now on, therefore, to every definite

cut there corresponds a definite rational or irrational number,

and we regard two numbers as different or unequal always and

only when they correspond to essentially different cuts.

In order to obtain a basis for the orderly arrangement of all

real, i. e., of all rational and irrational numbers we must investigate

the relation between any two cuts (Ai, A 2) and (Bi, B2) produced

by any two numbers a and j8. Obviously a cut (Ai, A 2) is given

completely when one of the two classes, e. g., the first Ai is known,

because the second A 2 consists of all rational numbers not con-

tained in Ai, and the characteristic property of such a first class

lies in this that if the number Oi is contained in it, it also contains

all numbers less than ai. If now we compare two such first classes

Ai, JBi with each other, it may happen

1. That they are perfectly identical, i. e., that every number

contained in Ai is also contained in Bi, and that every number

contained in fii is also contained in Ai. In this case A 2 is neces-

sarily identical with J52, and the two cuts are perfectly identical,

which we denote in symbols by a= /3 or /3 = a.

But if the two classes Ai, Bi are not identical, then there exists

in the one, e. g., in Ai, a number a'i=«6'2 not contained in the other

Bi and consequently found in B2; hence all numbers 61 contained

in Bi are certainly less than this number a'i = 6'2 and therefore all

numbers 61 are contained in Au
2. If now this number a'l is the only one in Ai that is not

contained in Bi, then is every other number ai contained in Ai

also contained in Bi and is consequently <a'i, i. e., a\ is the

greatest among all the numbers oi, hence the cut (Ai, A 2) is

produced by the rational number a = a'i = 6'2. Concerning the

other cut (Bi, B2) we know already that all numbers 61 in Bi are

also contained in Ax and are less than the number a'i = h'i which is
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contained in B%', every other number 62 contained in Bz must,
however, be greater than h\, for otherwise it would be less than
a'l, therefore contained in Ai and hence in Bx\ hence ^'2 is the least

among all numbers contained in B2, and consequently the cut

(Bi, B2) is produced by the same rational number /3 = 6'2= a'i= a.

The two cuts are then only unessentially different.

3. If, however, there exist in A 1 at least two different numbers
a'i= 6'2 and a"i = h"-2, which are not contained in Bi, then there

exist infinitely many of them, because all the infinitely many
numbers lying between a\ and a" i are obviously contained in Ai
(Section I, 11) but not in Bi. In this case we say that the numbers
a and j3 corresponding to these two essentially different cuts

(Ai, A2) and (Bi, Bi) are different, and further that a is greater

than j3, that /3 is less than a, which we express in symbols by
a>/3 as well as /3<a. It is to be noticed that this definition coin-

cides completely with the one given earlier, when a, /3 are rational.

The remaining possible cases are these:

4. If there exists in Bi one and only one number b\ = a'2, that

is not contained in Ai then the two cuts (Ai, A2) and (Bi, B2) are

only unessentially different and they are produced by one and the

same rational number a = a'2 = 6'i = /3.

5. But if there are in Bi at least two numbers which are not

contained in Ai, then /3>a, a</3.

As this exhausts the possible cases, it follows that of two different

numbers one is necessarily the greater, the other the less, which

gives two possibiHties. A third case is impossible. This was
indeed involved in the use of the comparative (greater, less) to

designate the relation between a, /3; but this use has only now been

justified. In just such investigations one needs to exercise the

greatest care so that even with the best intention to be honest he

shall not, through a hasty choice of expressions borrowed from

other notions already developed, allow himself to be led into the

use of inadmissible transfers from one domain to the other.

If now we consider again somewhat carefully the case a>/3 it is

obvious that the less number /3, if rational, certainly belongs to

the class A 1; for since there is in Ai a number a'i = b'2 which belongs

to the class B2, it follows that the number /3, whether the greatest

number in Bi or the least in B2 is certainly ^a'l and hence con-

tained in Ai. Likewise it is obvious from a>/3 that the greater

number a, if rational, certainly belongs to the class B2, because

a^a'i. Combining these two considerations we get the following
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result: If a cut is produced by the number a then any rational

number belongs to the class A i or to the class A 2 according as it is

less or greater than a; if the number a is itself rational it may
belong to either class.

From this we obtain finally the following: If a>^, i. e., if there

are infinitely many numbers in Ai not contained in Bi then there

are infinitely many such numbers that at the same time are differ-

ent from a and from /S; every such rational number c is <a,

because it is contained in Ai and at the same time it is >/3 because

contained in ^2.

V.

CONTINUITY OF THE DOMAIN OF REAL NUMBERS.

In consequence of the distinctions just established the system

$R of all real numbers forms a well-arranged domain of one dimen-

sion; this is to mean merely that the following laws prevail:

I. If a>/3, and IS>y, then is also a>y. We shall say that the

number /3 lies between a and 7.

II. If a, 7 are any two different numbers, then there exist

infinitely many diff^erent numbers /3 lying between a, 7.

III. If a is any definite number then all numbers of the system 9?

fall into two classes Ui and U2 each of which contains infinitely

many individuals; the first class Ui comprises all the numbers ai

that are less than a, the second U2 comprises all the numbers 02

that are greater than a; the number a itself may be assigned at

pleasure to the first class or to the second, and it is respectively

the greatest of the first or the least of the second class. In each

case the separation of the system 9i into the two classes Ui, U2 is

such that every number of the first class Ui is smaller than every

number of the second class U2 and we say that this separation is

produced by the number a.

For brevity and in order not to weary the reader I suppress the

proofs of these theorems which follow immediately from the defini-

tions of the previous section.

Beside these properties, however, the domain 9? possesses also

continuity; 1. e., the following theorem is true:

IV. If the system 9? of all real numbers breaks up into two classes

Ui, U2 such that every number ai of the class Ui is less than every

number 02 of the class U2 then there exists one and only one number

a by which this separation is produced.
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ProoJ. By the separation or the cut of $R into Ui and U2 we
obtain at the same time a cut (Ai, A 2) of the system R of all

rational numbers which is defined by this that Ai contains all

rational numbers of the class Ui and A 2 all other rational numbers,

i. e., all rational numbers of the class U2. Let a be the perfectly

definite number which produces this cut (Ai, A2). If ^3 is any
number different from a, there are always infinitely many rational

numbers c lying between a and ^. If /3<a, then c<a; hence c

belongs to the class Ai and consequently also to the class Ui, and
since at the same time ^<c then /? also belongs to the same class

Ui, because every number in U2 is greater than every number c in

Ui. But if )3>a, then is c>a; hence c belongs to the class A 2 and
consequently also to the class U2, and since at the same time

/3>c, then j3 also belongs to the same class U2, because every

number in Ui is less than every number c in U2. Hence every

number /3 different from a belongs to the class Ui or to the class U2

according as /3<a or fi>a\ consequently a itself is either the

greatest number in Ui or the least number in Us, i. e., a is one and
obviously the only number by which the separation of 9? into the

classes Ui, U2 is produced. Which was to be proved.

VI.

OPERATIONS WITH REAL NUMBERS.

To reduce any operation with two real numbers a, /3 to operations

with rational numbers, it is only necessary from the cuts (Ai, A 2),

(Bi, B2) produced by the numbers a and /3 in the system R to

define the cut (Ci, C2) which is to correspond to the result of the

operation, 7. I confine myself here to the discussion of the

simplest case, that of addition.

If c is any rational number, we put it into the class Ci, provided

there are two numbers one ai in Ai and one 61 in Bi such that their

sum ai+6i^c; all other rational numbers shall be put into the

class C2. This separation of all rational numbers into the two
classes Ci, C2 evidently forms a cut, since every number c\ inCi

is less than every number c% in C2. If both a and jS are rational,

then every number ci contained in Ci is ^a+/3, because Oi^a,

fei^/3, and therefore ai+6i^a+i3; further, if there were contained

in Cz a number C2<a4-j3, hence a+i3 = C2+p, where p is a positive

rational number, then we should have

C2=(a-ip)+ (i5-ip),
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which contradicts the definition of the number C2, because a— ^p

is a number in Ai, and jS— ^p a number in Br, consequently every

number cz contained in Cz is ^a+jS. Therefore in this case the

cut (Ci, C2) is produced by the sum a+^S. Thus we shall not

violate the definition which holds in the arithmetic of rational

numbers if in all cases we understand by the sum a+j3 of any two

real numbers a, /S that number y by which the cut (Ci, €>) is

produced. Further, if only one of the two numbers a, ^ is rational,

e, g., a, it is easy to see that it makes no difference with the sum

Y = a+i3 whether the number a is put into the class Ai or into the

class A 2.

Just as addition is defined, so can the other operations of the

so-called elementary arithmetic be defined, viz., the formation of

differences, products, quotients, powers, roots, logarithms, and

in this way we arrive at real proofs of theorems (as, e. g., \/T'\/3

= \/6)> which to the best of my knowledge have never been

established before. The excessive length that is to be feared in

the definitions of the more complicated operations is partly inher-

ent in the nature of the subject but can for the most part be

avoided. Very useful in this connection is the notion of an

interval, i. e., a system A of rational numbers possessing the

following characteristic property: if a and a' are numbers of the

system A, then are all rational numbers lying between a and a'

contained in A. The system R of all rational numbers, and also

the two classes of any cut are intervals. If there exist a rational

number ai which is less and a rational number 02 which is greater

than every number of the interval A, then A is called a finite

interval; there then exist infinitely many numbers in the same

condition as Oi and infinitely many in the same condition as oo;

the whole domain R breaks up into three parts Ai, A, A2 and there

enter two perfectly definite rational or irrational numbers ai, a-i

which may be called respectively the lower and upper (or the less

and greater) limits of the interval; the lower limit ai is determined

by the cut for which the system Ai forms the first class and the

upper 02 by the cut for which the system A 2 forms the second class.

Of every rational or irrational number a lying between ai and aa

it may be said that it lies within the interval A. If all numbers

of an interval A are also numbers of an interval B, then A is called

a portion of B.

Still lengthier considerations seem to loom up when we attempt

to adapt the numerous theorems of the arithmetic of rational
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numbers (as, e. g., the theorem {a-\-h)c = ac-\-hc) to any real

numbers. This, however, is not the case. It is easy to see that it

all reduces to showing that the arithmetic operations possess a

certain continuity. What I mean by this statement may be

expressed in the form of a general theorem

:

"If the number X is the result of an operation performed on the

numbers a, /3, 7, . . . and X lies within the interval L, then inter-

vals A, B, Cy . . , can be taken within which He the numbers

a, jS, 7, . . . such that the result of the same operation in which

the numbers a, /3, 7, . . . are replaced by arbitrary numbers of

the intervals A, B, C, . . . is always a number lying within the

interval L." The forbidding clumsiness, however, which marks

the statement of su^h a theorem convinces us that something

must be brought in as an aid to expression; this is, in fact, attained

in the most satisfactory way by introducing the ideas of variable

magnitudes, Junctions, limiting values, and it would be best to

base the definitions of even the simplest arithmetic operations

upon these ideas, a matter which, however, cannot be carried

further here.



WALLIS

On Lmaginary Numbers

(Selected from the English Version, by Professor David Eugene Smith,

Teachers College, Columbia University, New York City)

John Wallis (1616-1703), Savilian professor of geometry at Oxford (1649-

1705), contemporary of Newton (see also p. 217), was the first to make any

considerable contribution to the geometric treatment of imaginary numbers.

This appeared in his Algebra (1673), cap. LXVI (Vol. II, p. 286), of the Latin

edition. The following extract is from his English translation:

CHAP. LXVI.i

0/ Negative Squares, mid their Imaginary Roots in Algebra.

We have before had occasion (in the Solution of some Quadratick

and Cubick Equations) to make mention of Negative Squares,

and Imaginary' Roots, (as contradistinguished to what they call

Real Roots, whether Affirmative or Negative:) But referred the

fuller consideration of them to this place.

These Imaginary Quantities (as they are commonly called)

arising from the Supposed Root of a Negative Square, (when they

happen,) are reputed to imply that the Case proposed is Impossible.

And so indeed it is, as to the first and strict notion of what is

proposed. For it is not possible, that any Number (Negative or

Affirmative) Multiplied into itself, can produce (for instance) —4.

Since that Like Signs (whether + or — ) will produce +; and

therefore not —4.

But it is also Impossible, that any Quantity (though not a

Supposed Square) can be Negative. Since that it is not possible

that any Magnitude can be Less than Nothing, or any Number
Fewer than None.

Yet^ is not that Supposition (of Negative Quantities,) either

Unuseful or Absurd; when rightly understood. And though, as

to the bare Algebraick Notation, it import a Quantity less than

nothing: Yet, when it comes to a Physical Application, it denotes

as Real a Quantity as if the Sign were + ; but to be interpreted in

a contrary sense.

1 [Page 264.] « [Page 265.]
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As for instance: Supposing a man to have advanced or moved
forward, (from A to B,) 5 Yards; and then to retreat (from B to

C) 2 Yards: If it be asked, how much he had Advanced (upon the

whole march) when at C? or how many Yards he is now Forwarder

than when he was at A? I find (by Subducting 2 from 5,) that

he is Advanced 3 Yards. (Because +5 — 2 = +3.)

D A C B

\-V-\- \ I I I I I

But if, having Advanced 5 Yards to B, he thence Retreat 8

Yards to D; and it be then asked. How much he is Advanced when
at D, or how much Forwarder than when he was at A: I say —3
Yards. (Because +£ -8 = —3.) That is to say, he is advanced

3 Yards less than nothing.

Which in propriety of Speech, cannot be, (since there cannot be

less than nothing.) And therefore as to the Line AB Forward,

the case is Impossible.

But if (contrary to the Supposition,) the Line from A, be con-

tinued Backward, we shall find D, 3 Yards Behind A. (Which

was presumed to be Before it.)

And thus to say, he is Advanced — 3 Yards; is but what we
should say (in ordinary form of Speech), he is Retreated 3 Yards;

or he wants 3 Yards of being so Forward as he was at A.

Which doth not only answer Negatively to the Question asked.

That he is not (as was supposed,) Advanced at all: But tells

moreover, he is so far from being advanced, (as was supposed)

that he is Retreated 3 Yards; or that he is at D, more Backward by

3 Yards, than he was at A.

And consequently — 3, doth as truly design the Point D; as

+ 3 designed the Point C. Not Forward, as was supposed; but

Backward, from A.

So that + 3, signifies 3 Yards Forward; and — 3, signifies 3

Yards Backward: But still in the same Streight Line. And each

designs (at least in the same Infinite Line,) one Single Point:

And but one. And thus it is in all Lateral Equations; as having

but one Single Root.

Now what is admitted in Lines, must on the same Reason, be

allowed in Plains also.

As for instance: Supposing that in one Place, we Gain from the

Sea, 30 Acres, but Lose in another Place, 20 Acres: If it be now

asked. How many Acres we have gained upon the whole: The
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Answer is, 10 Acres, or + 10. (Because of 30-20 = 10.) Or,

which is all one 1600 Square Perches. (For the Etiglish Acre

being Equal to a Plain of 40 Perches in length, and 4 in breadth,

whose Area is 160; 10 Acres will be 1600 Square Perches.) Which

if it lye in a Square Form, the Side of that Square will be 40

Perches in length; or (admitting of a Negative Root,) — 40.

But if then in a Third place, we lose 20 Acres more; and the same

Question be again asked. How much we have gained in the whole;

the Answer must be — 10 Acres. (Because 30— 20— 20= —10.)

That is to say. The Gain is 10 Acres less than nothing. Which

is the same as to say, there is a Loss of 10 Acres: or of 1600 Square

Perches.

And hitherto, there is no new Difficulty arising, nor any other

Impossibihty than what we met with before, (in supposing a

Negative Quantity, or somewhat Less than nothing:) Save only

that \/l600 is ambiguous; and may be + 40, or — 40. And from

such Ambiguity it is, that Quadratick Equations admit of Two
Roots,

But now (supposing this Negative Plain, — 1600 Perches, to be

in the form of a Square;) must not this Supposed Square be

supposed to have a Side? And if so, What shall this Side be?

We^ cannot say it is 40, nor that it is —40. (Because either of

these Multiplyed into itself, will make 4- 1600; not —1600).

But thus rather, that it is V~1600, (the Supposed Root of a

Negative Square;) or (which is Equivalent thereunto) 10 V~16,
or20 V-4, or 40 V-l-
Where V implies a Mean Proportional between a Positive and

a Negative Quantity. For like sls \/ b c signifies a Mean Propor-

tional between -{-b and +c; or between —6, and — c; (either of

which, by Multiplication, makes +6c:) So doth \/— bc signify a

Mean Proportional between + 6 and — c, or between — b and + c;

either of which being Multiphed, makes —be. And this as to

Algebraick consideration, is the true notion of such Imaginary

Root, y/— be.

CHAP. LXVII.

The same Exemplified in Geometry.

What hath been already said of \/~ ^c in Algebra, (as a Mean
Proportional between a Positive and a Negative Quantity:) may
be thus ExempHfied in Geometry.

1 [Page 266].
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If (for Instance,) Forward from A, I take A B = +6; and Forward

from thence, BC =+c; (making AC = +AB4-BC= +6+c, the

Diameter of a Circle:) Then is the Sine, or Mean Proportional

BP=V+6c.
But if Backward from A, I take AB =—b; and then Forward

from that B, BC=+c; (making AC = —AB+BC= — 6-Hc, the

Diameter of the Circle:) Then is the Tangent or Mean Propor-

tional BP = \/-bc.

So that where ^/-{-b c signifies a Sine; yZ—b c shall signify a

Tangent, to the same Arch (of the same Circle,) AP, from the

same Point P, to the same Diameter AC.

Suppose now (for further Illustration,) A Triangle standing on

the Line AC (of indefinite length;) whose one Leg AP = 20 is

given; together with (the Angle PAB, and consequently) the

Height PC =12; and the length of the other Leg PB = 15: By
which we are to find the length of the Base AB.

'Tis manifest that the Square of AP being 400; and of PC, 144;

their Difference 256 (= 400-144) is the Square of AC.

And therefore AC(= \/2S6) = +16, or —16; Forward or Back-

ward according as we please to take the Affirmative or Negative

Root. But we will here take the Affirmative.

Then, because the Square of PB is 225; and of PC, 144; their

Difference 81, is the Square of CB. And th-erefore CB = \/81;

which is indifferently, +9 or —9: And may therefore be taken

Forward or Backward from C. Which gives a Double value for

the length of AB; to wit, AB = 16+9 = 25, or AB = 16-9 = 7.

Both Affirmative. (But if we should take. Backward from

A, AC=-16; AB=-16+9=-7, and AB = -16-9 = -25.

Both Negative.)

Suppose^ again, AP=15, PC = 12, (and therefore AC= \/: 225

-144 : =V81=9,) PB = 20 (and therefore BC = V:400-144:
MPart 267.]
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= V2S6 = +16, or -16:) Then is AB =9+16 = 25, or AB
=9— 16= — 7. The one Affirmative, the other Negative. (The

same values would be, but with contrary Signs, if we take AC=
V81 = -9: That is, AB = -9+16 = +7, AB= -9-16= -25.)

In all which cases, the Point B is found, (if not Forward, at

least Backward,) in the Line AC, as the Question supposeth.

And of this nature, are those Quadratick Equations, whose

Roots are Real, (whether Affirmative or Negative, or partly the

one, partly the other;) without any other Impossibihty than

(what is incident also to Lateral Equations,) that the Roots

(one or both) may be Negative Quantities.

3.

But if we shall Suppose, AP = 20, PB = 12, PC=15, (and there-

fore AC = \/175:) When we come to Subtract as before, the

Square of PC (225,) out of the Square PB (144,) to find the

Square of BC, we find that cannot be done without a Negative

Remainder, 144-225 = -81.

So that the Square of BC is (indeed) the Difference of the

Squares of PB, PC; but a defective Deference; (that of PC
proving the greater, which was supposed the Lesser; and the

Triangle PBC, Rectangled, not as was supposed at C, but at

B:) And therefore BC=V-81.
Which gives indeed (as before) a double value of AB, \/175,

-f-V— 81, and \/l7S, —V— 81: But such as requires a new

Impossibihty in Algebra, (which in Lateral Equations doth not

happen;) not that of a Negative Root, or a Quantity less than

nothing; (as before,) but the Root of a Negative Square. Which

in strictness of speech, cannot be: since that no Real Root (Affirma-

tive or Negative,) being MuItipHed into itself, will make a Nega-

tive Square.

This Impossibility in Algebra, argues an Impossibihty of the

case proposed in Geometry; and that the Point B cannot be had,

(as was supposed,) in the Line AC, however produced (forward

or backward,) from A.
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Yet are there Two Points designed (out of that Line, but) in

the same Plain; to either of which, if we draw the Lines AB, BP,

we have a Triangle; whose Sides AP, PB, are such as were required:

And the Angle PAC, and Altitude PC, (above AC, though not

above AB,) such as was proposed; And the Difference of Squares

of PB, PC, is that of CB.
And Hke as in the first case, the Two values of AB (which are

both Affirmative,) make the double of AC, (16+9, +16— 9,

= 16+16 = 32:) So here, V175+V-81, +V175-V'-81,
= 2V175.
And (in the Figure,) though not the Two Lines themselves,

AB, AB, (as in the First case, where they lay in the Line AC;)
yet the Ground-hnes on which they stand, A/3, A/S, are Equal to

the Double of AC: That is, if to either of those AB, we join Ba,

equal to the other of them, and with the fame Declivity; ACa
(the Distance of Aa) will be a Streight Line equal to the double

of AC; as is AC a in the First case.

The greatest difference is this; That in the first Case, the Points

B, B, lying in the Line AC, the Lines AB, AB, are the fame with

their Ground-Lines, but not so in this last case, where BB are so

raised above j3 13 (the respective Points in their Ground-Lines, over

which they stand,) as to make the case feasible; (that is, so much
as is the versed Sine of CB to the Diameter PC:) But in both

ACa (the Ground-Line of ABa) is Equal to the Double of AC.
So that, whereas in case of Negative Roots, we are to say. The

Point B cannot be found, so as is supposed in AC Forward, but

Backward from A it may in the same Line: We must here say, in

case of a Negative Square, the Point B cannot be found so as was

supposed, in the Line AC; but Above that Line it may in the same
Plain.

This I have the more largely insisted on, because the Notion (I

think) is new; and this, the plainest Declaration that at present I

can think of, to exphcate what we commonly call the Imaginary

Roots of Quadratick Equations. For such are these.

For instance; The Two Roots of this Equation, aa— 2a\/l7S

+256 = 0;area = V175+V-81,anda = -v/175-V-81. (Which

are the values ofAB in the last case.) For if from 175 (the Square

of half the Coefficient,) we Subduct the Absolute Quantity 256,

the Remainder is —81; the Root of which. Added to, and Sub-

ducted from, the half Coefficient,) makes \/l75±\/— 8l: Which
are therefore the Two Roots of that Equation. In the same man-
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ner as in the Equation 0^—32 a+17S=0; if from 256 (the Square

of Half 32,) we Subduct 175, the Remainder is +81; whose Root

V81 =9, Added to and Subducted from, 16 (the half Coefficient,)

makes 16 + 9; which are the values of A B in the First case.

CHAP. Lxvni.

The Geometrical Construction accommodated hereunto.

In the former Chapter, we have shewed what in Geometry

answers to the Root of a Negative Square in Algebra.

I shall now shew some Geometrical EfFections, answering to the

Resolution of such Quadratick Equations whose Roots may have

(what we call) Imaginary values, arising from such Negative

Squares.

The natural Construction of this Equation aa+ ba-\-a=0; is

this. The Coefficient b being the Sum of Two Quantities, whose

Rectangle is a, the Absolute Quantity: This cannot be more

naturally expressed, in Magnitudes, than
jf by making b { = Aa) the Diameter of a

^^^^^-J/>""~'^>\^ Circle, and \/a ( = BS) a Right Sine or

/ \ i ; \ Ordinate thereunto. (For it is one of the

/ \\ \ \ most known Properties of a Circle, that

A B C B ^ ^^^ ^^^^ ^^ Ordinate is a mean Propor-

tional between the Two Segments of the

Diameter.) And because BS (of the same length,) may be taken

indifferently on either side of CT, we have therefore, in the

Diameter, two Points B, B, (answering to SS in the Semi-

circumference,) either of which divide the Diameter into

AB, Ba, the Two Roots desired. (Both Affirmative, or both

Negative, according as in the Equation we have —6a, or +6a.)

And as BS increaseth, so B approacheth (on either Side) to C;

and CB (the Co-Sine, or Semi-difference of Roots,) decreaseth.

But because the Sine BS can never be greater than CT the

Semidiameter: Therefore, whenever y/a. is greater than \h\ the

Case according to this construction is Impossible.

1. The Geometrical Effection, therefore answering to this

Equation, a a + b a-\-a = 0, (so as to take in both cases at once.

Possible and Impossible; that is, whether |6 6 be or be not less

than a;) may be this.

On^ ACa = 6, bisected in C, erect a Perpendicular CP=\/a-
And taking PB = |6, make (on whether Side you please of CP,)

* [Page 269 on this p. 52, a has been used for the as of Wallis.]
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PBC, a Rectangled Triangle. Whose Right Angle will therefore

be at C or B, according as PB or PC is bigger; and accordingly,

BC a Sine or a Tangent, (to the Radius PB,) terminated in PC.

The Streight Lines AB, B a, are the two values of a. Both

Affirmative if (in the Equation,) it be — 6a: Both Negative, if

-\-b a. Which values be (what we call) Real, if the Right-Angle

be at C: But Imaginary if at B.

P

A-^^

P

p C ^

In both cases (whether the Right Angle be at C or B,) the Point

B may indifferently be taken on either side of PC, in a like Posi-

tion. And the Two Points B, B, are those which the Equation

designs.

In the former case; ABa is a Streight Line, and the same with

ACa.

In the latter; ABa makes at B, such an Angle, as that ACa
is the distance of Aa; and is the Ground-hne, on which if ABa be

Ichnographically projected, B falls on /3, the point just under it.

And therefore, if (in the Problem which produceth this Equa-

tion) ABa were supposed to be a Streight Line; or the Point B,

in the Line ACa; or the same with /3; or that ACa be Equal to

the Aggregate of AB+ Ba; or any thing which doth imply any

of these: This Construction shews that Case (so understood) to be

Impossible; but how it may be qualified, so as to become possible.

The difi"erence between this ImpossibiHty, and that incident

to a Lateral Equation, is this. When in a Lateral Equation, we
are reduced to a Negative value; it is as much as to say the Point

B demanded, cannot be had (in the Line AC proposed,) Forward

from A, as is presumed: But backward from A it may, at such a

distance Behind it. But when in a Quadratick Equation, we be

reduced, (not to a Negative value; wherein it communicates with

the Lateral; but) to (what is wont to be called) an Imaginary value;

it is as much as to say, The Point B cannot be had in the Line AC,
as was presumed; but, out of that Line it may (in the same Plain;)

at such a distance Above it.

The other form of Quadratick Equations, aa^ha—x = 0\ is

naturally thus Eff"ected. Taking CA, or CP, = \h\ and PB
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= \/3e; containing a Right Angle at P. The Hypothenuse, BC
continued, will cut the Circle PAa, in Aa. And the two Roots

desired, are AB, Ba; between which the

Tangent PB is a mean Proportional, and Aa
their Difference. But one of them is to be

understood Affirmative, the other Negative.

(Because if AB be Forward, Ba is Backward;

if that be Backward, this Forward.) To wit,

+AB, — Ba, if we have (in the Equation)

4-6a; or —AB, +Ba, if —6a.

But this Construction belongs not properly to this place: Because

in this form of Equation, we are never reduced to these Imaginary

values. For PB, of whatever length, may be a Tangent to that

Circle.
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On Complex Numbers

(Translated from the Danish by Professor Martin A. Nordgaard, St. Olaf

College, Northfield, Minnesota.)

Caspar Wessel (1745-1818) was a Norwegian surveyor. In 1797, he read a

paper upon the graphic representation of complex numbers. The paper was
printed in 1798 and appeared in the memoirs of the Royal Academy of

Denmark in 1799. This paper may be said to have been the first noteworthy

attempt at the modern method. Within a few years thereafter, numerous

other attempts were made, all leading to similar results (see Smith, History

of Matbemalics, Vol. II, pp. 263-267). Wessel's work attracted little

attention at the time and was almost unknown until the French translation

appeared in 1897. The present translation of certain essential passages is

made from the original Danish.

On the Analytical Representation of Direction;

AN Attempt,^

Applied Chiefly to the Solution of Plane and Spherical

Polygons (By Caspar Wessel, Surveyor.)

This present attempt deals with the question, how may we
represent direction analytically; that is, how shall we express

right lines so that in a single equation involving one unknown line

and others known, both the length and the direction of the

unknown hne may be expressed.

To help answer this question I base my work on two propositions

which to me seem undeniable. The first one is: changes in direc-

tion which can be effected by algebraic operations shall be indi-

cated by their signs. And the second: direction is not a subject

for algebra except in so far as it can be changed by algebraic

operations. But since these cannot change direction (at least, as

^ [In recent histories of mathematics, there have come about very misleading

translations into English of Wessel's title word "forsog" as "essay on, etc."

This possibility comes from the word "essai" used in the French translation

of Wessel's memoir, the French word meaning both an attempt or endeavor,

and a treatise (essay.) Wessel's word "forsog" can only mean attempt or

endeavor.]

SS
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commonly explained) except to its opp>osite, that is, from positive

to negative, or vice versa, these two are the only directions it

should be possible to designate, by present methods; for the other

directions the problem should be unsolvable. And I suppose this

is the reason no one has taken up the matter.^ It has undoubtedly

been considered impermissible to change anything in the accepted

explanation of these operations.

And to this we do not object so long as the explanation deals

only with quantities in general. But when in certain cases the

nature of the quantities dealt with seems to call for more precise

definitions of these operations and these can be used to advantage,

it ought not to be considered impermissible to offer modifications.

For as we pass from arithmetic to geometric analysis, or from

operations with abstract numbers to those with right lines, we
meet with quantities that have the same relations to one another

as numbers, surely; but they also have many more. If we now
give these operations a wider meaning, and do not as hitherto

limit their use to right lines of the same or opposite direction; but

if we extend somewhat our hitherto narrow concept of them so

that it becomes applicable not only to the same cases as before,

but also to infinitely many more; I say, if we take this liberty, but

do not violate the accepted rules of operations, we shall not con-

travene the first law of numbers. We only extend it, adapt it to

the nature of the quantities considered, and observe the rule of

method which demands that we by degrees make a diflficult

principle intelhgible.

It is not an unreasonable demand that operations used in

geometry be taken in a wider meaning than that given to them in

arithmetic. And one will readily admit that in this way it should

be possible to produce an infinite number of variations in the

directions of lines. Doing this we shall accomplish, as will be

proved later, not only that all impossible operations can be avoided

—and we shall have light on the paradoxical statement that at

times the possible must be tried by impossible means— , but also

that the direction of all lines in the same plane can be expressed as

analytically as their lengths without burdening the mind with new
signs or new rules. There is no question that the general validity

of geometric propositions is frequently seen with greater ease

if direction can be indicated analytically and governed by alge-

1 Unless it be Magister Gilbert, in Halle, whose prize memoir on Calculus

Situs possibly contains an explanation of this subject.
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braic rules than when ft is represented by a figure, and that only

in certain cases. Therefore it seems not only permissible, but

actually profitable, to make use of operations that apply to other

lines than the equal (those of the same direction) and the opposite.

On that account my aim in the following chapters will be:

I. First, to define the rules for such operations;

II. Next, to demonstrate their application when the lines are in

the same plane, by two examples;

III. To define the direction of lines lying in diff'erent planes by a

new method of operation, which is not algebraic;

IV. By means of this method to solve plane and spherical poly-

gons;

V. Finally, to derive in the same manner the ordinary formulas

of spherical trigonometry.

These will be the chief topics of this treatise. The occasion

for its being was my seeking a method whereby I could avoid the

impossible operations; and when I had found this, I appHed it to

convince myself of the universality of certain well-known formulas.

The Honorable Mr. Tetens, Councillor-of-state, was kind enough

to read through these first investigations. It is due to the encour-

agement, counsel, and guidance of this distinguished savant that

this paper is minus some of its first imperfections and that it has

been deemed worthy to be included among the publications of the

Royal Academy.

A Method Whereby from Given Right Lines to Form Other
Right Lines by Algebraic Operations; and How to

Designate Their Directions and Signs

Certain homogeneous quantities have the property that if they

are placed together, they increase or diminish one another only

as increments or decrements.

There are others which in the same situation effect changes in

one another in innumerable other ways. To this class belong right

lines.

Thus the distance of a point from a plane may be changed in

innumerable ways by the point describing a more or less inclined

right line outside the plane.

For, if this line is perpendicular to the axis of the plane, that is,

if the path of the point makes a right angle with the axis, the
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point remains in a plane parallel to the given plane, and its path

has no effect on its distance from the plane.

If the described line is indirect, that is, if it makes an oblique

angle with the axis of the plane, it will add to or subtract from the

distance by a length less than its own; it can increase or diminish

the distance in innumerable ways.

If it is direct, that is, in line with the distance, it will increase

or diminish the same by its whole length; in the first case it is

positive, in the second, negative.

Thus, all the right lines which can be described by a point are,

in respect to their effects upon the distance of a given point from

a plane outside the point, either direct or indirect or perpendicular^

according as they add to or subtract from the distance the whole,

a part, or nothing, of their own lengths.

Since a quantity is called absolute if its value is given as immedi-

ate and not in relation to another quantity, we may in the preced-

ing definitions call the distance the absolute line; and the share of

the relative line in lengthening or shortening the absolute line

may be called the "effect" of the relative line.

There are other quantities besides right lines among which such

relations exist. It would therefore not be a valueless task to

explain these relations in general, and to incorporate their general

concept in an explanation on operations. But I have accepted

the advice of men of judgment, that in this paper both the nature

of the contents and plainness of exposition demand that the reader

be not burdened here with concepts so abstract. I shall conse-

quently make use of geometric explanation only. These follow.

§1

Two right lines are added if we unite them in such a way that

the second line begins where the first one ends, and then pass a

right line from the first to the last point of the united lines. This

line is the sum of the united lines.

For example, if a point moves forward three feet and backward

two feet, the sum of these two paths is not the first three and the

last two feet combined; the sum is one foot forward. For this

path, described by the same point, gives the same effect as both

the other paths.

' "Indifferent" would be a more fitting name were it not so unfamiliar to

our ears.
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Similarly, if one side of a triangle extends from a to 6 and the

other from 6 to c, the third one from a to c shall be called the sum.

We shall represent it by ab + 6c, so that ac and ab + 6c have the

same meaning; or ac = a6 + 6c = — 6a + 6c, if 6a is the opposite

of a6. If the added lines are direct, this definition is in complete

agreement with the one ordinarily given. If they are indirect,

we do not contravene the analogy by calHng a right line the sum
of two other right lines united, as it gives the same effect as these.

Nor is the meaning I have attached to the symbol + so very

unusual; for in the expression a6 + ^ = :^a6 it is seen that -y is

not a part of the sum. We may therefore set a6 + 6c = ac

without, on that account, thinking of 6c as a part of ac; a6 + 6c is

only the symbol representing ac.

§2

If we wish to add more than two right lines we follow the same
procedure. They are united by attaching the terminal point of

the first to the initial point of the second and the terminal point

of this one to the initial point of the third, etc. Then we pass a

right line from the point where the first one begins to the point

where the last one ends; and this we call their sum.

The order in which these lines are taken is immaterial; for no

matter where a point describes a right line within three planes at

right angles to one another, this line has the same effect on the

distances of the point from each of the planes. Consequently

any one of the added lines contributes equally much to the deter-

mination of the position of the last point of the sum whether it

have first, last, or any other place in the sequence. Consequently,

too, the order in the addition of right lines is immaterial. The
sum will always be the same; for the first point is supposed to be

given and the last point always assumes the same position.

So that in this case, too, the sum may be represented by the

added lines connected with one another by the symbol +. In a

quadrilateral, for example, if the first side is drawn from a to 6, the

second from 6 to c, the third from c to d, but the fourth from a to d,

then we may write: ac? = a6 + 6c + cd.

§3

If the sum of several lengths, breadths and heights is equal to

zero, then is the sum of the lengths, the sum of the breadths, and
the sum of the heights each equal to zero.
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§4

It shall be possible in every case to form the product of two right

lines from one of its factors in the same manner as the other factor

is formed from the positive or absolute line set equal to unity.

That is:

Firstly, the factors shall have such a direction that they both

can be placed in the same plane with the positive unit.

Secondly, as regards length, the product shall be to one factor

as the other factor is to the unit. And,

Finally, if we give the positive unit, the factors, and the product

a common origin, the product shall, as regards its direction, lie in

the plane of the unit and the factors and diverge from the one

factor as many degrees, and on the same side, as the other factor

diverges from the unit, so that the direction angle of the product,

or its divergence from the positive unit, becomes equal to the sum

of the direction angles of the factors.

§5

Let +1 designate the positive rectilinear unit and +e a certain

other unit perpendicular to the positive unit and having the same

origin; then the direction angle of +1 will be equal to 0", that of

-1 to 180^ that of +€ to 90°, and that of -e to -90° or 270°.

By the rule that the direction angle of the product shall equal the

sum of the angles of the factors, we have: (+ 1)(+1) = +1;

(+ 1)(-1) = -1; (-1)(-1) = +1; (+l)(+6) = +6; (+l)(-6)

= -.; (-!)(+,) = -,;(-l)(-e) = +e;(+.)(+0 = -l;(+6)

(-0 = +l;(-e)(-6) = -1.

From this it is seen that t is equal to \/— 1; and the divergence

of the product is determined such that not any of the common rules

of operation are contravened.

§6

The cosine of a circle arc beginning at the terminal point of the

radius +1 is that part of the radius, or of its opposite, which begins

at the center and ends in the perpendicular dropped from the

terminal point of the arc. The sine of the arc is drawn perpendicu-

lar to the cosine from its end point to the end point of the arc.

Thus, according to §5, the sine of a right angle is equal to V— 1.

Set \/— 1 = €. Let V be any angle, and let sin v represent a

right line of the same length as the sine of the angle r, positive, if

the measure of the angle terminates in the first semi-circumference.
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but negative, if in the second. Then it follows from §§4 and 5

that € sin v expresses the sine of the angle v in respect to both
direction and extent. . . .

§7

In agreement with §§1 and 6, the radius which begins at the

center and diverges from the absolute or positive unit by angle v

is equal to cos t; + « sin v. But, according to §4, the product of

the two factors, of which one diverges from the unit by angle v

and the other by angle u, shall diverge from the unit by angle

V -{• u. So that if the right line cos v + e sin v is muItipHed by the

right hne cos u + e sin u, the product is a right line whose direction

angle is r + u. Therefore, by §§1 and 6, we may represent the

product by cos (v -\- u) -\- e sin (v -\- u),

§8

The product (cos r + c sin v)(cos u + € sin u), or cos (r + u) + €

sin {v + u), can be expressed in still another way, namely, by
adding into one sum the partial products that result when each

of the added lines whose sum constitutes one factor is multiplied

by each of those whose sum constitutes the other. Thus, if we
use the known trigonometric formulas

cos (v -\- u) = cos V cos u — sin v sin u,

sin {v -\- u) = cos V sin u + cos u sin v,

we shall have this form:

(cos f + c sin r)(cos u + c sin u) = cos r cos u — sin u

+ c(cos r sin u -f- cos u sin v).

For the above two formulas can be shown, without great difficulty,

to hold good for all cases,—be one or both of the angles acute or

obtuse, positive or negative. In consequence, the propositions

derived from these two formulas also possess universality.

§9

By §7 cos r + € sin r is the radius of a circle whose length is

equal to unity and whose divergence from cos 0° is the angle v.

It follows that r cos v + re sin v represents a right line whose length

is r and whose direction angle is v. For if the sides of a right angled

triangle increase in length r times, the hypotenuse increases r

times; but the angle remains the same. However, by §1, the sum
of the sides is equal to the hypotenuse; hence,

r cos V -\- re s'mv = r(cos r + c sin v).
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This Is therefore a general expression for every right line which

lies in the same plane with the lines cos 0° and e sin 90®, has the

length r, and diverges from cos 0° by r degrees.

§10

If a, b, c denote direct lines of an}^ length, positive or negative,

and the two indirect lines a -\- eb and c + ed lie in the same plane

with the absolute unit, their product can be found, even when their

divergences from the absolute unit are unknown. For we need

only to multiply each of the added lines that constitute one sum
by each of the lines of the other and add these products; this sum
is the required product both in respect to extent and direction: so

that (a + e6)(c + ed) = ac - bd + e{ad + be).

Proof.—Let the length of the line a -\- ebbe A, and its divergence

from the absolute unit be v degrees; also let the length oi c -}- ed

be C, and its divergence be u. Then, by §9, a + et = A cos v +
Re sin r, and c -\- ed = C cos u -\- Ce sin u. Thus a = A cos v,

b = A sin V, c = C cos u, d = C sin u (§3). But, by §4, (a +
(a + c6)(c + €c/) = AC[cos (r + u) + e sin (r + u)] = Ac[cosvcosu

— sin V sin u + 6(cos r sin u + cos u sin v)] (§8). Consequently,

if instead of A C cos v cos u we write ac, and for A C sin v sin u write

bd, etc., we shall derive the relation we set out to prove.

It follows that, although the added lines of the sum are not all

direct, we need make no exception in the known rule on which the

theory of equations and the theory of integral functions and their

simple divisors are based, namely, that if two sums are to be multi-

plied, then must each of the added quantities in one be multiplied

by each of the added quantities in the other. It is, therefore,

certain that if an equation deals with right lines and its root has

the form a + ^b, then an indirect line is represented. Now, if we
should want to multiply together right lines which do not both

lie in the same plane with the absolute unit, this rule would have

to be put aside. That is the reason why the multiplication of such

lines is omitted here. Another way of representing changes of

direction is taken up later, in §§24—35.

The quotient multiplied by the divisor shall equal the dividend.

We need no proof that these lines must lie in the same plane with

the absolute unit, as that follows directly from the definition in

§4. It is easily seen also that the quotient must diverge from the

absolute unit by angle v — u, ii the dividend diverges from the

same unit by angle v and the divisor by angle u.
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Suppose, for example, that we are to divide A (cos v -{- e sin r

by B(cos u + € sin u). The quotient is

A
d[cos (r — u) + € sin (v — u)] since

A
-^[cos (f — u) + e sin (v — u)] X B(cos u + c sin u)

= A (cos v + € sin v),

A
by §7. That is, since -^Icos (r — u) + c sin (u — u)] multiplied

by the divisor J5(cos u + e sin u) equals the dividend A (cos v +
A

€ sin v), then -o[cos {v — u) -\- e sin {v — u)] must be that

required quotient. . . .

§12

If a, b, c, and d are direct lines, and the indirect lines a -\- eb

and c -\- ed are in the same plane with the absolute unit: then

1 _ c — ed
J ^, _ ^. ^ a -\- eb

c -\- ed c

c — ed

— ed , T . a -\- eb / , iv 1-—r,; and the quotient —;

,
= (a + eb).—;

;+ a^
^

c -{- ed ^ c -\- ed

= (a + eb). '^f^^, = [ac + 6c/ + e{bc - ad)]:{c' + c/^).

For by §9 we may set a -{- eb = A (cos v -{- e sin v),

and
c -{- ed = C(cos w + 6 sin u).

so that

Since

then

c — ed = C(cos u — € sin u), by §3.

(c + €£/)(c - ed) = c2 + J2 = O, by §10,

^2-qrj2 = ^^^^^ w - € sin u), by §10;

or

^H^V^
"

C^^^^
(-^0 + € sin (-u)] = ^-:p^' by §11.

Multiplying by a + e6 = A (cos r + e sin i'), gives

(^ + ^^)-
c2

_[_^j2 = -^^cos (r - w) + csin (r - u)] = "
_^ J^

by §11.

Indirect quantities of this class have also this in common with

direct, that if the dividend is a sum of several quantities, then

each of these, divided by the divisor, gives a quotient, and the

sum of these constitute the required quotient.
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§13

If m is an integer, then cos \- e sin — multiplied by itself m

times gives the power cos v -{- e sin v (§7); therefore we have:

(cos t; + e sm v)'" = cos H e sm —

.

m 771

But, according to §11,

COS ( I + e sm ( l = =
V , . V

COS f- e sm —
771 777

1
,

I

J-
= (cos r 4- € sm V) ">.

(cos r + e sin v)"*

Consequently, whether 77i is positive or negative, it is always true

that

cos f- € sm — = (cos r + € sm r)"*.
771 771

Therefore, if both 77i and 77 are integers, we have;

n
,

,
• N

-
77 , . 77

(cos f + 6 sm I')'" = cos —r + e sm —v.m m
In this way we find the value of such expressions as \6 + c-\/— 1

or \a \6 + c\/— 1. For example, \4\/3 +4\/— 1 denotes

a right fine whose length is 2 and whose angle with the absolute

unit is 10°.

§14

If two angles have equal sines and equal cosines their difference

is 0, or +4 right angles, or a multiple of ±4 right angles; and con-

versely, if the difference between two angles is or +4 right angles

taken once or several times, then their sines as well as their

cosines are equal.

§15
1

If 777 is an integer and w is equal to 360°, then (cos i; + e sin v)"»

has only the following 777 different values:

7r-\-V ,
. T-\-V 2t-\-v , . 2v-\-v

cos r+€ sm v, cos \-t sm , cos 1-€ sm ...,

771 771 771 771

(777 — l)7r -\- V , . (m — l)7r + v
cos -=^ 1- c sm -^

;

777 777

for the numbers by which tt is muItipHed in the preceding series

are in the arithmetical progression 1, 2, 3, 4,.. .771 — 1. Conse-
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quently the sum of every two of them is m, if the one is as far from

1 as the other is from m — 1 ; and if their number is not even, then

the middle one taken two times equals m. Therefore if ^^

m

is added to ^^ , and the latter is as far fromm
TT + f . ^i • (m — n)7r + r . - (m — l)7r -\- v ,

, m the series, as ^ — is irom -^ ^—
, thenm mm

,
. , ^ 2m — u — n , 2v ,

2y „ ,
,.

the sum is equal to —t -\ = t -\ . But addingm m m
(m — n)7r . • i ^ ^ u* *• (m — n)( — tt) , .— IS equivalent to subtracting ^ — -; and sincem m

the dilterence is t, has the same cosine and sinem
(m — n)T -[- V jj /N- I -T,

as -^^ . Hence (— r) gives no values not given by +7r.m
However, none of these values are equal; for the difference

between any two angles of the series is always less than tt and never

equal to 0. Nor will any more values result if the series is con-

tinued; for then the new angles will be tt H ,t -\ , r -\
,m m m

etc., and according to §14 the values of the sines and cosines of

these will be the same as in the angles we already have. There

can be no angle outside of the series; for then t would not be multi-

plied in the numerator by an integer, and the angles muItipHed by
m would not produce any angle which subtracted from v gives 0,

or ±7r, or a multiple of +7r; consequently the mth power of the

cosine and sine of such angles could not equal cos r + e sin v.

§16

Without knowing the angle which the indirect hne I -{- x makes
with the absolute, we may find, if the length of x is less than 1,

the power (1 -|- x) "* = 1 + -^ -j- y.—^

—

x^ + etc. If this series

is arranged according to the powers of m, it has the same value and
is changed into the form

i ,
ml , mH'^ , mH^ ,

where

,
x^ , x^ x^ ,

/ = x-2--|-y-j + etc..
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and is a sum of a direct and a perpendicular line. If we call the

direct line o and the perpendicular by/~\, then 6 is the smallest

measure of the angle which 1 + x makes with +1. If we set

1,1.1, 1
,

^ + 1 + U + L2J + "''• = ''

then

/I . \ 1 ,
fnl , mH^ , m^l^ ,

(1 + x)-, or 1 + y- + -yj- + j-y^ + etc.,

may be represented by e'^'' + "'^^"^-^
; that is, (1 + x)"* has the

length e^^ and a direction angle whose measure is mb, assuming

m to be either positive or negative. Lines lying in the same plane

may thus have their direction expressed in still another way,

namely, by the aid of the natural logarithms. I shall produce

complete proofs for these statements at another time, if privileged

to do so. Now, that I have rendered an account of my plan for

finding the sums, products, quotients, and powers of right lines,

I shall next give a couple of examples illustrating the use of this

method.
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On the Arithmetic Triangle

(Translated from the French by Anna Savitsky, A. M., Columbia University,

New York City.)

Although Pascal (see p. 165) was not the originator of the arithmetic tri-

angle, such an arrangement of numbers having been anticipated, his name has

been linked v/ith the triangle by his development of its properties, and by the

applications which he made of these properties. The historical interest of

the work is to be found, perhaps, in its bearing on probability discussions and
on the early developments of the binomial theorem. Since Pascal's contribu-

tions to the theory of probability are considered elsewhere in this Source Book,

passages pertinent to that theory are omitted in the present translation.

Other omissions, also, are necessarily made with great freedom. The original

article is found in the works of Pascal, the latest edition of which was edited

by Leon Brunschvicg and Pierre Boutroux (Paris, 1908).

Treatise on the Arithmetic Triangle

Definitions

I designate as an arithmetic triayigle a figure whose construction

is as follows:

I draw from any point, G, two lines perpendicular to each other,

GV, Gf,* in each of which I take as many equal and^ continuous

parts as I please, beginning at G, which I name 1, 2, 3, 4, etc.; and
these numbers are the indices^ of the divisions of the lines.

Then I join the points of the first division in each of the two lines

by another line that forms a triangle of which it is the base.

I join in this manner the two points of the second division by
another line that forms a second triangle of which it is the base.

And joining in this manner all the points of division which have
the same index I form with them as many triangles and bases.

I draw through each of the points of division lines parallel to

the sides, which by their intersections form small squares that I

call cells.

1 [The editor of the French edition uses ^ instead of f by mistake.]

* [Pascal employs the words "continues" and "contigiies" interchangeably.
In the translation, they have been rendered literally.]

2 [The term used is "exposans."]

67
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The cells which lie between two parallels going from left to right

are called cells of the same parallel rank, like the cells G, a, w, etc.,

or 4), ypy 6, etc.

And those which he between two lines going from the top down-

ward are called cells of the same perpendicular rank, like the cells

G, <i>.
A, D, etc., and also a, \l/, B, etc.

Those which are crossed diagonally by the same base are called

cells of the same base, hke the following: D, B, 6, X, or A, \{/, r.

2
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arises from the fact that the two sides of the triangle are divided

into an equal number of parts; but this is rather understood than

demonstrated.

The above statement is equivalent to saying that each base

contains one cell more than the preceding base, and each as many
as the number of units in its index; thus, the second (/)cr has two

cells, the third Axpir has three of them, etc.

Now the numbers which are placed in each cell are found by this

method:

The number of the first cell, which is in the right angle, is

arbitrary; but when that has been decided upon, all the others

necessarily follow; and for this reason, it is called the generator

of the triangle. Each of the others is determined by this one rule:

The number of each cell is equal to that of the cell which precedes

it in its perpendicular rank, added to that of the cell which precedes

it in its parallel rank. Thus, the cell F, that is, the number of the

cell F, is equal to the cell C, plus the cell E; and likewise for the

others.

From these facts there arise several consequences. Below are

the principal ones, in which I consider those triangles whose

generator is unity; but what is said of them will apply to all others.

Corollary 1.—In every arithmetic triangle, all the cells of the

first parallel rank and of the first perpendicular rank are equal to

the generator.

For, by the construction of the triangle, each cell is equal to that

of the cell which precedes it in its perpendicular rank, added to

that which precedes it in its parallel rank. Now the cells of the

first parallel rank have no cells which precede them in their per-

pendicular ranks, nor those of the first perpendicular rank in their

parallel ranks; consequently they are all equal to each other and

thus equal to the generating first number.

Thus <}) equals G + zero, that is, <^ equals G.

Likewise A equals + zero, that is, </>.

Likewise c equals G + zero, and r equals <r + zero.

And likewise for the others.

Corollary 2.—In every arithmetic triangle, each cell is equal to

the sum of all those of the preceding parallel rank, comprising

the cells from its perpendicular rank to the first, inclusively.

Consider any cell w: I assert that it is equal to R -\- d -\-
\l/ + <t>,

which are cells of the parallel rank above, from the perpendicular

rank of co to the first perpendicular rank.
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This is evident by defining the cells, merely, in terms of the cells

from which they are formed.

For u) equals R -\- C.

e-^ B

0, for A and 4> are equal to each

other by the preceding.

Hence co equals R -\- d -{-
\l/

-\- <j).

Corollary 3.—In every arithmetic triangle, each cell is equal to

the sum of all those of the preceding perpendicular rank, com-

prising the cells from its parallel rank to the first, inclusively.

Consider any cell C: I assert that it is equal to B -{- \p -^ cr,

which are the cells of the preceding perpendicular rank, from the

parallel rank of the cell C to the first parallel rank.

This appears likewise by the very definition of the cells.

For C equals B -{- 6.

(T, for T equals a by the first (corollary).

Hence C equals B -{-
\l/

-\- a.

Corollary 4.—In every arithmetic triangle, each cell diminished

by ttftity is equal to the sum of all those which are included between

its perpendicular rank and its parallel rank, exclusively.

Consider any cell ^: I assert that ^ — g equals K + ^ + r^ +
<^ + X4-7r-f-(T + C/, which are all the numbers included between

the rank ^coCBA and the rank ^Sn, exclusively.

This appears in like manner from the definition.

For ^ equals X + K + co.

T -h e -\- C

e-\-^p + B

C+CA +

A

G.

Hence ? equals \-\-R-\-r + d + <T + yp + G+<}> + G.

Note.— I have said in the statement: each cell dimmished by

unity, because unity is the generator; but if it were another
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number, it would be necessary to say: each cell diminished by

the generating number.

Corollary 5.—In every arithmetic triangle, each cell is equal

to its reciprocal.

For in the second base (^o-, it is evident that the two reciprocal

cells 4>, a, are equal to each other and to G,

In the third Ai^tt, it is hkewise seen that the reciprocals tt, A, are

equal to each other and to G.

In the fourth, it is seen that the extremes D, X, are again equal

to each other and to G.

And those between the two are evidently equal, since B equals

A + i/', and 6 equals ^ + tt; now ir -\- \}/ are equal to A + 'A,

as has been shown; hence, etc.

Likewise it can be shown in all the other bases that the recipro-

cals are equal, because the extremes are always equal to G, and

the rest can always be defined by their equals in the preceding

base which are reciprocal to each other.

Corollary 6.—In every arithmetic triangle, a parallel rank and

a perpendicular one which have the same index are composed of

cells which are respectively equal to each other.

For they are composed of reciprocal cells.

Thus, the second perpendicular rank axf/BEMQ is exactly

equal to the second parallel rank 4>\}/dRSN.
'^

Corollary 7.—In every arithmetic triangle, the sum of the cells

of each base is twice those of the preceding base.

Consider any base DBdX. I assert that the sum of its cells

is double the sum of the cells of the preceding base Ai/'tt.

For extremes D, X,

are equal to the extremes A, tt,

and each of the others B, 6,

is equal to two of the other base A -\- \{/, ^ + tt.

Hence D + X + B + equal 2A + 2^p + 27r.

The same thing may be demonstrated for all the others.

Corollary 8.—In every arithmetic triangle, the sum of the cells

of each base is a number of the^ geometric progression which

begins with unity, and whose order is the same as the index of

the base.

For the first base is unity.

The second is twice the first, hence it is 2.

^ [The term used, "double progression," refers to a geometric progression.]
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The third is twice the second, hence it is 4.

And so on to infinity.

Note.— If the generator were not unity, but another number
like 3, the same thing would be true; however, one should not

take the numbers of the geometric progression beginning with

unity, that is, 1, 2, 4, 8, 16, etc., but those of another geometric

progression beginning with the generator 3, as, 3, 6, 12, 24, 48, etc.

k;^ Corollary 9.—In every arithmetic triangle, each base dimin-

ished by -unity is equal to the sum of all the preceding ones.

For this is a property of the double (geometric) progression.

Note.— If the generator were other than unity, it would be

necessary to say: each base diminished by the generator.

Corollary 10.—In every arithmetic triangle, the sum of ,a

many continuous cells as desired of a base, beginning at one end,

is equal to as many cells of the preceding base, taking as many
again less one.

Let the sum of as many cells as desired of the base DX be taken:

for example, the first three D -\- B -\- 6.

1 assert that it is equal to the sum of the first three cells of the

preceding base A + ^ + tt, adding the first two of the same base

For D. B. e.

equals A. A -\- ^. \}/ -\- t.

Hence D -\- B + d equals 2A + l^p + tt.

Definition.— I designate as cells oj the dividend those which are

crossed diagonally by the line which bisects the right angle, as

G, \l/, C, p, etc.

Corollary 11.—Every cell of the dividend is twice that which

precedes it in its parallel or perpendicular rank.

Consider a cell of the dividend C. I assert that it is twice d,

and also twice B.

For C equals d { B, and 6 equals B, by Corollary 5.

Note.—All these corollaries are on the subject of the equalities

which are encountered in the arithmetic triangle. Now we shall

consider those relating to proportions; and for these, the following

proposition is fundamental.

Corollary 12.—In every arithmetic triangle, if two cells are

contiguous in the same base, the upper is to the lower as the

number of cells from the upper to the top of the base is to the

number of those from the lower to the bottom, inclusive.
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Consider any two contiguous cells of the same base, E, C: I

assert that:

£ is to C as 2 is to 3

lower, upper, because there are because there are

two cells from E to three cells from C to

the bottom, that is, the top, that is, C,

E, H; R, fx.

Although this proposition has an infinite number of cases, I

will give a rather short demonstration, assuming two lemmas.

Lemma 1 : which is self-evident, that this proportion is met with

in the second base; for it is apparent that is to o- as 1 is to 1.

Lemma 2: that if this proportion is found in any base, it will

necessarily be found in the following base.

From which it will be seen that this proportion is necessarily

in all the bases: for it is in the second base by the first lemma;
hence by the second, it is in the third base, hence in the fourth,

and so on to infinity.

It is then necessary only to prove the second lemma in this

way. If this proportion is met with in any base, as in the fourth

DX, that is, if D is to B as 1 is to 3, and B is to ^ as 2 is to 2, and

is to X as 3 is to 1, etc., I say that the same proportion will be

found in the following base Hfx, and that, for example, E is to

C as 2 is to 3.

For D is to B as 1 is to 3, by the hypothesis.

Hence
D + B is to B as 1 + 3 is to 3.

E is to B as 4 is to 3.

In the same way B is to ^ as 2 is to 2, by the hypothesis.

Hence
B + e is to B as 2 + 2 is to 4.

But

Hence by the^ mixed proportion, C is to £" as 3 is to 2: Which
was to be proved.

The same may be demonstrated in all the rest, since this proof

is based only on the assumption that the proportion occurs in the

^ [The term used is "proportion troublee."]

c
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preceding base, and that each cell is equal to its preceding plus

the one above it, which is true in all cases.

Corollary 13.—In every arithmetic triangle, if two cells are

continuous in the same perpendicular rank, the lower is to the

upper as the index of the base of the upper is to the index of its

parallel rank.

Consider any two cells in the same perpendicular rank, F, C.

I assert that F is to C as 5 is to 3

the lower, the upper, index of the index of the parallel

base of C, rank of C.

For £" is to C as 2 is to 3.

Hence
£ + C is to C as 2 + 3 is to 3.

F is to C as 5 is to 3.

Corollary 14.—In every arithmetic triangle, if two cells are

continuous in the same parallel rank, the greater is to the preced-

ing one as the index of the base of the preceding is to the index

of its perpendicular rank.

Consider two cells in the same parallel rank, F, E. I assert that

F is to F as 5 is to 2

the greater, the preceding, index of the index of the per-

base of F, pendicular rank of

F.

For F is to C as 2 is to 3.

Hence
F + C is to F as 2 + 3 is to 2.

F is to F as 5 is to 2.

Corollary 15.—In every arithmetic triangle, the sum of the

cells of any parallel rank is to the last cell of the rank as the index

of the triangle is to the index of the rank.

Consider any triangle, for example, the fourth GD\: I assert

that for any rank which one takes in it, like the second parallel

rank, the sum of its cells, that is </> + i/' + 0, is to ^ as 4 is to 2.

For (j) -\- \p -\- 6 equals C, and C is to ^ as 4 is to 2, by Corollary 13.

Corollary 16.—In every arithmetic triangle, any parallel rank

is to the rank below as the index of the rank below is to the

number of its cells.

Consider any triangle, for example the fifth uGH: I assert

that, whatever rank one may choose in it, for example the third,

the sum of its cells is to the sum of those of the fourth, that is
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A + 5 + C is to D + £ as 4, the index of the fourth rank, is to

2, which is the index of the number of its cells, for it contains

2 of them.

For A + B + C equals F, and D + E equals M.
Now F is to M as 4 is to 2, by Corollary 12.

Note.— It may also be stated in this manner: Every parallel

rank is to the rank below as the index of the rank below is to the

index of the triangle minus the index of the rank above.

For the index of a triangle, minus the index of one of its ranks,

is always equal to the number of cells contained in the rank
below.

Corollary 17.—In every arithmetic triangle, any cell whatever
added to all those of its perpendicular rank is to the same cell

added to all those of its parallel rank as the number of cells

taken in each rank.

Consider any cell B: I assert that B + i^ + <r is to B + A as 3

is to 2.

I say 3, because there are three cells added in the antecedent,

and 2, because there are two of them in the consequent.

For B -\- \p -\- (X equals C, by Corollary 3, and B + A equals

E, by Corollary 2.

Now C is to F as 3 is to 2, by Corollary 12.

Corollary 18.—In every arithmetic triangle, two parallel ranks

equally distant from the ends are to each other as the number of

their cells.

Consider any triangle GVf, and two of its ranks equally distant

from the ends, as the sixth P -{- Q, and the second
(t>

-\- ^ + 6 -\-

R -\- S -{- N: I assert that the sum of the cells of the one is to

the sum of the cells of the other as the number of cells of the first

is to the number of cells of the second.

For, by Corollary 6, the second parallel rank (j)\f/dRSN is the

same as the second perpendicular rank aypBEMQ, for which we
have demonstrated this proportion.

Note.— It may also be stated: In every arithmetic triangle, two

parallel ranks, whose indices added together exceed by unity the

index of the triangle, are to each other inversely as their indices.

For it is the same thing as that which has just been stated.

Final Corollary.—In every arithmetic triangle, if two cells in

the dividend are continuous, the lower is to the upper taken four

times as the index of the base of the upper is to a number greater

(than the base) by unity.
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Consider two cells of the dividend p, C: I assert that p is to 4C
as 5, the index of the base of C, is to 6.

For p is twice w, and C twice 6; hence 40 equal 2C.

Hence 4d is to C as 2 is to 1.

Now p is to 4C as w is to 4d,

or by a ratio composed of co to C + C to 40

5 to 6

Hence p is to 4C as 5 is to 6. Which was to be proved.

Note.—Thence many other proportions may be drawn that

I have passed over, because they may be easily deduced, and

those who would like to apply themselves to it will perhaps find

some, more elegant than these which I could present.^

Application of the Arithmetic Triangle

To Find the Powers of Binomials and^ Apotomes

If it is proposed to find a certain power, like the fourth degree,

of a binomial whose first term is A and the other unity, that is to

say, if it is required to find the fourth power of A + 1, take the

fifth base of the arithmetic triangle, namely, the one whose index

5 is greater by unity than 4, the exponent of the proposed order.

The cells of this fifth base are 1, 4, 6, 4, 1; the first number, 1, is

to be taken as the coefficient of A to the proposed degree, that is»

of A*; then take the second number of the base, which is 4, as the

coefficient of A to the next lower degree, that is to say, of A^ and

take the following number of the base, namely 6, as the coefficient

of A to the lower degree, namely, of A^ and the next number of

the base, namely 4, as the coefficient of A to the lower degree,

' [At this point, Pascal establishes a theorem which would be stated in

modern notations as follows: The cell in the n-th parallel and r-th perpendicular

ranks contains the number
n(n + l).--(n + r - 2)

(r- 1)!

He then indicates applications of the arithmetic triangle in the theory of com-

binations, and in the elementary analysis of questions of mathematical proba-

bility suggested by games of chance. All of this material is omitted in the

present translation.]

* [By "apotome," Pascal means a binomial which is the difference between

two terms.]
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namely, of the root A, and take the last number of the base, 1,

as the absolute number; thus we obtain: lA'* + 4A^ + 6A'^ +
4A + 1, which is the fourth (square-square) power of the bino-

mial A + 1- So that if A (which represents any number) is

unity, and thus the binomial A + 1 becomes 2, this power

lA^ + 4A3 + eA"" + 4A + 1, now becomes 1.1* + 4.P + 6.V

+ 4.1 + 1.

That is, one times the fourth power of A, which is unity 1

Four times the cube of 1, that is 4

Six times the square of 1, that is 6

Four times unity, that is 4

Plus unity 1

Which added together make 16

And indeed, the fourth power of 2 is 16.

If A is another number, like 4, and thus the binomial A + 1

is 5, then its fourth power will always be, in accordance with

this method,

lA' + 4A3 + 6A2 + 4A + 1

which now means,

1.4* + 4.4^ + 6.42 + 4.4 + 1.

That is to say, one times the fourth power of 4, namely 256

Four times the cube of 4, namely 256

Six times the square of 4 96

Four times the root 4 16

Plus unity 1

whose sum 625

produces the fourth power of 5 : and indeed, the fourth power of

5 is 625.

Likewise for other examples.

If it is desired to find the same degree of the binomial A + 2,

take the same expression lA* + 4A^ + 6A'^ + 4A + 1, and then

write the four numbers, 2, 4, 8, 16, which are the first four degrees

of 2, under each of the numbers of the base, omitting the first,

in this way
lA* + 4A3 + 6A2 + 4A1 + 1

2 4 8 16.

and multiply the numbers which correspond to each other

1A4 + 4A3+ 6A^ + 4A1 + 1

2 4 8 16

in this way lA* + %A^ + 24A2 -f 32Ai + 16
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Thus the fourth power of the binomial A + 2 is obtained; if A
is unity, the fourth power will be as follows:

One times the fourth power of A, which is unity 1

Eight times the cube of unity 8

24, 12 24

32, 1 32

Plus the fourth power of i 16

Whose sum 81

is the fourth power of 3. And indeed, 81 is the fourth power of 3.

If A is 2, then A + 2 is 4, and its fourth power will be

One times the fourth power of A, or of 2,

namely 16

8,23 64

24, 22 96

32, 2 64

Plus the fourth power of 2 16

whose sum 256

is the fourth power of 4.

In the same way, the fourth power of A + 3 can be found, by

writing likewise

A' + 4A3 + 6A2 + 4A + 1

and below, the numbers,

3 9 27 81

lA* + 12A3 + 54A2 + 108A + 81

which are the first four degrees of 3; and by multiplying the

corresponding numbers, we obtain the fourth power of A + 3.

And so on to infinity. If in place of the fourth power, the

square-cube, or the fifth degree, is desired, take the sixth base

and apply it as I have described in the case of the fifth; and

likewise for all the other degrees.

In the same way, the powers of the apotomes A — 1, A — 2,

etc., may be found. The method is wholly similar, and difi'ers

only in the matter of signs, for the signs + and — always alter-

nate, and the sign + is always first.

Thus the fourth power of A — 1 may be found in this way.

The fourth power of A + 1 is, according to the preceding rule,

lA* -f 4A3 + 6A2 + 4A + 1- Hence, by changing the signs

in the way described, we obtain lA — 4:A^ -\- 6A^ — 4A + 1.

Thus the cube of A — 2 is likewise found. For the cube of

A -f 2, by the preceding rule, is A^ + ^A- -\- 12A -f 8. Hence
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the cube of A — 2 is found by changing the signs, A^ — 6A^ +
12A — 8. And so on to infinity.

I am not giving a demonstration of all this, because others

have already treated it, like Herigogne; besides, the matter is

self-evident.



BOMBELLI AND CATALDI

On Continued Fractions

(Translated from the Italian by Professor Vera Sanford, Western Reserve

University, Cleveland, Ohio.)

The study of continued fractions seems to have arisen in connection with

the problem of finding the approximate values of the square roots of numbers
that are not perfect squares. Various methods of finding such roots had been

advanced^ at an earlier period, but, in general, their operation was difficult and

clumsy.

The first mathematician to make use of the concept of continued fractions

was Rafael Bombelli (born c. 1530). Little is known of his career, but his

contribution to mathematics was the writing of a work which has been charac-

terized as "the most teachable and the most systematic treatment of algebra

that had appeared in Italy up to that time."^ The title wsiS L'Algebra parte

maggiore dell' arimetica divisa in tre libri and the work was published in

Bologna in 1572 and brought out in a second edition in that same city in 1579

under the title L' Algebra Opera, the editions being identical except for the

title pages and the dedicatory letter. This algebra was noteworthy for its

treatment of the cubic and biquadratic equations. The selection here given

appears on pages 35 to 37 of the edition of 1579.

Method of Forming Fractions in the Extraction of Roots

Many methods of forming fractions have been given in the

works of other authors; the one attacking and accusing another

without due cause (in my opinion) for they are all looking to the

same end. It is indeed true that one method may be briefer

than another, but it is enough that all are at hand and the one

that is the most easy will without doubt be accepted by men and

be put in use without casting aspersions on another method.

Thus it may happen that today I may teach a rule which may be

more acceptable than those given in the past, but if another

should be discovered later and if one of them should be found to

be more vague and if another should be found to be more easy,

this [latter] would then be accepted at once and mine would be

discarded; for as the saying goes, experience is our master and

1 See Smith, D. E., History oj Mathematics, Vol. II, pp. 144, and 2S3, Boston, Massa-

chusetts, 1925.

2 Ibid., Vol. I. p. 301.

80
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the result praises the workman. In short, I shall set forth the

method which is the most pleasing to me today and it will rest

in men's judgment to appraise what they see: mean while I shall

continue my discourse going now to the discussion itself.

Let us first assume that if we wish to find the approximate

root^ of 13 that this will be 3 with 4 left over. This remainder

2
should be divided by 6 (double the 3 given above) which gives :^-

This is the first fraction which is to be added to the 3, making
2 . .

3:: which is the approximate root of 13. Since the square of

4 . . 4
this number is 13q> it is 5 too large, and if one wishes a closer

approximation, the 6 which is the double of the 3 should be added
2 . . 2

to the fraction :^> givmg 6:^ > and this number should be divided

into the 4 which is the difference between 13 and 9. The result

. 3 . 3 . .

is ^ which, added to the 3 makes 3 ^- This is a closer approxi-

24
mation to the root of 13, for its square is 12^} which is closer

2 . .

than that of the 3^-^ But if I wish a closer approximation,

3
I add this fraction to the 6 making 6^> divide 4 by this, obtaining

20
x:=' This should be added to the 3 as was done above, making

3:^- This is a closer approximation for its square is 13:jyrgQ>

4
which is TTjnq too large. If I wish a closer approximation, I

20 . . 109
divide 4 by 6jx> obtaining j^? [and] add this to 3, obtain-

109mg 3.-QX- This is much closer than before for its square is
loU

' [Bombelli's term latus was a popular one based on the concept of a square

root as the side of a square of given area. In this translation, however, the

term root will be used because of its greater significance.]

4
* [In modem notation, this would, of course be written as: 3 + 7*

Bombelli gives no hint as to the reasons for the success of this method, nor

does he tell how he discovered it.]
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13 jfTr^' which is ^^^^ too large. If I wish to continue this

109 . . 729
even further, I divide 4 by 6^^ obtaining tjkq' which

A . . 4
is the root of 13 TTVjfyr' which is . .. ^--. too large, and this

process may be carried to within an imperceptable difference.

Care should be taken, however, in the formation of these frac-

tions in the many cases when the number whose root is to be

found falls just short of being a perfect square (as 8, for example).

In this case, since 4 is the largest square number, and since 4 is

4
also the remainder, the fraction becomes ^ which is equal to 1.

Adding this to 2 gives 3, whose square is 9. Subtracting the

number 8 whose root is required from this number, 1 remains.

This should be divided by 6, the double of the 3 giving ^•

Subtracting this from the 3 gives 2p as the approximate root of

8. The square of this number is 8:r^^ which is ^ too large.

If a closer approximation is desired, add the 2^ to the 3 getting

Spj and divide 1 by this as was done above, giving yf' which

29
should be subtracted from 3 leaving l^r- This will be a

nearer root. If a still closer approximation is desired, divide 1

29
by Sj^' Proceed (as was done above) as close as any one may

desire.

Pietro Antonio Cataldi^ (1548-1626) was professor of mathematics and

astronomy at Florence, Perugia, and Bologna. He was the author of works

on arithmetic, theory of numbers, and geometry and also wrote treatises on

topics in algebra. He seems to have been the first to develop a symbolism

for continued fractions, and this appears in an essay with the title Trattato

del modo brevissimo Di trouare la Radice quadra delli numeri, Et Regole da

approssimarsi di continuo al vero nelle Radici de'numeri non quadrati, con le

cause et inuentioni loro, Et anco il modo di pigliarne la Radice cuba, appli-

' (Here Bombelli gives jt^> evidently a misprint.)

5 Sometimes given as Cattaldi.
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cando il tutto alle Operationi Militari &" aUre. Bologna, 1613. The selection

here given app>ears on page 70.

Let US now proceed to the consideration of another method of

finding roots continuing by adding row on row {di mano in mano)

to the denominator of the fraction, which finally yields a fraction

equal to the fraction of the preceding rule. But for greater con-

venience, I shall assume a number whose root may be easily taken

and I shall assume that the first part of the root is an integer.

Then let 18 be the proposed number, and if I assume that the first

2 . 1 . . . 1
root is 4. & o' that is 4t' this will be in excess by ^^ which is

8 4 -^16

the square of the fraction ^- The second root will be found by

2 1 8
the above mentioned method to be 4. & q- & - which is 4. & ^^'

o 4 33
2

which is T7^oQ too small. This arises from multiplying the entire

8 1 . .

fraction ^ by y^ in which the whole fraction is less than the

7 which is the added fraction.^
4

Let the root of 18. be
2 2 2

4 &•&•&-
8 8 8

The total fraction added is

makes

11 1
136 33

2^ 1089 1088

*^4 136

A 1 V 33 X 1

33 136 X 33 ^ 136

1

2 8
That is, 4. & Q-& :j^

o 33

18,496

-^
272

^ [The work which follows appears in a column at the side of the page,

and is rearranged in this translation.]
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which is

c . 1089
Squaring, ^g^^-

136

17^1 1088

The square is 18 toTqz' which is too large by yqaqZ'

Be it noted that in the printing when proceeding hurriedly,

it is not possible to form fractions and fractions of fractions con-

veniently in this form, as for instance in the case of

4.&2.

as we are forcing ourselves to do in this example, but we may denote

2 2 2
all of them by adopting this device: 4. & ^ & ^ & ^ letting a

o. o. o.

period by the 8 in the denominator of each fraction mean that the

following fraction is a fraction of the denominator.

I shall find the third fraction by the above mentioned method to

2 2 2 2 2 1
be 4. & ^ & p & 5 ; or as I might say 4. & 5 & ^ & j'

o. o. o. o. o. 4
Q '2 '2

which is 4, & 5 & ^^' or 4. & . > which is 4. & ^n^?-'
8 33 A , ^ 136

4+33
33

which will be in excess since y^- the whole fraction is greater

g
than j-^. the added fraction. The excess of the square over 18 is

1 . . . . 33
Tn7n2 which arises from multiplying y^» the whole fraction by

1 . . 8
..^^ -,-, in which the whole fraction is greater than the -^

which is the added fraction."'

^ (Cataldi continues this work until he reaches the fifteenth fraction.)



JACQUES (I) BERNOULLI

On the "Bernoulli Numbers"

(Translated from the Latin by Professor Jekuthiel Ginsburg, Yeshiva G)IIege,

New York City.)

Of the various special kinds of numbers used in analysis, there is hardly a

species that is so important and so generally applicable as the Bernoulli Num-
bers. Their numerous properties and applications have caused the creation

of an extensive literature on the subject which still continues to attract the

attention of scholars. The first statement of the properties of these numbers
was given to the world uy their inventor Jacques (1) Bernoulli (1654-1705) in

his posthumously printed work, Ars Conjeclandi (Basel, 1713), pages 95 to

98. These pages are here translated.

The excerpt is interesting from more than one point of view. First, we
witness in it the first stroke of genius that caused ripples in human thought

that have not died out even to the present day. Second, the memoir is as

fresh and vigorous today as when it was written; in fact, it could be used even
now as a p>opular exposition of the simpler properties of the Bernoulli Num-
bers. Third, the text reveals the personal touch, the unbounded enthusiasm

of the author over the power of the numbers later called by his name. His

Cfemark that the results of Bullialdus's enormous treatise could, by means of

his numbers, be compressed in less than one page, is both striking and illumi-

nating. Nor is the element of puzzle and mystery lacking. Regardless of

the fact that the discovery is more than 200 years old, mathematicians have

not been able as yet to find by what process Bernoulli derived the properties of

his numbers which he gives in these pages. They can readily be derived by
various modern methods, but how did he derive them with the means at his

disposal? It is also interesting to compare his criticism of Wallis's use of

incomplete induction with his own use of the same imperfect tool. In short,

in the compass of three printed pages we get not only information about the

invention but also glimpses of the person of the great master.

We will observe here in passing that, many [scholars] engaged in

the contemplation of figurate numbers (among them Fauihaber'

^ [Johann Faulhaber, a successful teacher of mathematics in Ulm, was born

there on May 5, 1580, and died therein 1635 (D. E. Smith, History of Mathe-

matics, Vol. I, p. 418). With the help of his friend and protector Johann

Remmelin he published a number of mathematical works. In his Mysterium

Aritbmeticumf 1615, he discussed the properties of figurate numbers. Ber«

noulli possibly refers to this work of his. Faulhaber also developed formulas

for Sn' from c = ltoc=17 (Tropfke, Gescbicbte der Elemenlar Matbema-
tik. Vol. VI, p. 22).]
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and Remmelin of Ulm, Wallls, Mercator.^ In his Logaritbmo-

tecbnia and others) but I do not know of one who gave a general

and scientific proof of this property.^

Wailis in his Aritbmetica Infinitorum investigated by means of

induction the ratios that the series of squares, cubes, and other

powers of natural numbers have to the series of terms each equal

to the greatest term. This he put in the foundation of his method.

His next step was to establish 1 76 properties of trigonal, pyramidal,

and other figurate numbers, but it would have been better and

more fitting to the nature of the subject if the process would have

been reversed and he would have first given a discussion of figurate

numbers, demonstrated In a general and accurate way, and only

then have proceeded with the investigation of the sums of powers

of the natural numbers. Even disregarding the fact that the

method of Induction is not sufficiently scientific and, moreover,

requires special work for every new series; it is a method of com-

mon judgment that the simpler and more primitive things should

precede others. Such are the figurate numbers as related to the

powers, since they are formed by addition, while the others are

formed by multiphcatlon; chiefly, however, because the series of

figurate numbers, supplied with the corresponding zeros^ have a

submuitlple ratio to the series of equals.'* In case of powers (when

^ [Nicolaus Mercator was born near Cismar in Holstein, c. 1620, and died in

Paris in February, 1687. His Aritbmotecbnia sive metbodus construendi

logaritbmos nova accurate et facilis... was published in London in 1678

(Smith, /. c, I, 434). Bernoulli fails to mention Oughtred who pointed out

the correspondence between the binominal coefficients and the figurate num-
bers, as did also Nicolo Tartaglia, Pascal, and others.]

2 [The property refers to the method of finding the nth term and the sum of n

terms in a series of figurate numbers.]

^ [The number of zeros to put in the triangle of figurate numbers to make it

look like a square
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the number of terms is finite) this does not hold without some

excess or defect no matter how many zeros be added. With the

known sums of the figurate numbers it is not difficult to derive the

sums of the powers. I will show briefly how it is done.

Let the series of natural numbers 1, 2, 3, 4, 5, etc. up to n be

given, and let it be required to find their sum, the sum of the

squares, cubes, etc. Since in the table of combinations the

general term of the second column is n — 1 and the sum of all

terms, that is, all n — \, or Jn — \ in consequence of above is^

n.n — 1 _ nn — n

The sum /n — 1 or

Therefore :

Jji - Jl = ——-•

r nn — n
, ri

J n = —2
^ J ^•

But Jl (the sum of all units ) = n. Therefore the sum of all n or

J
nn - n

^ ^n = 2— + n = fnn + fn.

A term of the third column is generally taken to be

n — l.n — 2 _ nn — 3n + 2

1:2
2~~~

a series of terms each equal to the last term of the first series will be ^- Thus,

+ + 1 + 3 ^ A ^ 1 + + 1+3+6 + 10 ^ 1

3 + 3 + 3+3 12 3' 10 + 10 + 10 + 10 + 10 + 10 3'

+ + 1 + 3+6 + 10 + 15 1= ^' etc.
15 + 15 + 15 + 15 + 15 + 15 + 15 3

In the fourth column we get }i, and in the fifth we have J^. In every case the

first series is a submultiple of the second, which he calls the series of equal

terms.l

* [/. e., the sum ofO + l+2+... + n — 1 is as was stated above ^ of

(n — 1) + (n — 1) + (n — 1) . . . (n times) since the ratio

+ 1 +2 +...+ (n - 1) _1 Hence ^ -^ .-_"("-!).
(n- 1) + (n- 1)...+ (n - 1) 2 n(n - 1) 2' 1.2

Throughout the work Bernoulli uses the old form of 5, our present integral

sign (/) where we would now use 2. His usage has been followed in the

translation. He also writes n.n — 1 where we would write n(n — 1) and

he expresses equality by the sign tx but in this translation the sign = will

be used. His use of nn instead of n' should also be noted.]
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and the sum of all terms ( that is, of all
^^ ~ ^^

) is

n.n - l.n - 2 _ n^ - 3nn + 2n

1.2.3 6

P j1 R S S EC U Nl> A. 97

30 7^- J eriuunque J j-3Lll _£, hoc eft,

nn^-Cnn+rin-'fiOO "'"'"'^ "'"'"'%
indequc /-i^J C»

Yi
rfnn—f j»-tfu Etquoniam peimodo in-

vctttifnn X }'»'+i':"+.'«-, necnon f'^'n five l'/Jj X Ti'"»+}I*»
8c /"i X »> hinc faila horum fubftitutione cmergct f^n* CO
M^ •— 6n1^ 1 1nn— St . , . ,

=^ + [«' +i'"' + ^«-}l""— ji»+«X
ri'''*+ il«'+2;^»> ejusque proin /extuplum /«» ((umiracubo-
rum ) X 4»*+ i'«'+^"«. Atquc fie porr6 ad altiores gradarini

potelUcespergere, levique negotio fequentem adornaie Ucccculvm
Lcsc:

Summs PoteJlMum.

fn X i»« +f ».

/n' X ^»' +i"^ +Tr»* *—^n^jjc+Ti""'
/»« X ^n9 4-i»» + f»^*— tV»' *+ I«' *— t^".
/fl9 XT'o^'^+i"' + i"* *—/o»* *+i"* *— t'z""*

/l.'<'XT'T»"+i'»"'+ |"9 5jc— l»^5^C+ l»^ *— i»' ^-f-^"*

Quin imb qui legem progreflfionis inibi attentius infpexcrit » eitndem

etiatn continuare poterit abfij; his ratiociniorum ambagibus : Sumtl

enim t pro poteftatis cujuslib«t cxponente, fit fumma omniumn' icu

/n* X r:p,"*+' + !»'+ iA»'- + ^T?H r ^"'""'^

< . c~t.t».i.t-l .c-4 ^ f— J . t.c— t.«— i.c— }.t-4.t- ;.f--«

'».}.4.J.6
•" l.j-4-5-6;7.3

Dn'"7 . . , . & ita deinceps , exponcntcm poteftatis ipfius » con-

tinue minaendobinario, quoufque pervcniatur ad « vel n« . Literae

capitales A, B,C) O &c. ordine denotant cocfficientes ultimo-

lum teiminorum pro /9i«, /»",/»*> /»' &c, ncmpc A X i^>
B

N »-j'o

We will have then that

- 3n + 2Cn^ - 3n

or

?i^ — 3nn + 2n
r§2„„_ r|„+ fi =
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and
r, n^ - 3nn + 2n ,

C r

but

/l^ = f/" = Inn 4- f

n

and
/I = n.

Substituting, we have

J
n^ — 3nn + 2n 3nn + 3n 13,1 , ,i„„ = _

1

^
n = In^ -\- \nn + -^n,

of which the double ^nn (the sum of the squares of all n) = 3^n'

+ ^i'nn + 3^n.

A term of the fourth column is generally

n — l.n — l.n — 3 _ n* — 6nn + 11^ — 6

1X3 6
'

and the sum of all terms is

n.n — l.n — l.n — 3 _ n* — 671^ + linn — 6n

03:4
~

"24 •

It must certainly be that

'n^ — 6nn + 11^ — 6/
that is

Ji
.' - Jnn + Jv n - Jl

= "^ - 6n' + Hnn - 6n

Hence

fi 3 n^ - 6n3 + linn - 6n
, f f, , . f

,

And before it was found that ^nn = \n^ + \nn + ^n, ^^n or

VJ" = H"^ + ii"» and /l = n.

When all substitutions are made, the following results:

/
.3 n^ — 6n=' + linn - (^n ..... . . .

1 n3 =
24

H ^ n3 + i nn + i n - \\ nn

- -\\n-\-n

= H4"^ + K2^' + K4wn;
or, multiplying by 6,

Jn3 = >^n* + Hn^ + 3^nn.

Thus we can step by step reach higher and higher powers and
with slight effort form the following table :^

^ [Bernoulli uses ^ to mean what we now designate by . . .
]
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Sum oj Powers
jn = }4nn + >^n,

Jn^ = }in^ + }W + >^n3 ^ -Hon.
Jn^ = ^^n^ + }in' + ^^2"' X -K2nn,
/nB = 3..fn^ + i.^n« + Hn^ X ->^n' X +3^2",
Jn^ = 3^n« + Kn^ + K2n« X -K4n* X +K2nn,

jn' = Kon^° + Mn« + Hn' X -Kon« X +Mn^ X -M2nn,

Whoever will examine the series as to their regularity may be

able to continue the table. Taking c to be the power of any
exponent, the sum of all n" or

/
+ c.c — l.c — 2.e — 3.C — 4

Ĉn"
2.3.4.5.6

-u
c-c - 1-c - 2.C - 3.C - 4.C - 5.C - 6 ^^

2.3.4.5.6.7.8
'

and so on, the exponents of n continually decreasing by 2 until n or

7m is reached. The capital letters A, B, C, D denote in order the

coefficients of the last terms in the expressions for jnn, jn*.jn^

namely A, is equal to 3^^, J5 is equal to — 3^^o» ^ is equal to 3-^2» ^
is equal to —}io-
These coefficients are such that each one completes the others

in the same expression to unity. Thus D must have the value

-3^0 because 3.^ + i.^ + ^ - K5 + ^^ + (+£>) - Vso = 1-

With the help of this table it took me less than half of a quarter

of an hour to find that the tenth powers of the first 1000 numbers

being added together will yield the sum

91,409,924,241.424,243,424,241,924,242,500

From this it will become clear how useless was the work of Ismael

Bullialdus^ spent on the compilation of his voluminous Aritbmetica

Infinitorum in which he did nothing more than compute with

immense labor the sums of the first six powers, which is only a

part of what we have accomplished in the space of a single page.

' [The title of BuIIialdus's (160S-1694) work is Opus novum ad aritbmeticum

infinitorum. It was published in Paris 1682 and consists of six parts.]



EULER

Proof that Every Integer is a Sum of Four Squares

(Translated from the Latin by Professor E. T. Bell, California Institute of

Technology, Pasadena, California.)

Leonard (Leonhard) Euler (1707-1783), a pupil of Jean (I) Bernoulli, was
not only one of the greatest mathematicians and astronomers of his century,

but he was also versed in theology, medicine, botany, physics, mechanics,

chemistry, and the Oriental as well as the modern languages. He was a

voluminous writer, and there was hardly a branch of mathematics to which

he did not contribute. The selection here translated serves to illustrate his

method of attacking a problem in the theory of numbers. It is taken from

his Commenlationes Aritbmeticae Collectx, Petropoli, 1849, edited by P. H. Fuss

and N. Fuss (Vol. I, pp. 543-546) but appeared earlier in the Acta Eruditorum

(p. 193, Leipzig, 1773) and the Acta Petrop., (p. 48, I. II., 1775. Exhib. Sept.

21, 1772). In preparing the article, the effort has been made to give a free

translation that shall clearly convey Euler's meaning, in preference to following

too closely the rather poor Latin of the day. Of his two proofs for the

exceptional case of n = 2, only the simpler one has been given. From the

modern point of view, the proof of the theorem is not very satisfactory, but

it serves to illustrate the theory of numbers of the eighteenth century.

Lemma.—The product of two numbers, each oj which is a sum
of Jour squares, may always be expressed as a sum of Jour squares.

Let such a product be

Write

(a2 -I-
62 + c2 + d^){a^ + /32 + 72 4- 52).

A = aa + 6/3 + C7 + dd,

B = 0/3 — 60; — c5 -f dy,

C = ay -{- bd — ca — c//3,

D = a5 — 67 + c/3 — da.

Then

A2 + jB2 + C2 + D2 = (a2 -f
6'' + c2 + d')(a^ + ^2 + 72 _}. 8^),

since obviously the cross products in A^, B^, O, D^ cancel.

Theorem 1.—// N is a divisor oJ a sum oJ Jour squares, say oJ
p2 -|- g2 _|_ ^2 _j_ ^2^ „Q Q„g qJ |^6{c^ is divisibk by N, then N is the

sum oJ Jour squares.
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It will first be shown that each of the four roots p, q, r, s may be

chosen less than j-iN.''-

I. Let 71 be the quotient on dividing the sum of four squares by

N, so that Nn = p^ + g^ + r^ + 5^. Then we may write

p = a -\- na, q = b -\- n^, r = c -\- ny, s = d + n8,

where each remainder a, h, c, d does not exceed 3^n in absolute

value. ^

Hence
a2 + 62 + C2 + (/2 < „2^

II. By substituting the above values of p, q, r, s in

iVn = p2 + g2 ^ r2 + s\

we get

yVn = a2 + 62 + c^ + (/2 + 2n(aa + 6)3 + ct + d8)

+ n2(«' + /5' + 7' + 5');

whence it follows that n must be a divisor of a^ -{- 6^ + c^ + d"^.

Put
a2 + 6=* + c^ + (/2 = nn\

Then n > n', or n' < n. By division we get

N = n' + 2A + ?i(a2 + |32 + 7' + 52).

III. Multiply now by n'. Then, since

nn' = a2 + 62 + c2 + d\

we have, by the Lemma,

nn'(a2 + ^2 ^ ^2 ^ 52) = ^2 ^ 52 _|_ (72 + D\

Combining this with the preceding equation we find

Nn' = n'2 + 2n'A -\- A^ + B^ -\- O + D\

and therefore

in' + Ay 4- B' + O + £>' = Nn'.

IV. By repeating the foregoing argument we obtain a decreasing

sequence of integers Nn', Nn", etc., and hence finally we reach

NA and its expression as a sum of four squares.

^ [It is to be observed in the following proof that n is different from 2; this

case is tacitly ignored until the so-called corollary, following the proof, which

disposes of the exceptional case implicit in the argument as presented.]

2 [But see the preceding footnote. The condition as to absolute values safe-

guards the assertion above, but it does not take care of all possibilities in the

proof which immediately follows, unless, as with Euler, and as indicated in the

preceding footnote, we attend to the corollary.]
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Corollary.—To dispose of the apparent exception, let p, 5, r, 5

be odd numbers and n an even number. Then, since

Nn = p2 + g2 _j- r2 + s\

we have

and the four squares on the right are integers. A like reduction

may be performed so long as the roots of all the squares are odd.

Thus the exception when n = 2 disappears.

Theorem 2.—// N is prime, not only 4 squares not divisible by

N, can be found in an infinity oj ways, whose sum is divisible by N,

but also 3 squares.

For, with respect to N, all numbers are of one or other of the N
forms

\N,\N-i-l,\N + 2,\N + 3,...,\N + N- 1.

Disregard the first form, \N, which contains all the multiples of

N. There remain N — I forms, and we observe that the square

of a number of the form \N + 1, likewise the square of a number

of the form \N -\- N — 1, belongs to the same form \N + 1.

Similarly the square of a number of either form \N + 2, \N +
N — 2 is of the form \N + 4; and so on. Thus the squares of

all numbers not of the form XiV are comprised in the 3^(iV — 1)

forms
XiV +1, \N + 4, \N + 9, etc.,

which will be called forms of the first class, and will be denoted by

m + a, \N-\-b, \N + c, \N-\- d, etc.,

so that a, 6, c, d,.. .denote the squares 1, 4, 9, 16,. . .or, if these

exceed N, their residues on division by N. The remaining

3*2(N — 1) forms will be denoted by

\N + a,\N + p,\N + y, etc.,

which will be called forms of the second class. It is easy to prove

the following three properties concerning these classes.^

I. The product of two numbers of the first class is again con-

tained in the first class, since evidently XN + ab is in the first

class. If ab > N, the residue of ab on division byN is to be under-

stood.

^ [These merely are the well known elementary properties of quadratic
residues, which, since the time of Gauss, are phrased more briefly in modern
terminology. The like applies to the proof given presently.]
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II. Numbers of the first class a, h, c, d, etc., multiplied into any
numbers of the second class a, /3, 7, 5, etc., give products in the

second class.

III. A product of two numbers in the second class, say afi, falls

into the first class.

We shall now proceed to the proof of Theorem 2, by means of a

contradiction.

Suppose then that there are no three squares, not all divisible

by N, whose sum is divisible by N. Then, so much the more,

there are no two such squares. Hence it follows at once that the

form \N — a, or what amounts to the same, \N + (N — a),

cannot occur in the first class. For, if there were a square of the

form \N — a, the sum of this and \N + a would be divisible by
N, contrary to hypothesis. Hence the form XN — a is necessarily

in the second class; the numbers — 1, —4, —9, etc., are among those

of the set a, /3, 7, 5, etc. Let / by any number of the first class,

so that there exist squares of the form \N + /. If to one of these

be added a square of the form \N + 1, the sum of the two will

have the form XN+/+ !• Now if there were squares of the

form \N — / — 1, there would exist a sum of three squares

divisible by N. Since this is denied, the form \N — / — 1 is not

contained in the first class, and hence it is in the second. But in

the second class there appear the numbers — 1 and —/ — 1, and

hence, by III above, their product/ + 1 is in the first class. In

the same way it may be shown that the numbers

/+2, /+3, / + 4, etc.,

must occur in the first class. Hence, taking/ = 1, we see that all

the numbers

\N +1, XN + 2, \N + 3, etc.,

occur in the first class, and therefore that there are none left for

the second class. But, by the same reasoning, we see that the

numbers —1, —/ — 1, —/ — 2, etc., occur in the second class, and

hence all forms are in the second class. This obviously is a con-

tradiction. It follows therefore that it is false that there are not

three squares whose sum is divisible by N. Hence there are

indeed three squares, and much more therefore four squares, of

the prescribed kind whose sum is divisible by N.

Corollary.—From this theorem, combined with the preceding,

it follows obviously that every number is a sum of four or fewer

squares.
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Use of the Letter e to Represent 2.718...

(Selections Translated by Professor Florian Cajori, University of California,

Berkeley, California.)

Prominent among the mathematicians who have contributed notations

which have met with general adoption is the Swiss Leonhard Euler (1707-

1783). One of his suggestions, made when he was a young man of twenty or

twenty-one, at the court in St. Petersburg, was the use of the letter e to stand

for 2.718. . ., the base of the natural system of logarithms. It occurs in a

manuscript of Euler entitled " Meditation upon Experiments made recently on

the firing of Canon" (Meditatio in Experimenta explosione tormentorum nuper

instituta). The manuscript was first printed in 1862 in Euler's Opera pos-

tuma matbematica et pbysica, Petropoli, 1862, edited by P. H. Fuss and N.

Fuss (Vol. II, p. 800-804). In this article, seven experiments are cited, which

were performed between Aug. 21 and Sept. 2, 1727. These dates, and the

word "recently" (nuper) in the title, would indicate that the article was

written in 1727 or 1728. In it the letter e occurs sixteen times to represent

2.718. . . From page 800, we translate the following:

Let c designate the diameter of a globe [spherical projectile],

in scruples of Rhenish feet,^ m:n the ratio of the specific gravity

of the globe to the specific gravity of the air or the medium in

which the globe moves, let t seconds be the length of time of the

globe in air, let also the required height to which the body rises

be X. For the number whose logarithm is unity, let e be written,

which is 2,7182817. . .whose logarithm^ according to Vlacq is

0, 4342944. Also let N indicate the number of degrees of an arc,

whose tangent is:

Ve*"*' - 1,

the sinus totus [or radius] = 1. The required altitude x may be

obtained from the following equation:

m\/c / / / i^ I _n_x \\

' = 447650V3n(m - n)
O^W- 7162 log. (V.«""-V.'--0)-

/ 3nx

That the analysis may proceed more easily, let us call \e*'^ — 1

1 [Rhenish foot = 1000 scruples.]

* (That is, logarithm to the base 10.)
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= y, then N will be the number of degrees of the arc whose tangent
is y, . . .

In a letter of Nov. 25, 1731, addressed to Goldbach' (first published in 1843),

Euler solves the differential equation

dz — Izdv -\ = — ; thus:
V V

This multiplied by e'''-^^ or what is the same, by e-'^'v (e denotes

that number, whose hyperbolic logarithm is = 1), becomes

e-^'vdz — 2e-^''zvdv + e-'^'zdv = e-'^^'dv,

which, integrated, gives

e-^^vz = Const. — ^e"^''

or

2vz + I = ae^" . .

.

The earliest occurrence in print of the letter e for 2.718. . . is in Euler's

Mecbanica, 1736. It is found in Vol. I, page 68, and in other places, as

well as in Vol. II, page 251, and on many of the 200 pages following. We
quote, in translation, from Vol. I, page 68, where c means the velocity of the

point under consideration:

Corollary II

171. Although in the foregoing equation the force p does not

occur, its direction still remains, which depends upon the ratio

of the elements dx and dy. Given therefore the direction of the

force which moves the point and the curve along which the point

moves, one can, from these data alone, derive the velocity of the

J .1 Cdyds

point at any place. For there will be — = ^-r- ot c = eJ "^j

where e denotes the number whose hyperbolic logarithm is 1.

The use of the letter e, affected by imaginary exponents, in analytica

expressions that were new to mathematics, occurs in a dissertation of Euler's

entitled "On the sums of reciprocal series arising from the Powers of the natural

Numbers" (De summis serierum reciprocarum ex potestatibus numerorum
naturalium ortarum).* He lets 5 denote a circular arc and develops sin x into

the now familiar infinite series. On page 177 he gives without explanation the

exponential expression for sin s, and the fundamental limit for e* in the follow-

ing passage:

^ Correspondance malbimatiquc tt physique de quelques celebres giomitres du XVIll^
sxicle. Par P. H. Fuss, St. Pttersbourg. 1843. Tome I, p. S8.

^ Miscellanea BiTolinensia, p. 172, Vol. VIl. Berlin, 1743.
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Hence I am now able to write down all the roots or factors of the

following infinite expression

C
•'"^^

4.
^'

-.
^'

4. _J?!__ _ it
•^

1.2.3
"^

1.2.3.4.5 1.2.3.. .7"^ 1.2.3.9
^'-

pt-<l/—l p—s-^—l

Indeed that expression is equivalent to this —7^
—-.-—^—

»

e denoting the number whose logarithm is = 1, and, since

e' = ( 1 H— ) , when n emerges an infinite number, the given in-

finite expression is reduced to this:

{^-'-^y-i^-'-^y
^ 2V-1

More systematic development is found in Euler's Introductio in analysin

infinitorum. Vol. I, Lausannae, 1748. We quote from § 138, in which the

letter i is an infinitely great number:

. . . Substituting gives

COS. V

and

sin. V

(.H-^y-0-^^y
2V-1

In the preceding chapter we saw that

(-;)- e'

e denoting the base of hyperbolic logarithms; writing for z, first

+r\/ — 1, then —rV — 1, there will be

g+vV— l-l- g—fV-l
cos. V =

^

and
p+V-\/—l __ p—v-\/—l

''" " = 2V-1
From these it is perceived how imaginary exponential quantities

are reduced to the sine and cosine of real arcs. For, there is

g+t-v-i _ ^.Qg_ J, _|_ y' _ i_ sin. V

g-BV-i = COS. V — V — !• sin. v.
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If in the formula for e"*^"^"* one substitutes tt and V, there results the

famous formula e^~^ = — i, indicating the strange interrelation of tt and e.

Euler states this relation in the logarithmic form and generaHzed, in his paper,

"De la Controverse entre Mrs. Leibnitz & Bernoulli sur les logarithmes des

nombres negatifs et imaginaires," Histoire de Vacademie royale des sciences et

belles lettres, annee 1749, Berlin, 1751, where on page 168 he refers to:

. . .this formula cos <p -\- \/ — I . sin <p, all logarithms of which are

included in this general formula

/(cos <p -\- \/ — I. sin (f)
= { <p -{- pTr)\/ — 1,

p indicating any even integer, either affirmative, or negative, or

even zero. From this we derive. . .

/-! = (!+ p)W -I =qW -h
taking q to mark any odd integer. One has therefore:

/ _ 1 = +7rV - 1; ±3tV - 1; ±57rv/ - 1; ± /ttV - 1; &c.
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On the Transcendence of e

(Translated from the French by Dr. Laura Guggenbiihl, Hunter College, New
York City.)

Charles Hermite (1822-1901) was one of the best-known writers upon the

function theory in the second half of the nineteenth century. He was a

professor in the Ecole Polytechnique, an honorary professor in the University

of Paris, and a member of the Academic des Sciences. His memoir on the

transcendence of e was published in 1873. As is well known, ^ the character

of the number tt was a source of disturbance in ancient times because of its

connection with the classic problem of the quadrature of the circle. From the

Greek period, names of famous mathematicians have been connected with

transcendental numbers, but it was not until 1844 that a definite step forward

was made in the general investigation of the subject. At this time, Liouville

proved the existence of these numbers, thus justifying the classification of

algebraic and transcendental. Liouville had already proved that e could not

be a root of quadratic equation with rational coefficients. Finally, in 1873,

Hermite's proof of the transcendence of e appeared. A few years later (1882),

Lindemann, modeling his proof upon that of Hermite, proved the tran-

scendence of TT.

The memoir is somewhat over thirty pages long and can be divided roughly

into three parts. In the first two parts, two distinct proofs of the transcend-

ence of e are given—but as Hermite says, the second is the more rigorous of

the two. In the third part, Hermite obtains, applying the method suggested

in the second proof, the following approximations:^

58291 , 158452

The translation here given includes, with indicated omissions, the portion

referred to above as the second part of the memoir. Since the time when this

paper first appeared, many simplifications have been made, so that now one

rarely, if ever, sees more than an acknowledgement of the existence and impor-

tance of this proof. The name "Hermite's Theorem" is still, however, given

to the statement that e is a transcendental number.

' Monographs on Topics oj Modern Mathematics, edited by J. W. A. Young, Monograph IX,

"The History and Transcendence of ir," by D. E. Smith. Additional references are there

given.

2 Correct to six decimal places, e = 2.718282. This fraction gives e = 2.718289.

The correction of a numerical mistake pointed out by Picard, in his edition of Hermite's

work, increases the accuracy of this approximation.
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. . . But, as a more general case, take

F(z) = (Z — ZoYoiz - Zi)"'- • .(Z - Zn)'^

for any Integral values whatever of the exponents, upon integrating

both members of the identity

d[e-^F{z)]

dz

one obtains

= e-^[F'(z) - F(z)].

e

from which it follows that

»z

F{7) = j e-'F'{z)dz - I e-'F{z)dz,

Dws that

r e-'F{z)dz = r e-'F{z)dz.'

Now the formula

F'{z) _ fio , Ml
I I

Atn

F(z) z— Zo z — Zi '

'

' z — Zt,

yields the following decomposition,

r-+...+,. I

-cQ?)rf!,.

Z - Zn

. . .We shall prove that it is always possible to determine two
integral polynomials of degree n, 9(2) and 6i(z), such that,

upon representing one of the roots 2!o> Si, . . . z^ by f , one has the

following relation:

. . .And further, upon writing 0(2, f) in place of 9(z), to emphasize

the presence of f, we have

e(z, f) = Z» + 0i(f)z"-2 + 02a)z"-3 + . . . + 0n(r).'

' [Where Z represents any one of the roots Zo, Zi, . . .z„.]

^ /(z) = (2 — Zo)(z — Zi) . . . (z — z„). The proof of this statement, which is

given in detail in the text, is here omitted.

* [It is shown in the text that e,(f ) is a polynomial of degree i in f, having

for coefficients integral functions, with integral coefficients, of the roots Zo, I

Zi, .... z„.

Gi(f) for t = 1, is not to be confused with 61(2), mentioned above in con-

nection with 0(z).]
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From this there follows, for the polynomial 6i(z), the formula

61(2) ^ tioQizo, r) ^ Mie(zi. r) _j_ _,_
Mne(zn, o_

/(z) Z — Zo Z — Zi
' 1 — Zn

... It is sufficient to take the integrals between the limits Zo and Z
in the relation

and thus we obtain the equation

*Z t:/j\ f/-\ nz

Ji»

Jz„ 2 — 2i
(/2

+Mne(z„, r) r^^^^ c/2.

Jz, Z — Zn

We use this equation, in particular, in the case

Mo = Ml = . . . =)u„ = m;

in this case, if one writes

7719(2;, Zk) = (ik)

and if one takes f successively equal to Zo, 21, ... , 2„, the above

relations evidently become

c/z« 2 Zi J20 2 2(,

re-i-{z)

Ji. 2 - 2i
(fe

+ ...'

for i = 0, 1, 2, . .
.

, 77. But for the general case, we must still prove

the following theorem.

Let A and 5 be the determinants

G(2o, Zo) e(2i, Zo).. .e(2n, Zo)

0(2o, zi) e(2i, 2i)...e(2„, 2i)

e{Zo, Zn) e(2l, Zn) ... 6(2n, 2n)
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€„»' = Boil" + Bici» +...+ B„ex'»,

and the determinant of this new substitution, being equal to the

product of the determinants of the partial substitutions, will be
g2(m-i)^ \l remains for us to replace ei°, ci^..., ei", by their

values so that we shall have expressions for the quantities e^* in

form suitable for our purpose. These values are easily obtained,

as will be seen.

For this purpose, we apply the general formula

taking

that is

J€~'F{z)dz = —e~'y{z),

F(z) = -=i-i-^

F{z) = 2" + r +
+pir

H-P2

It is easily seen that y{z) will be an expression integral in z and

f, entirely similar to Q{z, f), such that if one represents it by

$(s, f), one has

Hz, f) = 2" + v5i(f)2"-i + v'2(f)2'*-2 + . . . + ^rXt),

where <p,(f) is a polynomial in f of degree i, in which the coefficient

of f ' is unity . . . and the analogy of the form with Q{z, f) shows that

the determinant

HZo, Zo) *(2i, Zo) . . .4)(2„, Zq)

$(2o, 2l) *(2l, 2l). . .*(Zn, 2l)

4>(2o, 2„) $(2i, Zn) . . .^(2n, 2„)

is also equal to 5^. Next, we conclude from the relation

'^-iiz)

I
taking f = Zi, the desired value

ci^ = e-'-Hzo, Zi)

dz = e-^-^iZo, f) - e-^<J>(Z, r),

'(Z, 2,).

Consequently we have the expressions given below for e™*.
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Let

S3 = BoHZ, Zo) + BxHZ, zi) + . . . + BnHZ, Zn),

S = LMZ, Zo) + LMZ, 2i) + . . . + U^{Z, Zn),

and let 2l<„ 58<„. . ., So be the values obtained for Z = Zo; one has

ern" = e-^°2lo - e-^" 21

€m' = e-'-S&o - e-^33

In these formulas, Z represents any one whatever of the quantities

Zo, Zi,. . ., Zn, now if we wish to state the result for Z = Zk, we shall

agree at the outset, to represent on the one hand, by 21^,58 a, . . . ?;,

and on the other, by 77^;°, rjk,. . ., Vk"', the values which the coeffi-

cients 21, S3, . . ., S, and the quantities tm", ej,.

.

., em"> take on in

this case. Thus one obtains the equations

•nk" = e-^2(o - e-nik

Vk' = e-^»S3o - e-'>'kS8

17^ = e-'-2o - e-'''2k,

which will lead us to the second proof, we have mentioned, of the

impossibihty of a relation of the form

where the exponents Zo, 2i, . .
.

, z„, as also the coefficients No, Ni,

. .
.

, N„, are assumed to be integers.

Note in the first place, that €m* can become smaller than any

given quantity for a sufficiently large value of m. For, the

exponential e~^ being always positive, one has, as is known,

I

e-'Fiz)dz = F(^) r e-'dz = F(^)(e-^<' - e"^),

F{z) being any function whatever, and ^ a quantity taken between

Zo and Z, the limits of the integral. Now, upon taking

one obtains the expression

'" 1.2...m- l^-zr ^'
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which demonstrates the property quoted above. Now, we obtain

from the equations

7/2° = e-">%o - e-''%2.

the following relation,

e''77iWi + e'^aWa +. . . + e'"77nW„

If the condition

e'oNo + e''Ni + . . . + e'Wn =

is introduced, this relation becomes

e''77iWi + e'^zWa + . . . + e'''r]r,'>Nn

= - (SToiVo + 2tiiVx + . . . + 2I„iV„).

However, under the assumption that Zo, Zi,..., Zn are integers,

the quantities 9(2,-, Zk), ^(Zi, Zk) and consequently %„, 5(i, . - ., 21^

are also integers. Then we have a whole number

2IoiV<, + 5liNi+...+ 2In/V„,

which decreases indefinitely with tji", 171^. . ., 771", as m increases;

it follows that for a certain value of m and for all larger values,

510^0 + 5liNi+...+ 5I„N„ = 0,

and, since one obtains similarly the relations

^oNo + S3i/Vi + . . . + 33„M. = 0,

the relation



106

and

SOURCE BOOK IN MATHEMATICS

^{Zo, Zo) *(Zl, Zo). . .^Zn, Zo)

*(3o, 2l) ^{Zi, Zi) . . .^{Zn, Zi)

^{Zo, Zn) $(2, Zr).. .^{Zn, Zn)

of which the first has for its value 82("*~^), and the second 6^

One has then A = S-*", and it is easily shown in an entirely rigorous

manner, that the assumed relation is impossible,^ and that there-

fore, the number e is not among the irrational algebraic numbers.

1 [It can be shown that

1 1 ... 1

Zo Zi . . . Zn

Zo^ Zi^ ... Z„2 = + (Z„ — Zn-l) (Z„ — Zn-2) . . . (Z„ — Zo)

(Z„_i - Z„_2) . . . (Zi - Zo)

Zo^ Zi"

and therefore that 5 is not zero, assuming, as is of course assumed throughout,

that the exponents, Zo, zi, . . . , z„, are distinct.]
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On the Congruence of Numbers

(Translated from the Latin by Professor Ralph G. Archibald, Columbia

University, New York City.)

Carl Friedrich Gauss (1777-1855), the son of a day laborer, was the founder

of the modern school of mathematics in Germany and was, perhaps, equally

well known in the fields of physics and astronomy. Kronecker (1823-1891)

said of him that "almost everything which the mathematics of our century has

brought forth in the way of original scientific ideas is connected with the name

of Gauss." His work in the theory of numbers began when he was a student

at Gottingen, and much of it appeared in his Disquisitiones Aritbmeticae,

published in 1801, when he was only twenty-four years old. In this is found

his treatment of the congruence of numbers, a translation of portions of which

is here given. It also appears in the first volume of his Werke (Gottingen,

1870).

First Section

Concerning Congruence of Numbers in General

Congruent Numbers, Moduli, Residues, and Non-residues

1

If a number a divides the difference of the numbers 6 and c,

b and c are said to be congruent with respect to a; but if not, incon-

gruent. We call a the modulus. In the former case, each of the

numbers b and c is called a residue of the other, but in the latter

case, a non-residue.

These notions apply to all integral numbers both positive and

negative,^ but not to fractions. For example, —9 and +16 are

congruent with respect to the modulus 5; —7 is a residue of +15
with respect to the modulus 11, but a non-residue with respect

to the modulus 3. Now, since every number divides zero, every

number must be regarded as congruent to itself with respect to

all moduli.

2

U k denotes an indeterminate integral number, all residues of a

given number a with respect to the modulus m are contained in

* Obviously, the modulus is always to be taken absolutely,—that is, without

any sign.

107
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the formula a + km. The easier of the propositions which we

shall give can be readily demonstrated from this standpoint; but

anyone will just as easily perceive their truth at sight.

We shall denote in future the congruence of two numbers by

this sign, =, and adjoin the modulus in parentheses when neces-

sary. For example, — 16 = 9 (mod 5), — 7 = 15 (mod 11).^

3

Theorem.—// there be given the m consecutive integral numbers

a, a + 1, a + 2,. . ., a + m — 1,

and another integral number A, then some one of the former will be

congruent to this number A with respect to the modulus m; and, in

fact, there will be only one such number.

a — A .

If, for Instance, Is an Integer, we shall have a = A; but
771

if it is fractional, let k be the Integer Immediately greater (or, when

it is negative, immediately smaller if no regard is paid to sign).

Then A + km will fall between a and a -{- m, and will therefore

be the number desired. Now, it is evident that all the quotients

^ > ?
, etc., are situated between k — Imm m

and fe + 1 . Therefore not more than one can be integral.

Least Residues

4

Every number, then, will have a residue not only in the sequence

0, 1, 2,..., 771—1, but also in the sequence 0, —1, —2,...,

— (77t — 1). We shall call these least residues. Now, it Is evident

that, unless is a residue, there will always be two: one positive,

the other negative. If they are of different magnitudes, one of

them will be less than y; but If they are of the same magnitude,

each will equal y when no regard is paid to sign. From this it is

evident that any number has a residue not exceeding half the

modulus. This residue Is called the absolute minimum.

^ We have adopted this sign on account of the great analogy which exists

between an equality and a congruence. For the same reason Legendre, in

memoirs which will later be frequently quoted, retained the sign of equality

itself for a congruence. We hesitated to follow this notation lest it introduce

an ambiguity.
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For example, with respect to the modulus 5,-13 has the posi-

tive least residue 2, which at the same time is the absolute mini-

mum, and has —3 as the negative least residue. With respect to

the modulus 7, +5 is its own positive least residue, —2 is the

negative least residue and at the same time the absolute minimum.

Elementary Propositions Concerning Congruences

5

From the notions just established we may derive the following

obvious properties of congruent numbers.

The numbers which are congruent with respect to a composite

modulus, will certainly be congruent with respect to a7xy one of its

divisors.

If several numbers are congruent to the same number with respect

to the same modulus, they will be congruent among themselves (with

respect to the same modulus).

The same identity of moduli is to be understood in what follows.

Congruent numbers have the same least residues, incongruent

numbers different least residues.

6

// the numbers A, B, C, etc. and the numbers a, b, c, etc. are

congruent each to each with respect to any modulus, that is, if

A = a, B = b, etc.,

then we shall have

A+ B -\- C + etc. = a + 6 + c + etc.

If A = a and B ^ b, we shall have A — B = a — b.

7

IJ A ^ a, we shall also have kA = ka.

If fe is a positive number, this is merely a particular case of the

proposition of the preceding article when we place A = B = C etc.

and a = 6 = c etc. If /s is negative, —k will be positive. Then
— feA = —ka, and consequently kA = ka.

IJA = aandB = 6, we shall have AB = ab. For, AJ5 = Ab = ba.

8

// the numbers A, B, C, etc. and the numbers a, b, c, etc. are con-

gruent each to each, that is, ij A ^ a, B = b, etc., the products of

the numbers of each set will be congruent; that is, ABC etc. = abc etc.

From the preceding article, AB = ab, and for the same reason

ABC = abc; in a like manner we can consider as many factors as

desired.
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If we take all the numbers A, B, C, etc. equal, and also the

corresponding numbers a, b, c, etc., we obtain this theorem:

IJ A ^ a and ij k is a positive integer, we shall have A* s a''.

9

Let X be a Junction of the indeterminate x, of the form
Ax" + Bx* + Cx' + etc.,

where A, B, C, etc., denote any integral numbers, and a, b, c, etc.,

non-negative integral numbers. IJ, now, to the indeterminate x

there be assigned values which are congruent with respect to any stated

modulus, the resulting values oj the Junction X will then be congruent.

Let/ and g be two congruent values of x. Then by the preceding

articles /" = g" and A/" = Ag°^; in the same way B/* = JBg*, etc.

Hence

A/<^ + BJ^ + C/'^ + etc. = A^ + Bg^ + Cg" + etc. Q. E. D.

It is easily seen, too, how this theorem can be extended to func-

tions of several indeterminates.

10

If, therefore, all consecutive integral numbers are substituted for

X, and if the values of the function X are reduced to least residues,

these residues will constitute a sequence in which the same terms

repeat after an interval of m terms (m denoting the modulus) ; or,

in other words, this sequence will be formed by a period oJ m terms

repeated indefinitely. Let, for example, -Y = x' — 8x + 6 and

m = 5. Then for x = 0, 1, 2, 3, etc., the values of X give the

positive least residues, 1, 4, 3, 4, 3, 1, 4, etc., where the first five,

namely, 1, 4, 3, 4, 3, are repeated without end. And furthermore,

if the sequence is continued backwards, that is, if negative values

are assigned to x, the same period occurs in the inverse order. It

is therefore evident that terms different from those constituting

the period cannot occur in the sequence.

11

In this example, then, X can be neither =0 nor =2 (mod 5),

and can still less be =0 or =2. Whence it follows that the equa-

tions x' — 8x -^ 6 = and x' — 8x + 4 = cannot be solved in

integral numbers, and therefore, as we know, cannot be solved in

rational numbers. It is obviously true in general that, if it is

impossible to satisfy the congruence X = with respect to some

particular modulus, then the equation X = has no rational root

when AT is a function of the unknown x, of the form

X" + Ax"-i 4- Bx"-2 + etc. + N,
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where A, B, C, etc. are integers and n is a positive integer. (It is

well known that all algebraic equations can be brought to this

form.) This criterion, though presented here in a natural manner,

will be treated at greater length in Section VIII. From this brief

indication, some idea, no doubt, can be formed regarding the

utility of these researches.

Some Applications

12

Many of the theorems commonly taught in arithmetic depend

upon theorems given in this section; for example, the rules for

testing the divisibility of a given number by 9, 11, or other num-
bers. With respect to the modulus 9, all powers of 10 are congruent

to unity. Hence, if the given number is of the form a + 106 +
100c + etc., it will have, with respect to the modulus 9, the same
least residue as a + 6 + c + etc. From this it is evident that,

if the individual figures of the number, expressed in the denary

scale, are added without regard to their position, this sum and

the given number will exhibit the same least residues; and further-

more, the latter can be divided by 9 if the former be divisible by
9, and conversely. The same thing also holds true for the divisor

3. Since with respect to the modulus 11, 100 = 1, we shall have

generally 10^^ = 1 and 10^^+^ = 10 = — 1. Then a number of

the form a + 106 + 100c + etc. will have, with respect to the

modulus 11, the same least residue as a — 6 -j- c etc.; whence the

known rule is immediately derived. On the same principle all

similar rules are easily deduced.

The preceding observations also bring out the principle under-

lying the rules commonlv relied upon for the verification of arith-

metical operations. These remarks, of course, are applicable when
from given numbers we have to deduce others by addition, sub-

traction, multiplication, or raising to powers: in place of the given

numbers, we merely substitute their least residues with respect

to an arbitrary modulus (generally 9 or 11; since, as we have just

now observed, in our decimal system residues with respect to

these moduli can be so very easily found). The numbers thus

obtained should be congruent to those which have been deduced

from the given numbers. If, on the other hand, this is not the

case, we infer that an error has crept into the calculation.

Now as these results and others of a similar nature are so very

well known, it would serve no purpose to dwell on them further.
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Third Proof of the Law of Quadratic Reciprocity

(Translated from the Latin by D. H. Lehmer, M.Sc, Brown University,

Providence, Rhode Island.)

The theorem with which the following pages are concerned and to which

Gauss gave the name of Fundamental Theorem is better known today as

Legendre's Law of Quadratic Reciprocity. Although a statement of a

theorem equivalent to this law is found in the works of Euler^ without proof,

the first enunciation of the law itself is attributed to Legendre,^ whose proof,

however, is invalid. It tacitly assumes that there exist infinitely many
primes in certain arithmetical progressions, a fact which was first established

by Dirichlet half a century later. The first proof of this theorem was given by

Gauss^ in 1801 and was followed by seven others in an interval of 17 years.

The proof given below is the third one published,* although it is really his

fifth proof. It is considered by Gauss and many others to be the most direct

and elegant of his eight demonstrations.

In fact, in the first two paragraphs of the present proof Gauss expresses

himself as follows:

§L The questions of higher arithmetic often present a remark-

able characteristic which seldom appears in more general analysis,

and increases the beauty of the former subject. While analytic

investigations lead to the discovery of new truths only after the

fundamental principles of the subject (which to a certain degree

open the way to these truths) have been completely mastered; on

the contrary in arithmetic the most elegant theorems frequently

arise experimentally as the result of a more or less unexpected

stroke of good fortune, while their proofs lie so deeply embedded

in the darkness that they elude all attempts and defeat the sharpest

inquiries. Further, the connection between arithmetical truths

which at first glance seem of widely different nature, is so close

that one not infrequently has the good fortune to find a proof

(in an entirely unexpected way and by means of quite another

> EuLER, Opuscula, Vol. 1, p. 64. 1783.

-Legendre, Histoire de PAcadkmie des Sciences, pp. S16-S17, 1785; Tbiorie des

Nombres, Ed. 1, pp. 214-226. 1798; Ed. 2, pp. 198-207. 1808.

'Gauss, Disquisitiones Aritbmeticae, Sect. 4, Leipzig, 1801; Werke, Gottingen, 1870,

Bd. 1, pp. 73-111.

* Gauss, Comment ationes Societatis Regise Scientiarum Collingensis, Vol. 16, Gottingen,

1808; Werke, Gottingen, 1876. Bd. 2, pp. 1-8.
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inquiry) of a truth which one greatly desired and sought in vain

in spite of much effort. These truths are frequently of such a

nature that they may be arrived at by many distinct paths and

that the first paths to be discovered are not always the shortest.

It is therefore a great pleasure after one has fruitlessly pondered

over a truth and has later been able to prove it in a round-about

way to find at last the simplest and most natural way to its proof.

§2. The theorem which we have called in sec. 4 of the Disquisi-

tiones Arithmeticae, the Fundamental Theorem because it contains

in itself all the theory of quadratic residues, holds a prominent

position among the questions of which we have spoken in the

preceding paragraph. We must consider Legendre as the dis-

coverer of this very elegant theorem, although special cases of it

had previously been discovered by the celebrated geometers

Euler and Lagrange. I will not pause here to enumerate the

attempts of these men to furnish a proof; those who are interested

may read the above mentioned work. An account of my own
trials will suffice to confirm the assertions of the preceeding

paragraph. I discovered this theorem independently in 1795 at a

time when I was totally ignorant of what had been achieved in

higher arithmetic, and consequently had not the shghtest aid

from the Hterature on the subject. For a whole year this theorem

tormented me and absorbed my greatest efTorts until at last I

obtained a proof given in the fourth section of the above-mentioned

work. Later I ran across three other proofs which were built on

entirely diff"erent principles. One of these I have already given

in the fifth section, the others, which do not compare with it in

elegance, I have reserved for future publication. Although these

proofs leave nothing to be desired as regards rigor, they are derived

from sources much too remote, except perhaps the first, which

however proceeds with laborious arguments and is overloaded with

extended operations. I do not hesitate to say that till now a

natural proof has not been produced. I leave it to the authorities

to judge whether the following proof which I have recently been

fortunate enough to discover deserves this discription.

Inasmuch as Gauss does not give any mathematical background in the

introduction to his third proof or even a formal statement of the theorem itself

(these having been given in his first proof), we shall attempt to supply in a few

sentences the information necessary for the proper understanding of the

theorem.

The integer p is said to be a quadratic residue or non-residue of an integer q

relatively prime to p according as there exist or not solutions x of the congru-
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ence x^ s p (mod q). These two cases may be written symbolically as pRq
and pNq, respectively. If p and r are both residues or both non-residues of g,

then they are said to have the same quadratic character with respect to q. With
this understanding, the fundamental theorem may be stated in words as

follows: // p and q are any distinct odd primes, then the quadratic character of p
with respect to q is the same as that oj q with respect to p except when both p and q

are of the form 4n — 1, in which case the characters are opposite.

The quadratic character of p with respect to q may be expressed by the

symbol of Legendre

CO'
which has the value +1 or —1 according as pRq or pNq. The use of this

symbol enables us to state the theorem analytically as follows

/ \ / \ (P - 1) (g - 1)

(0(l);<-»""^~"
We proceed with the translation of Gauss's proof in full:

§3. Theorem.^—Let p be a positive prime number and k be any

number not divisible by p. Further let A be the set oj numbers

(p-1)

and B the set

1,2,3,

(p + 1) (p + 3)
. . , p 1.

2 2

We determine the smallest positive residue modulo p oJ the product

oj k by each oj the numbers in the set A. These will be distinct arid

will belong partly to A and partly to B. Ij we let p, be the number oj

these residues belonging to B, then k is a quadratic residue oj p or a

non-residue oj p according as p, is odd or even.

Prooj.—Let a, a', a", ... be the residues belonging to the class A
and 6, b', b", ... be those belonging to B. Then it is clear that

the complements of these latter: p — b, p — b'
, p — b",. . .are not

equal to any of the numbers a, a', a", . . ., and together with them
make up the class A. Consequently we have

1.2.3...^^ = a.a'.a"...{p - b){p - b')ip - b") . .

.

The right-hand product evidently becomes, modulo p:

= {-\Yaa'a"...bb'b"... = {-iyk.2k.3k. . .k^-^

= {-irk^^n.2.3...^-^

' [This theorem is known to-day as Gauss's Lemma and the number m 's

called the characteristic number.)
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2 )

Hence

1 = {-iyk\
p-i

that is fe 2 = + 1 according as n is even or odd. Hence our

theorem follows at once.^

§4. We can shorten the following discussion considerably by
introducing certain convenient notations. Let the symbol (k, p)^

represent the number of products among

fCy ^rCy D f\y • • /v

2

whose smallest positive residues modulo p exceed p/1. Further

if X is a non-integral quantity we will express by the symbol [x]

the greatest integer less than x so that x — [x] is always a positive

quantity between and 1. We can readily establish the following

relations:

I. M + [-.v] = -1.

\\. [x] + h = [x -{- b], whenever h is an integer.

HI. [x]-^[h- x\ = h - 1.

IV. If X — [x] is a fraction less than ]/2, then [2.v] — 2[x] = 0.

If on the other hand x — [x] is greater than 3^, then

[2x] - 2[x] = 1.

V. If the smallest positive residue of h{mod p) is less than p/2,

then [2h/p] - 2[h/p] = 0.

If however it is larger than p/2, then [2h/p] — 2[b/p] = 1.

VI. From this it follows that:

(k p) =

- 2

2k

LP
+

2k

4k

LP

- 2

-+...+ (P - 1)^

- 2
Hp - l)/2 l

P J

VII. From VI and I we obtain without difficulty:

(/e.p) + (-fe,p) =^^
From this it follows that the quadratic character of — /e with

respect to p is the same as or opposite to the quadratic character

' [This follows from the famous Euler's criterion : k ^ = + 1 according

as k is or is not a quadratic residue of p.]

^ [The symbol {k, p) replaces the characteristic number ^ of the preceding

theorem.]
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of k with respect to p, according as p is of the form 4n + 1 or

4n + 3. It is evident that in the first case —1 is a residue and

in the second a non-residue of p.

VIII. We transform the formula given in VI as follows: From

III we have

r (p-5)
L p

When we apply these substitutions to the last .

above series we have

first, when p is of the form 4n + x,

{k - l)(p - 1)

-'—
[f]

P + 1
terms of the

iK P) =
4

- 2 -1 +
.Pj

LP.

[?1
+

+ - +

5k

P .

3kl3l

LP

+ ...+

+ ...+

fe(p - 3) /2"

P

^(P - l)/2'

second, when p is of the form 4n + 3

- 2
ir^"
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[fix] = h we easily conclude that among the multiples oj the reciprocal

_,_,_...- there appear no i7itegers. Then I say that:XXX X

M + [2x] + [3x]+...+

+ 'MMl\f^H-...+
= nh.

Proof.—In the series [x] + [2x] + [3a:] +• • -I^^], which we set

equal to Q, all the terms from the first up to and including the

1

X

the

are manifestly zero, the following terms up to and including

are equal to 1, and the following up to

equal to 2 and so on. Hence we have-

term are

fi= ox i
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From this it is clear that the theorem follows at once from the

preceding one if we set

k p - I
- = X, —y—
P 2

= n.
1 = h.

It is possible to prove in a similar way that if k is even and prime

to p, then

+

'k'

.p.



KUMMER

On Ideal Numbers

(Translated from the German by Dr. Thomas Freeman Cope, National

Research Fellow in Mathematics, Harvard University, Cambridge, Mass.)

Ernst Edward Kummer' (1810-1893), who was professor of mathematics in

the University of Breslau from 1842 till 1855 and then in the University of

Berlin until 1884, made valuable contributions in several branches of mathe-

matics. Among the topics he studied may be mentioned the theory of the

hypergeometric (Gaussian) series, the Riccati equation, the question of the

convergency of series, tlie theory of complex numbers, and cubic and biquad-

ratic residues. He was the creator of ideal prime factors ofcomplex numbers and

studied intensively surfaces of the fourth order and, in particular, the surfaces

which bear his name.

In the following paper which appears in the original in Crelle's Journal filr

die reine und angeivandte Matbematik (Vol. 35, pp. 319-326, 1847), Kummer
introduces the notion of ideal prime factors of complex numbers, by means of

which he was able to restore unique factorization in a field where the funda-

mental theorem of arithmetic does not hold. Although Rummer's theory has

been largely supplanted by the simpler and more general theory of Dedekind,

yet the ideas he introduced were of such importance that no less an authority

than Professor E. T. Bell is responsible for the statement that^ " Kummer's
introduction of ideals into arithmetic was beyond all dispute one of the greatest

mathematical advances of the nineteenth century." For the position of

Kummer's theory in the theory of numbers, the reader is referred to the

article by Professor Bell from which the above quotation is taken.

On the Theory Of Complex Numbers

(By Professor Kummer of Breslau.)

(Abstract of the Beiicbten der Konigl. Akad. der Wiss. zu Berlin, March 1845.)

I have succeeded in completing and in simplifying the theory of

those complex numbers which are formed from the higher roots

of unity and which, as is well known, play an important role in

cyclotomy and in the study of power residues and of forms of

higher degree; this I have done through the introduction of a

peculiar kind of imaginary divisors which I call ideal complex

' For a short biographical sketch, see D. E. Smith, History of Matbematics, Vol. I, pp.

507-508, Boston, 1923.

- American Mathematical Monthly, Vol. 34, pp. 66.
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numbers and concerning which I take the liberty of making a few

remarks.

If a is an imaginary root of the equation a^ = 1, X a prime num-
ber, and a, Oi, 02, etc. whole numbers, then /(a) = a + oia + 020:^

+ . . • + a\^ia^~^ is a complex whole number. Such a complex

number can either be broken up into factors of the same kind or

such a decomposition is not possible. In the first case, the

number is a composite number; in the second case, it has hitherto

been called a complex prime number. I have observed, however,

that, even though /(a) cannot in any way be broken up into com-
plex factors, it still does not possess the true nature of a complex

prime number, for, quite commonly, it lacks the first and most

important property of prime numbers; namely, that the product

of two prime numbers is divisible by no other prime numbers.

Rather, such numbers /(a), even if they are not capable of decom-

position into complex factors, have nevertheless the nature of

composite numbers; the factors in this case are, however, not actual

but ideal complex numbers. For the introduction of such ideal

complex numbers, there is the same, simple, basal motive as for

the introduction of imaginary formulas into algebra and analysis;

namely, the decomposition of integral rational functions into their

simplest factors, the linear. It was, moreover, such a desidera-

tum which prompted Gauss, in his researches on biquadratic

residues (for all such prime factors of the form 4m + 1 exhibit the

nature of composite numbers), to introduce for the first time com-

plex numbers of the form a -f b-\/—\.

In order to secure a sound definition of the true (usually ideal)

prime factors of complex numbers, it was necessary to use the

properties of prime factors of complex numbers which hold in

every case and which are entirely independent of the contingency

of whether or not actual decomposition takes place: just as in

geometry, if it is a question of the common chords of two circles

even though the circles do not intersect, one seeks an actual defini-

tion of these ideal common chords which shall hold for all positions

of the circles. There are several such permanent properties of

complex numbers which could be used as definitions of ideal prime

factors and which would always lead to essentially the same result;

of these, I have chosen one as the simplest and the most general.

If p is a prime number of the form mX + 1, then it can be repre-

sented, in many cases, as the product of the following X — 1

complex factors: p = /(a)-/(a^)-/(a^). . ./(a^"'); when, however, a
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decomposition into actual complex prime factors is not possible,

let ideals make their appearance in order to bring this about. If

f(a) is an actual complex number and a prime factor of p, it has

the property that, if instead of the root of the equation a^ = 1 a

definite root of the congruence ^^ = 1, mod. p, is substituted, then

/(^) = 0, mod. p. Hence too if the prime factor /(a) is contained

in a complex number 4>(a), it is true that $(^) = 0, mod. p; and

conversely, if $(^) = 0, mod. p, and p is factorable into X — 1

complex prime factors, then $(a) contains the prime factor /(a).

Now the property $(^) = 0, mod. p, is such that it does not depend

in any way on the factorability of the number p into prime factors;

it can accordingly be used as a definition, since it is agreed that the

complex number $(a) shall contain the ideal prime factor of p
which belongs to a = ^, if $(^) = 0, mod. p. Each of the X — 1

complex prime factors of p is thus replaced by a congruence rela-

tion. This suffices to show that complex prime factors, whether

they be actual or merely ideal, give to complex numbers the same

definite character. In the process given here, however, we do

not use the congruence relations as the definitions of ideal prime

factors because they would not be sufficient to represent several

equal ideal prime factors of a complex number, and because, being

too restrictive, they would yield only ideal prime factors of the

real prime numbers of the form mX — 1.

Every prime factor of a complex number is also a prime factor

of every real prime number g, and the nature of the ideal prime

factors is, in particular, dependent on the exponent to which q

belongs for the modulus X. Let this exponent be/, so thatg^ = 1,

mod. X, and X — 1 = e-J. Such a prime number q can never be

broken up into more than e complex prime factors which, if this

decomposition can actually be carried out, are represented as

hnear functions of the e periods of each set of / terms. These

periods of the roots of the equation a^ = 1, I denote by rj, t/i, 772,

. . .r)e-i; and indeed in such an order that each goes over into the

following one whenever a is transformed into a'>', where 7 is a

primitive root of X. As is well known, the periods are the e roots

of an equation of the eth degree; and this equation, considered

as a congruence for the modulus q, has always e real congruential

roots which I denote by u, Ui, U2, . . .Ue_i and take in an order

corresponding to that of the periods, for which, besides the con-

gruence of the eth degree, still other easily found congruences

may be used. If now the complex number c'77 + c/171 + Ca'Tjs 4-
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. . . + c'e~iVe-u constructed out of periods, is denoted shortly by
^{rj), then among the prime numbers q which belong to the expo-

nent /, there are always such that can be brought into the form

q = ^{ri)^r]i)Hm) -Hve-i),

in which, moreover, the e factors never admit a further decomposi-

tion. If one replaces the periods by the congruential roots

corresponding to them, where a period can arbitrarily be designated

to correspond to a definite congruential root, then one of the e

prime factors always becomes congruent to zero for the modulus

q. Now if any complex number J{a) contains the prime factor

^(v), it will always have the property, for 77 = u^t, tji = Uk+u

772 = Uk+2, etc., of becoming congruent to zero for the modulus q'

This property (which imphes precisely / distinct congruence

relations, the development of which would lead too far) is a

permanent one even for those prime numbers q which do not

admit an actual decomposition into e complex prime factors. It

could therefore be used as a definition of complex prime factors;

it would, however, have the defect of not being able to express

the equal ideal prime factors of a complex number.

The definition of ideal complex prime factors which I have

chosen and which is essentially the same as the one described but

is simpler and more general, rests on the fact that, as I prove

separately, one can always find a complex number ^(77), constructed

out of periods, which is of such a nature that 'A ('?)'/' (171) "A ('72). .

.

yp{rie-i) (this product being a whole number) is divisible by q but

not by q^. This complex number \l/(rj) has always the above-

mentioned property, namely, that it is congruent to zero, modulo

q, if for the periods are substituted the corresponding congruential

roots, and therefore \p(r]) = 0, mod. g, for 77 = u, 771 = wi, 772 = M2,

etc. I now set ^PiviJ^iv^) • • .\J/(ve~i) = "^(v) and define ideal prime

numbers in the following manner:

—

If /(a) has the property that the product /(a). ^(77r) is divisible

by q, this shall be expressed as follows: J(a) contains the ideal

prime factor of q which belongs to u = 77^. Furthermore, if f{a)

has the property that J{(x).{'^(r]r)Y is divisible by g** but

/(a) (^(77,))"+^ is not divisible by g^+S this shall be described

thus: /(a) contains the ideal prime factor of q which belongs to

u = 77r, exactly n times.

It would lead too far if I should develop here the connection

and the agreement of this definition with those given by congru-

ence relations as described above; I simply remark that the
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relation; j{ot)'^{r)r) divisible by q, is completely equivalent to/
distinct congruence relations, and that the relation; /(a) (^(77,))"

divisible by g", can always be entirely replaced by u-j congruence

relations. The whole theory of ideal complex numbers which I

have already perfected and of which I here announce the principal

theorems, is a justification of the definition given as well as of the

nomenclature adopted. The principal theorems are the following:

The product of two or more complex numbers has exactly the

same ideal prime factors as the factors taken together.

If a complex number (which is a product of factors) contains

all the e prime factors of q, it is also divisible by q itself; if, however,

it does not contain some one of these 3 ideal prime factors, it is

not divisible by q.

If a complex number (in the form of a product) contains all the

e ideal prime factors ot q and, indeed, each at least fx times, it is

divisible by g^.

If /(a) contains exactly m ideal prime factors of g, which may all

be different, or partly or wholly alike, then the norm
A//(«) = J{ot)f{a^) . . ./(a^~^) contains exactly the factor q"'^.

Every complex number contains only a finite, determinate

number of ideal prime factors.

Two complex numbers which have exactly the same ideal prime

factors differ only by a complex unit which may enter as a factor.

A complex number is divisible by another if all the ideal prime

factors of the divisor are contained in the dividend; and the

quotient contains precisely the excess of the ideal prime factors

of the dividend over those of the divisor.

From these theorems it follows that computation with complex
numbers becomes, by the introduction of ideal prime factors,

entirely the same as computation with integers and their real

integral prime factors. Consequently, the grounds for the

complaint which I voiced in the Breslauer Programm zur Jubelfeier

der Universitdt Konigsherg S. 18, are removed:

—

It seems a great pity that this quality of real numbers, namely,

that they can be resolved into prime factors which for the same number
are always the same, is not shared by complex numbers; if now this

desirable property were part oj a complete doctrine, the effecting oj

which is CLS yet beset with great difficulties, the matter could easily be

resolved and brought to a successful conclusion. Etc. One sees

therefore that ideal prime factors disclose the inner nature of

complex numbers, make them transparent, as it were, and show
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their inner crystalline structure. If, in particular, a complex

number is given merely in the form a -\- aia + 020^ + • • • +
a\-ia^~^, little can be asserted about it until one has determined,

by means of its ideal prime factors (which in such a case can always

be found by direct methods), its simplest qualitative properties to

serve as the basis of all further arithmetical investigations.

Ideal factors of complex numbers arise, as has been shown, as

factors of actual complex numbers: hence ideal prime factors

multiplied with others suitably chosen must always give actual

complex numbers for products. This question of the combination

of ideal factors to obtain actual complex numbers is, as I shall

show as a consequence of the results which I have already found,

of the greatest interest, because it stands in an intimate relation-

ship to the most important sections of number theory. The two

most important results relative to this question are the following:

There always exists a finite, determinate number of ideal

complex multipliers which are necessary and sufficient to reduce

all possible ideal complex numbers to actual complex numbers.^

Every ideal complex number has the property that a definite

integral power of it will give an actual complex number.

I consider now some more detailed developments from these two

theorems. Two ideal complex numbers which, w^hen muItipHed

by one and the same ideal number, form actual complex numbers,

I shall call equivalent or of the same class, because this investigation

of actual and ideal complex numbers is identical with the classifica-

tion of a certain set of forms of the X — 1st degree and in X — 1

variables; the principal results relative to this classification have

been found by Dirichlet but not yet pubfished so that I do not

know precisely whether or not his principle of classification

coincides with that resulting from the theory of complex numbers.

For example, the theory of a form of the second degree in two

variables with determinant, however, a prime number X, is closely

interwoven with these investigations, and our classification in this

case coincides with that of Gauss but not with that of Legendre.

The same considerations also throw great light upon Gauss's

classification of forms of the second degree and upon the true basis

for the diff"erentiation between Aequivalentia propria et impropria,^

1 A proof of this important theorem, although in far less generality and in an

entirely different form, is found in the dissertation : L. Kronecker, De unilati-

bus complexis, Berlin, 1845.

* [i. e., proper and improp>er equivalence.]
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which, undeniably, has always an appearance of impropriety when

it presents itself in the Disquisitiones aritbmeticae. If, for exam-

ple, two forms such as ax^ + 2bxy + cy^ and ax^ — 2bxy +
cy^, or ax^ + 2bxy + cy^ and cx^ + 2bxy + ay^, are considered

as belonging to different classes, as is done in the above-mentioned

work, while in fact no essential difference between them is to be

found; and if on the other hand Gauss's classification must not-

withstanding be admitted to be one arising for the most part out

of the very nature of the question: then one is forced to consider

forms such as ax^ + 2hxy + cy"^ and ax^ — 2bxy + cy^ which

differ from each other in outward appearance only, as merely

representative of two new but essentially different concepts of

number theory. These however, are in reahty nothing more than

two different ideal prime factors which belong to one and the same
number. The entire theory of forms of the second degree in two
variables can be thought of as the theory of complex numbers of

the form x + yV -D and then leads necessarily to ideal complex

numbers of the same sort. The latter, however, classify them-

selves according to the ideal multipliers which are necessary and

sufficient to reduce them to actual complex numbers of the form

X + yy/D. Because of this agreement with the classification of

Gauss, ideal complex numbers thus constitute the true basis for it.

The general investigation of ideal complex numbers presents

the greatest analogy with the very difficult section by Gauss: De
compositione jorvxarum, and the principal results which Gauss

proved for quadratic forms, pp. 337 and following, hold true also

for the combination of general ideal complex numbers. Thus
there belongs to every class of ideal numbers another class which,

when multiphed by the first class, gives rise to actual complex

numbers (here the actual complex numbers are the analogue of

the Classis principalis).^ Likewise, there are classes which, when
multiplied by themselves, give for the result actual complex

numbers (the Classis principalis), and these classes are therefore

ancipites;^ in particular, the Classis principalis itself is always a

Classis anceps. If one takes an ideal complex number and raises

it to powers, then in accordance with the second of the foregoing

theorems, one will arrive at a power which is an actual complex

number; if b is the smallest number for which (/(a))^ is an actual

^ [Principal class.]

^ [Dual, or of a double nature.]
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complex number, then /(a), (/(q:))^ (/(a))^. . . (/(a))'' all belong to

different classes. It now may happen that, by a suitable choice

of /(a), these exhaust all existing classes: if such is not the case, it

is easy to prove that the number of classes is at least always a

multiple of h. I have not gone deeper yet into this domain of

complex numbers; in particular, I have not undertaken an investi-

gation of the exact number of classes because I have heard that

Dirichlet, using principles similar to those employed in his famous

treatise on quadratic forms, has already found this number. I

shall make only one additional remark about the character of

ideal complex numbers, namely, that by the second of the fore-

going theorems they can always be considered and represented as

definite roots of actual complex numbers, that is, they always take

the form v$(a;) where $(«) is an actual complex number and b

an integer.

Of the different applications which I have already made of this

theory of complex number, I shall refer only to the application to

cyclotomy to complete the results which I have already announced

in the above-mentioned Programm. If one sets

{a, x) = X -\- ax" + aV' + . . . + aP-^.v"""',

where a^ = 1, x^ = 1, p = m\ + 1, and g is a primitive root of

the prime number p, then it is well known that (a, x)^ is a complex

number independent of x and formed from the roots of the equa-

tion a^ = 1. In the Programm cited, I have found the following

expression for this number, under the assumption that p can be

resolved into X — 1 actual complex prime factors, one of which is

(a, x)^ = ±a''r'(a)-/'"K«')-rK«')- • .r^-'(a^-'),

where the power-exponents mi, m2, m^, etc. are so determined that

the general rn.K, positive, is less than X and k-mk = 1, mod. X.

Exactly the same simple expression holds in complete generality,

as can easily be proved, even when J(a) is not the actual but only

the ideal prime factor of p. In order, however, in the latter case,

to maintain the expression for (a, x)^ in the form for an actual

complex number, one need only represent the ideal J(a) as a root

of an actual complex number, or apply one of the methods

(although indirect) which serve to represent an actual complex

number whose ideal prime factors are given.



CHEBYSHEV (TCHEBYCHEFF)

On the Totality of Primes

{Translated Jrom the French by Professor J. D. Tamarkin, Brown University,

Providence, Rhode Island.)

Pafnuty Lvovich Chebyshev (Tchebycheff, Tcliebytcbeff) was born on May
14, 1821, and died on Nov. 26, 1894. He is one of the most prominent repre-

sentatives of the Russian mathematical school. He made numerous important

contributions to the theory of numbers, algebra, the theory of probabilities,

analysis, and applied mathematics. Among the most important of his papers

are the two memoirs of which portions are here translated:

1. "Sur la totalite des nombres premiers inferieurs k une limite donnee,"

Memoires presentes a l'Academic Imperiale des Sciences de St.-Petersbourg par

divers savants et lus dans ses assemblees. Vol. 6, pp. 141-157, 1851 (Lu le 24 Mai,

1848); Journal de Mathematiques pures et appliquees, (1) Vol. 17, pp. 341-365,

1852; Oeuvres, Vol. 1, pp. 29-48, 1899.

2. "Memoire sur les nombres premiers," ifcici.. Vol. 7, pp. 15-33, 1854 (lu le 9

Septembre, 1850), ibid., pp. 366-390, ibid., pp. 51-70.

These memoirs represent the first definite progress after Euclid in the

investigation of the function <^(x) which determines the totality of prime num-
bers less than the given limit x. The problem of finding an asymptotic

expression for 0(.v) for large values of x attracted the attention and efforts of

some of the most brilliant mathematicians such as Legendre, Gauss, Lejeune-

Dirichlet, and Riemann.

Gauss (1791, at the age of fourteen) was the first to suggest, in a purely

. X
empirical way, the asymptotic formula j

—— for <t>ix). {Werke, Vol. Xi,

p. 11, 1917.) Later on (1792-1793, 1849), he suggested another formula
/*x fix . X .

I ,
> of which , is the leading terra (Gauss's letter to Encke, 1849,

J2 log X log X & V

Werke, Vol. II, pp. 44:4-44:7, 1876). Legendre, being, of course, unaware

of Gauss's results, suggested another empirical formula xi „ (Essai

sur la tbeorie des nombres, 1st ed., pp. 18-19, 1798) and specified the con-

stants A and B as A = 1, B = —1.08366 in the second edition of the £5501

(pp. 394-395, 1808). Legendre's formula, which Abel quoted as "the most

marvelous in mathematics" (letter to Holmboe, Abel Memorial, 1902, Corre-

spondence, p. 5), is correct up to the leading term only. This fact was recog-

nized by Dirichlet ("Sur I'usage des series infinies dans la theorie des nombres,"

Crelle's Journal, Vol. 18, p. 272, 1838, in his remark written on the copy pre-

sented to Gauss. Cf. Dirichlet, Werke, Vol. 1, p. 372, 1889). In this note

127
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X

to Gauss, Dirichlet suggested another formula^ , The proof of these

results, although announced by Dirichlet, has never been published, so that

Chebyshev's (TchebychefF's) memoirs should be considered as the first

attempt at a rigorous investigation of the problem by analytical methods.

X
Chebyshev did not reach the final goal—to prove that the ratio 4>ix): -,

tends to 1 as a: — 00. This important theorem was proved some 40 years

later by Hadamard ("Sur la distribution des zeros de la fonction f (s) et ses

consequences arithmetiques," Bulletin de la Societe Matbematique de France,

Vol. 24, pp. 199-220, 1896) and by de la Vallee Poussin ("Recherches analy-

tiques sur la theorie des nombres premiers," Annates de la Societe Scientifique

de Bruxelles, Vol. 20, pp. 183-256, 1896), their work being based upon new

ideas and suggestions introduced by Riemann ("tlber die Anzahl der Prim-

zahlen unter einer gegebenen Grenze," Monatsbericbte der Berliner Akademie,

pp. 671-680, 1859; Werke, 2nd ed., pp. 145-153, 1892).

Although Chebyshev did not prove this final theorem, still he succeeded in

obtaining important inequalities for the function <i>{x), which enabled him to

investigate the possible forms of approximation of </>(x) by means of expressions

containing algebraically x, e', log x (Memoir 1, above) with a conclusion con-

cerning the rather limited range of applicability of Legendre's formula. In

the Memoir 2, Chebyshev obtains rather narrow limits for the ratio <^(x):

.— > which provide a proof for the famous Bertrand postulate: "If x ^ 2,

there is at least one prime number between x and 2x — 2."

Memoir 1 : On the Function which Determines the Totality

OF Primes Less than a Given Limit

§L Legendre in his Tbeorie des nombres^ proposes a formula for

the number of primes between 1 and any given limit. He begins

by comparing his formula with the result of counting the primes

in the most extended tables, namely those from 10,000 up to

1,000,000, after which he applies his formula to the solution of

many problems. Later the same formula has been the object of

investigations of Mr. Lejeune-Dirichlet who announced in one

of his memoirs in Crelle's Journal, Vol. 18, that he had found a

rigorous analytical proof of the formula in question.^ Despite

the authority of the name of Mr. Lejeune-Dirichlet and the pro-

nounced agreement of the formula of Legendre with the tables

of primes we permit ourselves to raise certain doubts as to its

' Volume 2, p. 65 (3rd edition).

* [Naturally Chebyshev was unaware of the marginal notation made by

Dirichlet in the copy of his paper presented to Gauss, to which we referred

above.]
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correctness and, consequently, as to the results which have been

derived from this formula. We shall base our assertion on a

theorem concerning a property of the function which determines

the totality of primes less than a given limit,—a theorem from

which one might derive numerous curious consequences. We
shall first give a proof of the theorem in question; after that we
shall indicate some of its applications.

§2. Theorem 1.—// <t>{x) designates the totality of primes less

than X, n is any integer, and p is a quantity > 0, the sum

log^x
<f>ix + 1) - <t>{x)

^

logx 1+p
x-2 L

will have the property of approaching a finite limit as p converges to

zero.

Proof.—We begin by establishing the property in question for

the functions which are obtained by successive differentiations,

with respect to p, of the three expressions

S^p-^' log''-X'°g(i-;i4)'

The summation over m is extended, here as well as later, over all

integral values from m = 2 up to m = oo, while that over n is

taken over primes only, likewise from ju = 2 up to ^i = <»

.

Consider the first expression. It is readily seen that^

^x^'dx = y—rz^ e-'x^dx,

g-rj^-1+pj^ = -
I

e'^x^dx,

consequently

fm'
""xPdxX"-

^ [The first of these formulas is obtained by expanding / x _ -ix in the

geometric series Se"™"", which, being multiplied by x'' and integrated termwise,

yields the expression

The termwise integration can be readily justified.]
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By virtue of this equation the derivative of any order n with

respect to p of^—yip^ will be equal to a fraction whose denomi-

U.nator is I e~''x''dx

n+l

and whose numerator is a polynomial in

I (^1 - ')«-'.v'log^W.r,. . .

j] (—i-j - |)-'.v-log..v<;.v,

I e-^x''dx, I e-='x''\ogxdx, \ e-^xp[og-xdx,. . . \ e-'x" log" xc/.v.

But a fraction of this type, no matter whether n = or ?7 > 0,

approaches a finite limit at p —» 0; for, then the limit of the integral

e~'x'' dx is 1, and the remaining integrals have finite hmiting

values.^

This proves that the function V

—

~ — - and its successive

derivatives remain finite when p —> 0.

Consider now the function

logp- Xlog(^l -^i+p}

[(>-^.)(>-3^.)o-^)-r

It is known that

= 1 + _I_ + ± + _1 +

^ [The reasoning here is justified, since all the integrals in question are uni-

formly convergent in p for ^ p ^ A, A being any fixed positive constant.]

^ [This identity was established by Eulcr ("Varia; observationes circa

series infinitae," Commentarii Academiae Scientiarutn Petropolitanoe, 9, pp. 160-

188, 1737 (Theorem 8, p. l74);Leonardi Euleri Opera Omnia, (1) 14, pp. 216-

244 (230). Euler introduces here what is now called Ricmann's f-function as

defined by the series

f(p) = X"""' " > ^•

1/= 1

The use of this function made by Ricmann (loc. cil.) gave a most powerful

impetus to the modern theory of functions of a complex variable.

The infinite product here is absolutely convergent since (1 — m~^~'')~' =

1 + i^Ti^
——r) and the scries zli i+p 1 ) is absolutely convergent, as well
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whence, with the notation adopted above,

Hence

or else

logp-Xlog(i-^,) = log(i + X;S^V

log p - X log (l -
;^,)

= log
[

1 + P + (X;;;!^,
-

;)

This equation shows that all the derivatives with respect to

p of

log p - 2) log [l -
j^^j

can be expressed in terms of a finite number of fractions whose

denominators are positive integral powers of

1 +P + ^7711+" p)^'

and whose numerators are polynomials in p and the expression

X

—

— and its derivatives with respect to p. The fractions

of this type tend to finite hmits as p —> 0: the expression 1 + P +

I "V

—

~
jp, which figures in the denominators ofthese fractions,

tends to 1 as p —> 0, since, as we have proved, the difference

V—7- remains finite; as to the numerators, they are poly-

nomials in V,—r- and its derivatives, and, since all these

functions tend to finite hmits as p -^ 0, the same will hold true for

the numerators in question.

It remains to prove the same property for the derivatives of the

function

X '°8 (i - ^) + Xj^,-

We observe first that its first derivative is

S/x"^^" log /x.(l - fi-^-")-'^-

as the series S^"'"'', which is only a part of the absolutely convergent series

Sm"'"". All these series and their derived series are also uniformly convergent

for p > 0, which justifies the termwise differentiations in the following work.]
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From this it is readily seen that the derivatives of higher order

also can be expressed in terms of a finite number of expressions of

the form

with p, q, r '^ 0. But, each expression of this type has a finite

value for p ^ 0, since the function under the sign 2 is of order

higher than 1 in 1/ju.

After it has been proved that the derivatives of the three

expressions above tend to finite Hmits as p —> 0, the same property

can be estabHshed for the expression

^[x'o^O -"-'-') +5:"-']+

|1 [log p - X log (l - .-')] + $^, {Xm-'-' - 5)

which, after the differentiations are performed, reduces to

/^ Iog"M _ Y Jog"~^ ^\

This result imphes our theorem above, since it is readily seen that

the difference

•^ log" n -^ log""' m

is identical with
jc = » r

X
x=2

4>{x + 1) - <i>{x)

log" X

log X

or, what is the same thing, with

'if [*(x + 1) - *(x)i!^^ - X !^.
X = 2 jc= 2

To prove this we have only to observe that the first term of

the difference above equals X ^^^
since the coefficient

Jog" X
<i>{x -\- 1) — 0(x) of ———;bydefinitionof thefunction <^(x) reduces

X

to 1 or to according as x is a prime or a composite number. The

second term is transformed into ^ ^^^
by replacing x by m.'

^ [From the modern point of view the essence of Chebyshev's proof above
lies in the fact that f(p) is analytic for all values of p ?^ 1 while it has a simple

pole at p = 1 with the residue 1, whence f (p) — -,—^jr is an entire transcen-

dental function. (Whittaker-Watson, Modem Analysis, 3rd edition, 1920,

p. 26.)]

1
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This completes the proof of the theorem in question.

§3. The theorem which has been proved above leads to many
curious properties of the function which determines the totality

of primes less than a given limit. We first observe that the

difference

_1 p+ dx

log X J log X

for X very large is an infinitesimal of the first order in 1/x; conse-

quently the expression

/_1 p+^ dx X log^x

yogx J^ logxj x^+f

will be of order 1 -\- p with respect to \/x.^ Hence the sum

remains finite for p ^ 0. On adding this sum to the expression

for which Theorem 1 holds true, we conclude that the expression

also remains finite as p —> 0. From this we can derive the follow-

ing theorem.

Theorem 2.

—

The Junction 4){x) which designates the totality

of primes less than x, satisfies infinitely many times, between the

limits X = 2 and x = «>, each of the inequalities

*w > £i^, -
isf^

^"<i *w <
J"li + \sh'

no matter how small is the positive number a and, at the same time,

how large is n.

Proof.—We shall restrict ourselves to the proof of one of these

two inequalities; the second can be proved exactly in the same

fashion. Take for instance the inequality

/iN , s ^ C" dx , ax

To prove that this inequality is satisfied infinitely many times

let us assume the contrary and examine the consequences of

^ [By this it is meant that the quotient of the difference in question by any

power of 1/x less than (2 -f- p) tends to zero as x —* <«
.]
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this hypothesis. Let a be an integer greater than e" and, at the

same time, greater than the greatest number which satisfies (1).

With this assumption we shall have, for .v > a, the inequality

whence

(2)

'^^'^ = £l^x-^r^^' i«g-^>"'
ax

log" x'

J2 log X "^ log" X log X
0(x) -

But, if we admit inequalities (2), it will follow, in contradiction

with the facts established above, that the expression

x = 2 L

4>{x + \) - 0(x) r
log" X•^ + ^ dx

'

log X

will tend to + °o instead of converging to a finite limit as p —> 0.

Indeed we can consider this expression as the limit of

0(.v+i) - <t>{x) - r^'
^•''

log.v

l+P

log" X—n:— as 5 —> 00

.

On assuming s > a, this can be presented under the form

</>(x + 1) - 0(x) p + i dx log" X

J'''

+ ^ dx

_ log"x

log" X

(3) C+ X
x = a +

where
X = a

x = 2

remains finite for p ^ 0.

On setting

u^ = 0(x) —
I

in the known formula

s s

2)"x(l'x+l - I'x) = UsVs+1 — UaVa+l " ^Vx{Ui - Ux_l),

dx

2
log ^' Wx =

-1+p

a+l

we transform expression (3) into

,1+p +

a + l

(/,(5 + 1)

x=5

x = a+l

riog"X log" (X - 1)

(x - 1)1+"
_
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which, in its turn, can be written as

C - U(a + 1) -
I

r^^ r-^^ + U(5 + 1)

135

I.

'' + ^ dx log" 5

J^^

+ i dx
]
Iog"a r

2 log X
J
a'+p ^['

r=a+lL

(/X_ 1+p-
log (x - ^)

¥^.-;T^^'whereO<^<l.
(x — 6)-+"

Let F denote the sum of the two first terms of this expression.

Since, by virtue of condition (2), the third term is positive, we

conclude that the expression above is greater than

x=s r

F+ X <t>{x)

s:

' dx

log.v
1 + p- log" (x — d)

(x - 8)^+"
.». + ,L .. -"o-.. log(x-0)

The same conditions (2) show that the function under the sign

S in the last expression remains positive within the hmits of sum-

mation. Furthermore, we have, within the same hmits,

1°. 1 + P

2°.

>1- since p > 0, x > a -{- I, 6 < I;
log (x — 0)

^ " log a

p dx a(x - 6)

J 2 log X log'* (x - e)

since, by the first of inequalities (2),

''

J2
log X log" X

while, by the second one, the derivative of -,
—'-—

7 which equals
"^

log" X ^

i 1 1 — i V is positive, whence,
log" X y log xy ^

ax
>

a (x - 6)

log" X log" (x — d)

Hence our expression is greater than the sum

log" (x - e) _
(x - 6)^+" ~

^y^ a{x-d) / _ j^\

But this is obviously greater than

i+p

^-0-^)1,^-1+p
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which, for s —» « , reduces to

It is readily seen that the expression at which we have arrived

tends to + =° as p —> 0. For, we have

— :rdx +00, e-^dx = 1.0^-1 Jo

while both a and 1 — | are positive, the former by hypothesis

and the latter by the second of inequahties (2).

Thus, with the assumption made, it is assured that not only the

sum

(/,(.v + l) - 4>(x) - ' "" ^""^'^'^

log x

but even a quantity which is less than this sum, tends to +oo,

whence we conclude that the assumption in question is not admis-

sible; this immediately proves Theorem 2.

§4. On the basis of the preceding proposition it will be easy now
to prove the following theorem.

Theorem 3.

—

The expression -^ r ~ log -^' can not hare a limit
0(x)

distinct from — 1 as x -^ oo

.

Proof.—Let L be the limit as a: —> « of the difference —r^— log .v.

<t>{x)

Under this assumption we always can find a number N
x

so large that for x > iV the value of —r-r — log x will be within the

hmits L — t and L + e, e > being as small as we please. For

such values of x and e

But, by the preceding theorem, the inequahties

dx ax / V . r* dx . ax, . C dx ax / N r* "X , ax

x

i
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are satisfied for infinitely many values of x, consequently also for

values of x greater than N, for which inequalities (4) hold true.

The inequalities (4), combined with those written above, imply

— log X > L — e.

r* dx __ ax

J2 lo^ l^x

!:

dx ax
— logx < L +€,

'2

whence

L + 1 >

log x log" X

f
J log X log" X

^"^ dx ax

S
dx ax

log X log" X

Thus the absolute value of L + 1 does not exceed that of each

of the expressions which figure in the right-hand members of

the preceding inequalities. Furthermore, e can be made as small

as we please by taking N sufficiently large, and the same will be

true also of each of the quantities

X - {log X - 1) fr ^'^

s:

axdx _
log X log" X

for, it can be found by the principles of the differential calculus

that their common limit for x = « is zero.

Thus it is shown that the limits between which the absolute

value of L + 1 is included can be made arbitrarily small; hence

L4-l=0orL=— 1, which was to be proved.

The fact established above concerning the limit of —7-r — log x

for X = 00 does not agree with a formula given by Legendre for

approximate computation of the totality of primes less than a

given limit. According to Legendre the function 0(x) for x large
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is expressed with a sufficient degree of approximation by the

formula
X

<t>(x) =
logx - 1.08366

which gives for the limit of —^-^ — log .v the number — 1.08366
4>{x)

instead of —1,

§5. Starting from Theorem 2 it is possible to estimate the

degree of approximation of the function 4>{x) by any other given

function J{x). In what follows we shall compare the difference

(x) — 0(x) with the expressionsXXX
log X log^ X log^ X ' '

'

To simplify the discussion we shall say that a quantity A is of

X . • V . . .

order j if, as x —> oo , the ratio of A to ,

—

'-— is infinite for
log"* X log"* X

m > n and zero for m < n. We proceed now to prove the follow-

ing theorem.

Theorem 4.— // tbe expression

has a finite [^0] or infinite limit as x —» oo, tbe Junction J(x) can not

X •

represent </)(x) up to terms oj order -.
—^^ inclusive.^

Proof.—Let L be the limit of the expression

log"

n^^'^-£^)
as X ^ 00 . Since, by hypothesis, L is distinct from zero, it is

either positive or negative. Assume L to be positive; our reasoning

is readily apphed to the case of L < 0.

If L > we can find a number N so large that for x > N the

expression

remains always greater than a positive number /.

^ [This means to imply that the difference /(x) — <f>(x) can not be of order

with m > n.]
log^x
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Hence, for x > N,

'^^(^^^'-f--|-^)>'-
But, by Theorem 2, no matter how small a = 1/2 may be, the

inequality

dx ax

log X log" X
(6) 4>{x) < r v^. +

will be satisfied for infinitely many values of .v, which gives

p dx

J log
/W- T~-<K^)-<P(^) +

ax

X log" x'

log" X
on multiplying this by —^— and observing that a = 1/2 we find

log" X

X

or, in view of (5)

J2 ^og^
< !^ f^(x) - 0(x)] + i

^°^" ""
[/(-v) - <^(^-)] > IX

Since 1/2 > and the preceding inequality, as well as inequalities

(5) and (6), are satisfied for infinitely many values of x, the hmit of

!^ [f(x) - 0(x)]

as X—> Qo can not be equal to zero. Then the difference /(x) — 0(x),

according to the agreement above, is either of order -.
—'-—

^ ^
log" X

or of a lower order, which was to be proved.

On the basis of this theorem we can show that the formula of

X
Legendre, ? rruvvr^' for which the limit as x —> « of the

log X — 1.08366

expression

log^ X / X p dx \

X yog X- 1.08366 J2 logx^

equals 0.08366, can not represent 0(x) up to terms of order |—^—

inclusive.

It is also easy to determine the constants A and B so that the

function -7—. ;—=5 will represent <i(x) up to terms of order -.—5—
Alogx + B ^ -TK / i- log^x
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inclusive. By the preceding theorem the constants A and B must

satisfy the equation

X
lim [^tA log x-\-B

On expanding we have

X I X B X

J2 ^ogA-y
= 0.

+
B^

A log X -{- B A log X A^ Iog2 X A^ log^ x

while an integration by parts yields

J2 log X log X log2 X J2 log^ X

The equation above then reduces to

+ C.

lim

log^ X /I X B
+

B2

A log X A^ log^ X A^ log^ X

log X Iog2 X J2 log^ X

-)l =

or else to

liim

(^_,),o,_(B+,) +
B2 1

A^' log X

...-2
log^ X

r
dx - C

log^ X
= 0.

X f, log^ X X

On observing that all the terms beginning with the third con-

verge to zero when x increases indefinitely, it is seen at once that

the preceding equation can not be satisfied unless -j — 1 = 0.

-^+1=0. Hence A = I, B = -I.

Thus among all the functions of the form A log X + B
only

log X — 1
can represent <^(x) up to terms of order

log^ X
inciusive.

* [We omit §§6 and 7 of this memoir. In §6 Chebyshev proves by a method

analogous to that used above that if <t>(x) can be represented up to terms of

order inclusive by an expression algebraic in .v, log x, e', then </>(x)
log" X

can be represented also with the same degree of approximation by the expres-

sion

X . \.x . . 1.2... (n - l).v

+ ...+
log" .Vlog X log'' X

/dx . .

. by repeated integration by parts. §7 contains
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Memoir 2: Memoir on Prime Numbers^

§2. Let us designate by d{z) the sum of logarithms of all the

primes which do not exceed z. This function equals zero when x

is less than the smallest prime, viz. 2. It is not difficult to show

that this function satisfies the following equation^

e{x) + d{x)y^ + ^(x)« +
M

= Iogl.2.3...[x].

where the symbol [x] is used to designate the greatest integer

contained in x.

To verify this equation we note that both its members are made
up of terms of the form K log a, where a is a prime and K is an

integer. In the left-hand member K is equal to the number of

terms in the sequence

X. 2' 3'

(1) W'

which are not less than a, since the expression for d{z) will contain

the term log a only in the case where z '^ a. As to the coefficient

of log a in the right-hand member, it is equal to the highest power

of a which divides 1.2.3...[^]- It is found however, that this

power is also equal to the number of terms in the sequence (1)

which are not less than a; for, the number of terms of the sequence

X X

an attempt (not rigorous) to prove the remarkable asymptotic relations

5) ~IogIogP + Ci. n(l --)~r-%

where Ci, d are fixed constants, P is any prime number, and the summation
and product are extended over all primes /i ^ P.]

^ (We omit the introductory §1 of this memoir.]
* To abbreviate we write 0(x/n)"* instead of d[ (x/n)'"}

.
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which are not less than a, is equal to that of the terms of the

sequence

1, 2, 3,...,[.v]

which are divisible by a.

The same relationship exists between the number of terms of

this sequence, which are divisible by a*, a"*, a*,. . .and the number

of terms of the sequence

'"" 0" 0)'

<*' 0)" 0)''

which are not less than a.

Hence both members of our equation are composed of the same

terms, which proves that they are identical.

The equation just estabhshed can be presented as

(2) Hx) + 4^(-^ + ^(~\ + . . .
= T{x)

on setting for abbreviation

...
I

d(z) + e(z)yi + 0(z)>3 + . . . = ^(z),
^^^

I log 1.2.3... [x] = T{x).

In apphcations of these formulas we shall observe that, in view

of what has been said about the value of 6{z) when z < 2 the func-

tion \p(z) vanishes when z < 2, and consequently, equation (2)

will be valid in the limiting cases a: = 0, a: = 2 if we agree to take

zero as the value of T{x) when x < 2.

§3. By means of this equation it is not difficult to find numerous

inequahties which are satisfied by the function ^(x); those we

shall use in this memoir are the following:

^(x) > Tix) + n^^] - T^^ - t(^^ - r(
30

Wx) - ^Q > r(.v) + t(^ - tQ - r(5) - r0).

To prove these inequalities we shall compute the value of
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by means of (2), which leads to the equation

+^(35) + ^(235) + ^(570)+-
•

•

143

(4)

-r; -

- ri

•'© +

-0-i3)-<3^)--
whose left-hand member reduces to

Ai, A2,. . .An. . .being numerical coefficients. Upon examining

their values it is not difficult to establish that

A„ = 1 if n = 30m + 1, 7, 11, 13, 17, 19, 23, 29,

A„ = if n = 30m + 2, 3, 4, 5, 8, 9, 14, 16, 21, 22, 25, 26, 27,

28,

A, = -1 if n = 30m + 6, 10, 12, 15, 18, 20, 24,

A„ = - 1 if n = 30m + 30.

Indeed, in the first case n is not divisible by any of the numbers

2, 3, 5, hence the term \p{x/n) figures only in the first fine in equa-

tion (4). In the second case n is divisible by one of the numbers

2, 3, 5, hence, besides the term \l/{x/n) in the first line, the term
— i/'(x/n) will be found in one of the last three lines, and, after

reduction, the coefficient of ^}/{x/n) will become 0. In the third

case n is divisible by two of the numbers 2, 3, 5. Hence the last

three lines will contain two terms equal to —\p{x/n), while the first

line contains i/'(x/n) with the plus sign, so that the result will be

—yp{x/n). In the last case where n is divisible by 30 we arrive

at the same conclusion, since the term +^{x/n) will figure in all

the five lines, twice with the plus and three times with the minus sign.

Hence for

n = 30m + 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15

16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30

we find respectively

An = 1. 0, 0, 0. 0, -1, 1, 0, 0, -1, 1, -1, 1, 0, -1,

0, 1, -1, 1, -1,0,0, 1, -1,0,0,0,0, 1, -1,
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which shows that equation (4) reduces to

where the terms of the left-hand member have the coefFicient 1

alternately with the plus and minus signs. Furthermore, since

by nature of the function \l/(x) the series of the left-hand member

is decreasing, its value will be included within the limits \}/(x)

and \J/{x) — xpix/S). Hence, by the preceding equation, we shall

have necessarily

^W - *Q i T(s) + 7(3!)
- tQ - 70) -

70).

§4. Let us examine now the function T{x) which figures in these

formulas. On denoting by a the greatest integer contained in x,

which we shall assume to be ^ 1, we have from (3)

T{x) = log 1.2.3... a

or, what amounts to the same thing,

T{x) = log 1.2.3. . .a(a + 1) - log (a -|- 1).

But it is known that

log 1.2.3 . . . a < log \/27r + a log a — a -\- }y'2 log a +
log 1.2.3. . .a{a + 1) > log \/2r + (a + 1) log (a + 1) -

K2a,(a+1) +MIog(a + l);

hence

T(x) < log \/2^ + a log a - a + K log a + M2a,

Tix) > log V2^ + (a + 1) log (a + 1) - (a + 1) - K log (a -t- 1)

and consequently

T{x) < log \/2ir -\- xlogx - X + }4 log X + K2»
T{x) > log -s/lw -\- xlogx — X — }^ log X,

since the inequalities

a ^ .V < a -t- 1, a ^ 1

obviously imply the conditions

X log X - X + 2
^<^g ^ + To - " ^°S tt — <^ + 2 ^^g '^ + 12"'

X log X - X - M log X ^ (a + 1) log (a -f 1) - (a + 1)

- 1^ log (a + 1).
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The inequalities above concerning T(x) give

Tix) + rf^ < 2 log v^ + ^ + l^.v log X - X log 30^0

^x + log X - 2 log 30,

31
T(x) + Tf^\ > 2 log \/2ir + ~x log X - X log 30^^<' -

30^

- log X + 2 log 30,

^0) + ^(l) + ^(0 < 3 log V2^ + ^ + l^x log X

- X log 2^^3>^5^^ - 1^^ + I
Jog^ - 1 ^og 30,

- X log 2^^^3^^55^ _ l^x - I
log X + ^ log 30.

On subtracting the last of these inequalities from the first

and the third from the second we find

rw + r(^) - r0) - r0) - r(f) <a. + 1 log .

-
\ log 1800;r + A

rw + t(^) - r0) - r(^) - r(^) > ^. - ^ ,„g,

,
1 , 4S0 3

+ 2'°8— -n'
where to abbreviate we have set

(5) A = log 2'^^-3^5''^30-^^'' = 0.92129202. .

.

The analysis used in proving these inequalities assumes that

X ^ 30, since, in discussing T(x) we have assumed x ^ 1 and
after that we have replaced x successively by x/2, x/3, x/5 and

x/30. It is not difficult, however, to obtain formulas which can be

used for all values of x > 1, if we replace the preceding inequaHties

by simpler ones

rw + r(^) - r(^) - r0) - r(f) <a. + 1 logx,

r(x) + r(^) , rg) - r(?) - r(^) > a. - ^ log . - i;
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an examination readily shows that these inequalities are vahd for

values of x between 1 and 30.

§5. On combining these inequahties with those derived above

for the function '/'(x)(§3) we arrive at two formulas

i/'(r) > Ax - jlogx - \, \ly(x) - i^r^
j
< Ax + 2 log x,

of which the first gives a lower limit for rpix).

As to the second formula, it will be used in assigning another

limit for \p(x). For this purpose we observe that the function

J{x) = ^Ax + ^j^ Iog2 X + ^ log X

satisfies the equation

J(x)-jf^\ = Ax +
I

log X,

which, being subtracted from the inequahty

^{x) - xl^f^] < Ax + 2 log X

gives

or else

Hx)-^(^^-Kx)-^j(f)<0

X\ r/X
HX)-KX) <rpr^\-JI^

On replacing x successively by x/6, x/6^. . .x/6"* in this formula

we find

m - /w < ^@ - /@ < < ^(g^) - /(g^).

Assume now that m is the greatest integer which satisfies the

condition ^^1. Then x/6"'+' will be between 1 and 3^, while
6"'

rpiz) = and —J(z) remains greater than 1 within the limits

z = 1, z = >^. Hence i/'(x/6'"+0 - /(x/6'"+i) < 1, and by the

preceding inequahties

^(x) -/(x) < 1.

Finally, on substituting the value of /(x) we have

Hx) < -^Ax + ^^^ Iog2 X + ^ log X + 1.

On the basis of the formulas just found it is not difficult to assign

two limits including the value of ^(x).
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Indeed, we find from (3)

Hx) - ^(x)^ = d(x) + d(x)yi + dix)H +. . .,

yP{x) - 2iA(x)H = dix) - [^(x)H _ e{xyi] -
. .

.

which shows that

(6) d{x) ^ Hx) - ^{x)^K dix) ^ Hx) - 2iA(x)H,

since the terms

0(.v)>3, d(x)H, . . . , ^(x)M - ^(x)M . .

.

obviously are positive or zero.

But we have found

yp{x) < ^Ax + ^ . ^ Iog2 X + ^ log X + 1,

\l/{x) > Ax — Y2 log X — 1,

which gives

,A(x)>^ < |axH + ^^^-j^ Iog2 X + \ log X + 1.

i^{x)y^ > AxH _
I

log X - 1,

and consequently

4^{x) - ^{xyi < |ax - AxH + ^^J-g Iog2 X + ^ log X + 2.

rPix) - 2^p{x)y^ > Ax - ^AxV^ - g^ log^ X - ^ log X - 3

Hence, by (6),

(
d(x) < fAx - Axy^ + 3-j^ Iog2 X + ^ log X + 2

(7J 5 4 log 6 ^ 2 ^

0(x) > Ax - ^Ax>^ - g^ log^ A- - ^ log X - 3.1

^ [We omit the concluding §§6-9 of the memoir. In §6 Chebyshev gives the

proof of the Bertrand postulate, taking as the point of departure the obvious

inequaHties

0(L) - 6(1) > m log /, 0{L) - 6(1) < m log L

where m is the number of primes between / and L, and using the unequalities

obtained above for 6(x). §7 contains a proof of the following remarkable
F(x)

theorem: If for x sufFiciently large F(x) is positive and , is not increasing,

then the convergence of the series ^, • is a necessary and sufficient

condition for the convergence of the series SF(m). The proof is based up>on

the simple transformation formula

l.L m = l
^
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where the summation over n is extended over all primes, while that over m over

all integers between the two given limits / and L. Thus the series

2 log 2 ^ 3 log 3 ' 5 log 5 '
'

•
'

' 2 log^ (log 2) ' 3 log^ (log 3)

^5IogMlog5)
^""

are convergent while the series

1+1+1+ . __^+_i_+_L_ +2^3^S^-" 2Iog2 ^3 log3 ^SlogS ^••

are divergent. §§8 and 9 contain some applications of the above results to the

approximate computation of sums of the form 2F(m) and, in the special case

where F(x) = 1, to the computation of the totality of primes.]
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On the Table of Logarithms

(Selections Made by Professor W. D. Cairns, Oberlin College, Oberlin, Ohio.)

John Napier (1550-1617), Baron of Merchiston, Scotland, has been given

undisputed priority with regard to the publication of a table of logarithms and

an account of their meaning and use. His work is the more important since,

through improvements by himself, Henry Briggs, and others, it quickly

became a system practical for purposes of calculation and nearly in the modern

form. He published his system in 1614 in Mirifici logaritbmorum canonis

descriptio and gave therein a description of the nature of logarithms and a

table of his logarithms of the sines of angles for successive minutes. The
present account is, however, taken from his Mirifici logaritbmorum canonis

conslructio, which appeared posthumously in 1619 but which was written

several years earlier than the Descriptio. Sufficient extracts are given, with

the original numbers of the articles, to show his method of construction of the

table, his definition of logarithms, and the rules for combining these.

The Descriptio was translated into English by Edward Wright under the

title A Description of the Admirable Table of Logaritbmes and was published

posthumously at London in 1616. The Constructio was translated into English

by W. R. Macdonald (Edinburgh, Wm. Blackwood & Sons, Ltd., 1889).

The following selections are taken from the latter work with the kind per-

mission of the publishers, the numbers of the paragraphs being as in the

original. Only the more important parts of the numbered paragraphs have

been selected, there being sufficient to show Napier's method of constructing

a logarithmic table. Upon the question of the invention of logarithms, see

the articles on prosthaphaeresis (pp. 455 and 459).

1. A logarithmic table is a small table by the use of which we
can obtain a knowledge of all geometrical dimensions and

motions in space, by a very easy calculation ... It is picked

out from numbers progressing in continuous proportion.

2. Of continuous progressions, an arithmetical is one which

proceeds by equal intervals; a geometrical, one which advances

by unequal and proportionally increasing or decreasing

intervals.

16. If from the radius with seven ciphers added you subtract

its 1000(X)00th part, and from the number thence arising its

lOOOOOOOth part, and so on, a hundred numbers may very

easily be continued geometrically in the proportion subsisting

149
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between the radius and the sine less than it by unity, namely

between 10000000 and 9999999; and this series of propor-

tionals we name the First table.

Thus from the radius, with seven ciphers added for greater

accuracy, namely, 10000000.0000000, subtract 1.0000000,

you get 9999999.0000000; from this subtract .9999999,

you get 9999998.0000001; and proceed in this way until you

create a hundred proportionals, the last of which, if you

have computed rightly, will be 9999900.0004950.

17. The Second table proceeds from the radius with six ciphers

added, through fifty other numbers decreasing proportionally

in the proportion which is easiest, and as near as possible to that

subsisting between the first and last numbers of the First table

Thus the first and last numbers of the First table are

10000000.0000000 and 9999900.0004950, in which pro-

portion it is difficult to form fifty proportional numbers.

A near and at the same time an easy proportion is 100000

to 99999, which may be continued with sufficient exactness

by adding six ciphers to the radius and continually subtract-

ing from each number its own 100000th part; and this

table contains, besides the radius which is the first, fifty

other proportional numbers, the last of which, if you have

not erred, you will find to be 9995001.222927.1

18. The Third table consists of sixty-nine columns, and in each

column are placed twenty-one numbers, proceeding in the

proportion which is easiest, and as near as possible to that sub-

sisting between the first and last numbers of the Second table.

Whence its first column is very easily obtained from the

radius with five ciphers added, by subtracting its 2000th part,

and so from the other numbers as they arise.

In forming this progression, as the proportion between

10000000.000000, the first of the Second table, and

9995001.222927, the last of the same, is troublesome; there-

fore compute the twenty-one numbers in the easy pro-

portion of 10000 to 9995, which is sufficiently near to it; the

last of these, if you have not erred, will be 9900473.57808.

From these numbers, when computed, the last figure of

each may be rejected without sensible error, so that others

may hereafter be more easily computed from them.

1 (This should be 9995001.224804.]
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19. The first numbers of all the columns must proceed from the

radius with four ciphers added, in the proportion easiest

and nearest to that subsisting between the first and the

last numbers of the first column.

As the first and the last numbers of the first column are

10000000.0000 and 9900473.5780, the easiest proportion

very near to this is 100 to 99. Accordingly sixty-eight

numbers are to be continued from the radius in the ratio

of 100 to 99 by subtracting from each one of them its

hundredth part.

20. In the same proportion a progression is to be made from the

second number of the first column through the second

numbers in all the cohimns, and from the third through the

third, and from the fourth through the fourth, and from the

others respectively through the others.

Thus from any number in one column, by subtracting its

hundredth part, the number of the same rank in the follow-

ing column is made, and the numbers should be placed in

order.

Remark: The last number in the Sixty-ninth column is

4998609.4034, roughly half the original number.

21. Thus, in the Third table, between the radius and half the

radius, you have sixty-eight numbers interpolated, in the pro-

portion of 100 to 99, and between each two of these you have

twenty numbers interpolated in the proportion of 10000 to

9995; and again, in the Second table, between the first two

of these, namely between 10000000 and 9995000, you have

fifty numbers interpolated in the proportion of 100000 to

99999; and finally, in the First table, between the latter, you

have a hundred numbers interpolated in the proportion of the

radius or 10000000 to 9999999; and since the difference of

these is never more than unity, there is no need to divide it

more minutely by interpolating means, whence these three

tables, after they have been completed, will suffice for com-

puting a Logarithmic table.

Hitherto we have explained how we may most easily place

in tables sines or natural numbers progressing in geometrical

proportion.

22. It remains, in the Third table at least, to place beside the

sines or natural numbers decreasing geometrically their

logarithms or artificial numbers increasing arithmetically.
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26. The logarithm of a given sine is that number which has

increased arithmetically with the same velocity throughout

as that with which the radius began to decrease geometrically,

and in the same time as the radius has decreased to the given

sine.^

T
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I say that be, the logarithm of the sine dS, is greater than

Td and less than oT. For in the same time that g is borne

from to T, g is borne from T to d, because (by 24) oT is

such a part of oS as Td is of TS, and in the same time (by

the definition of a logarithm) is a borne from 6 to c; so that

oT, Td, and 6c are distances traversed in equal times. But

since g when moving between T and o is swifter than at T,

and between T and d slower, but at T is equally swift with

a (by 26); it follows that oT the distance traversed by g

moving swiftly is greater, and Td the distance traversed

by g moving slowly is less, than be the distance traversed

by the point a with its medium motion, in just the same

moments of time; the latter is, consequently, a certain mean
between the two former.

Therefore oT is called the greater limit, and Td the less

limit of the logarithm which 6c represents.

29. To find the limits of the logarithm of a given sine.

By the preceding it is proved that the given sine

being subtracted from the radius, the less limit remains,

and that the radius being multiplied into the less limit

and the product divided by the given sine, the greater limit

is produced.

30. Whence the first proportional of the First table, which is

9999999, has its logarithm between the limits 1.0000001 and

1.0000000.

31. The limits themselves differing insensibly, they or anything

between them may be taken as the true logarithm.

32. There being any number of sines decreasing from the radius

in geometrical proportions, of one of which the logarithm

or its limits is given, to find those of the others.

This necessarily follows from the definitions of arith-

metical increase, of geometrical decrease, and of a loga-

rithm ... So that, if the first logarithm corresponding to the

first sine after the radius be given, the second logarithm

will be double of it, the third triple, and so of the others;

until the logarithms of all the sines are known.

36. The logarithms of similarly proportioned sines differ equally.

This necessarily follows from the definitions of a loga-

rithm and of the two motions . Also there is the same ratio

of equality between the differences of the respective limits

of the logarithms, namely as the differences of the less
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among themselves, so also of the greater among themselves,

of which logarithms the sines are similarly proportioned.

38. Of four geometrical proportionals, as the product of the

means is equal to the product of the extremes; so of their

logarithms, the sum of the means is equal to the sum of the

extremes. Whence any three of these logarithms being given,

the fourth becomes known, ^

39. The difference of the logarithms of two sines lies between

two limits; the greater limit being to the radius as the difference

of the sines to the less sine, and the less limit being to the

radius as the difference of the sines to the greater sine.^

47. In the Third table, beside the natural numbers, are to be

written their logarithms; so that the Third table, which after

this we shall always call the Radical table, may be made
complete and perfect.

48. The Radical table being now completed, we take the

numbers for the logarithmic table from it alone.

For as the first two tables were of service in the formation

of the third, so this Radical table serves for the construction

of the principal Logarithmic table, with great ease and no

sensible error.

51. All sines in the proportion of two to one have 6931469.22

for the difference of their logarithms.^

52. All sines in the proportion of ten to one have 23025842.34 for

the difference of their logarithms.

* [The modern theorem for the logarithm of a product does not hold here,

since the logarithm of unity is not zero.]

^ [This is proved by the principle of proportion and of Article 36. This

rule is used first in Articles 40-41 as an illustration to find the logaiithm of

9999975.5 from that of the nearest sine in the First table, 9999975.0000300,

noting that the limits of the logarithms of the latter number are 25.0000025 and

25.0000000, that the difference of the logarithms of the two numbers by the

rule just given is .4999712 and that the limits for the logarithm of 9999975.5

are therefore 24.5000313 and 24.5000288, whence he lists the logarithm as

24.5000300.

In Articles 41-45 he illustrates the fact that one may now calculate the

logarithms of all the "proportionals" in the First, Second, and Third tables,

as well as of the sines or natural numbers not proportionals in these tables but

near or between them.]

^ [Napier obtains this result by first calculating the logarithm of 7071068,

which is to the nearest unit, the square root of 50 X 10'^ and which is, to his

"radius," the sine of 45°. By Article 39 its logarithm is 3465734.5, whence

the result in Article 51.]
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55. As the half radius is to the sine of half a given arc, so is the

sine of the complement of the half arc to the sine of the whole

arc.^

56. Double the logarithm of an arc of 45 degrees is the logarithm

of half the radius.

57. The sum of the logarithms of half the radius and any given

arc is equal to the sum of the logarithms of half the arc and the

complement of the half arc. Whence the logarithm of the

half arc may be found if the logarithms of the other three are

given.

59. To form a logarithmic table. ^

1 [Only here does Napier begin to introduce angles into the construction of

his tables. Napier proves Articles 55-57 by geometric principles and the

preceding theorems concerning logarithms.]

^ [Napier's table is conocructed in quite the same form as used at present,

except that the second (sixth) column gives sines for the number of degrees

indicated at the top (bottom) and of minutes in the first (seventh) column,

the third (fifth) column gives the corresponding logarithm and the fourth

column gives the "differentiae" between the logarithms in the third and fifth

columns, these being therefore essentially logarithmic tangents or cotangents.

A reproduction of one page may be seen in Macdonald's translation, page 138.
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On The Slide Rule

(Edited by Professor Florian Cajori, University of California, Berkeley,

California.)

The earliest publication describing a slide rule (an instrument differing from

Gunter's scale, which had no sliding parts) was brought out in the year 1630

by Richard Delamain, a teacher of mathematics in London. It was a pamphlet

of 30 pages, entitled Grammelogia^ and describing a circular slide rule. There

is a copy in the Cambridge University Library in England. This tract has no

drawing of the slide rule. During the next 2 or 3 years there were issued at

least four undated new editions, or impressions, of the Grammelogia, with new
parts added. The Cambridge University Library has a copy which is the

same as the 1630 publication but with an appendix^ of 17 pages added. In the

British Museum at London and in the Bodleian Library at Oxford, there are

copies of another edition of 113 pages, which was published in 1632 or 1633, as

is shown by its reference to Oughtred's book, the Circles oj Proportion of

1632. It has two title pages^ which we reproduce in facsimile.

> The full title of the Grammelogia of 1630 is as follows:

CTamelogia\or,\Tbe Matbemalicall Ring.\Sbewing {any reasonable Capacity that batb\

not Aritbmeticke) bow to resolve and tvoTke\all ordinary operations of Aritbmeticke.\And

tbose wbicb are most difficult witb grealest\Jacilitie: Tbe extraction of Roots, tbe valuation oJ\

Leases, &c. Tbe measuring of Plaines\and Solids.\Witb tbe resolution oj Plaine and
Spbericall\Triangles.\And tbat onely by an Ocular Inspection,\and a Circular Motion.\

Naturae secreta tempus ape7-t/.|London printed by John Haviland, 1630.

2 The appendix is entitled:

De la MainsI Appendix!Vpon his|MathematicaIl|Ring. Attribuit nullo (praescripto

tempore) vitae|vsuram nobis ingeniique Deus.|London,|

. . .The next line or two of this title page which probably contained the date of publication,

were cut off by the binder in trimming the edges of this and several other pamphlets for bind-

ing into one volume.
5 The first title page (engraved) is as follows:

Mirifica Logaritbmoru' Projectio Circularis. There follows a diagram of a circular

slide rule, with the inscription within the innermost ring: Nil Finis, Motvs, Circvlvs vllvs

Habet.

The second title page is as follows:

Grammelogia\Or, tbe Matbematicall Ring.\Extracted from tbe Logarylbmes, and projected

Circular: Now published in tbe\inlargement tbereoj unto any magnitude jit jor use; shewing

any reason-\able capacity that bath not Aritbmeticke bow to resolve and worke.lall ordinary

operations oj Aritbmeticke:\And those tbat are 7nost difficult with greatest jacilitie, tbe extracti-]

on oj Rootes, tbe valuation oj Leases, &c. tbe measuring oj Plaines and Solids,\with tbe

resolution oj Plaine and Spbericall Triangles applied to tbe\Practicall parts oj Geometric,

Horologograpbie, Geograpbie\Fortijication, Navigation, Astronomic, ^c.\And tbat onely by

an ocular inspection, and a Circular motion. Invented and jirsl published, by R. Delamain,

Teacher, and Student oj tbe Matbematicks.\Naturae secreta tempus aperit.\

There is no date. There follows the diagram of a second circular slide rule, with the inscrip)-

tion witliin the innermost ring: Typus proiectionis Annuli adaucti vt in Conslusione Lybri

praelo commissi. Anno 1630 promisi. There are numerous drawings in the Grammelogia, all

156
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In tlic Grammeloiiia of 1630, Dclamain, in an address to King Charles I,

emphasizes tlie ease of operating with his slide rule by stating that it is "fit

for use. . .as well on Morse backe as on Foot." Speaking "To the Reader,"

he states that he has "for many yeares taught the Mathematicks in this

Towne" and made efforts to improve Gunter's scale "by some Motion, so

that tlie whole body of Logaritlimes miglit move proportionally the one to the

other, as occasion required. This conceit in February last [1629] 1 struke

upon, and so composed my Grammelogia or Aiathematicall Ring; by whicli only

with an ocular inspection, there is had at one instant all proportionalls through

of which, excepting the drawings of slide rules on the engraved title pages were printed upon
separate pieces of paper and then inserted by hand into the vacant spaces on the printed

pages reserved for them. Some drawings are missing, so that the Bodleian Grammelogia

diflers in this respect slightly from the two copies in the British Museum.
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tin- said body ol Numbers." lie dates his preface "first of January, 1630."

The term Gramniclaiiia is appHed to the instrument, as well as to the book.

Delamain's description of this Gramniclogia is as follows:

The parts of the Instrument arc two Circles, tlie one movcal)ic,

and the other fixed: The moveable is that unto which is fastened

a small pin to move it by ; the other Circle may be conceived to be

fixed; The circumference of the moveable Circle is divided into

unequall parts, charactered with figures thus, 1. 2. 3. 4. 5. 6. 7. 8. 9.

these figures doe represent themselves, or such numbers unto

which a Cipher or Ciphers are added, and are varied as the occasion

falls out in the speech oj Numbers, so 1. stands for 1. or 10. or 100.^

&c. the 2. stands for 2. or 20. or 200. or 2000., &c. the 3. stands for

30. or 300. or 3000.; &c.

"How to perform the Golden Rule" (tiie rule of proportion), is exijlained

thus:

Seeke the first number in the mo\'eable, and bring it to the

second number in the fixed, so right against the third number in

the moveable, is the answer in the fixed.

If the Interest of 100. li. be 8. li. in the yeare, what is the Interest

of 65. li. for the same time.

Bring 100. in the movable to 8. in the fixed, so right against 65.

in the movable is 5.2. in the fixed, and so much is the Interest of

65. li. for the yeare at 8. li. for 100. li. per annum.

The Instrument not removed, you may at one instant right

against any summe of money in the moveable, see the Interest

thereof in the fixed: the reason of this is from the Defijiition oj

Logarithmes.

Relating to the "resolution of Plaine and Sphericall Triangles," Delainain

says:

If there be composed three Circles of equal thicknessc, A. B.C.

so that the inner edge of D [should be B) and the outward edge of

A bee answerably graduated with Logarithmall signes [sines], and

the outward edge of B and the inner edge of A with Logarilhmes;

and then on the backside be graduated the Logarithmall Tangents,

and againe the Logarithmall signes oppositly to the former gradua-

tions, it shall be fitted for the resolution of Plaine and Sphericall

Triangles.

After twelve lines of further remarks (jn this |>oint, he adds:
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Hence from the forme, I have called it a Ring, and Grammelogia

by annoligie of a Lineary speech; which Ring, if it were projected

in the convex unto two yards Diameter, or thereabouts, and the

line Decupled, it would worke Trigonometrie unto seconds, and

give proportionall numbers unto six places only by an ocular

inspection, which would compendiate Astronomicall calculations,

and be sufficient for the Prosthaphaeresis of the Motions: But of

this as God shall give life and ability to health and time.

The patent and copyright on the instrument and book are as follows:

Whereas Richard Delamain, Teacher of Mathematicks, hath

presented vnto Vs an Instrument called Grammelogia, or The
Mathematical! Ring, together with a Booke so instituted, express-

ing the use thereof, being his owne Invention; we of our Gracious

and Princely favour have granted unto the said Richard Delamain

and his Assignes, Privilege, Licence, and Authority, for the sole

Making, Printing and Selling of the said Instrument and Booke:

straightly forbidding any other to Make, Imprint, or Sell, or cause

to be Made, or Imprinted, or Sold, the said Instrument or Booke
within any our Dominions, during the space of ten years next

ensuing the date hereof, upon paine of Our high displeasure,

Given under our hand and Signet at our Palace of Westminster,

the fourth day of January, in the sixth yeare of our Raigne.
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On the Slide Rule

(Edited by Professor Florian Cajori, University of California, Berkeley,

California.)

William Oughtred (1574—1660) was a clergyman living near London and

intensely interested in mathematics. He taught mathematics at his residence,

without compensation, to promising pupils. At one time, Oughtred had

assisted Delamain in his mathematical studies. His Circles oj Proportion^

appeared in 1632, translated into English from his Latin manuscript by one of

his pupils, William Forster. Forster wrote a preface in which he makes the

charge (without naming Delamain) that "another. . .went about to pre-

ocupate" the new invention. This led to verbal disputes and to the publica-

tion by Delamain of the several new editions of the Grammelogia, describing

further designs of circular slide rules and also stating his side ofthe controversy.

Oughtred prepared an Epistle, in reply, which was published in the 1633

edition of his Circles of Proportion. Each combatant accuses the other of

stealing the invention of the circular slide rule. After reading both sides of the

controversy, we conclude that Oughtred invented the circular slide rule before

the time when Delamain claimed to have made his invention, but it is not

shown conclusively that the latter was dishonest; we incline to the opinion

that he was an independent inventor. In 1633, Oughtred published the

description of a rectilinear sHde rule, in the invention of which he has no rival.

Extracts from the Circles oJ Proportion

1 There are two sides of this Instrument. On the one side, as

it were in the plaine oj the Horizon, is delineated the proiection of

the Sphere. On the other side there are divers kindes of Circles,

divided after many severall Waies; together with an Index to be

opened after the manner of a paire of Compasses. And of this

side we will speake in the first place.

' There are two title pages. The first is engraved and reads thus:

The|CircIes|of|Proportion|and|The Horizontali|Instrumcnt.|Both invented, and|the

vses of both|Written in Latine by|Mr. W. O-lTransIated into English: and set forth]for

the publique benefit by| William Forster.|London| Printed for Elias Allen makerlof these

and all other Mathe:|maucal Instruments, and are tolbe sold at his shop ouer against!

St Clements church with out Temple-barr.| 1632. T. Cecill Sculp|

The second title page is:

The|Circlc|of| Proportion,land |The HorizontaIl|Instrvment.|Both invented, and the

vses of both|written in Latine by that learned Mathe-|matician Mr W. 0.|Bvt|Translated

into English: and set forth for|the publique benefit by William Forster, louer|and prac-

tizer of the Mathemalicall Sciences. ILondon] Printed by Avg. Mathevves,|dwelling in the

Parsonage Court, neere|St Brides. 1632.
|

160
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2 The First, or outermost circle is of Sines, from 5 degrees 45

minuts almost, vntill 90. Every degree till 30 is divided into

12 parts, each part being 5 min : from thence vntill 50 deg : into

sixe parts which are 10 min : a peece : from thence vntill 75

degrees into two parts which are 30 minutes a peece. After that

vnto 85 deg : they are not divided.

Oughtred's Circular Slide Rule, from his Circles of Proportions, 1632.

3 The Second circle is of Tangents, from 5 degrees 45 min :

almost, untill 45 degrees. Every degree being divided into 12

parts which are 5 min : a peece.

4 The Third circle is of Tangents, from 45 degrees untill 84

degrees 15 minutes. Each degree being divided into 12 parts,

which are 5 min : a peece.

5 The Sixt circle is of Tangents from 84 degrees till about 89

degrees 25 minutes.
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The Seventh circle is of Tangents from about 35.Min : till 6

degrees.

The Eight circle is of Sines, from about 35 minutes til 6

degrees.

6 The Fourth circle is of Vnaequall Numbers, which are noted

with the Figures 2, 3, 4, 5, 6, 7, 8, 9, 1. Whether you vnderstand

them to bee single Numbers, or Tenns, or Hundreds, or Thousands,

etc. And every space of the numbers till 5, is divided into 100

parts, but after 5 till 1, into 50 parts.

The Fourth circle also sheweth the true or naturall Sines, and

Tangents. For if the Index bee applyed to any Sine or Tangent,

it will cut thelrwe Sine or Tangent in the fourth circle. And wee

are to knowe that if the Sine or Tangent be in the First, or Second

circle, the figures of the Fourth circle doe signifie so many thousands.

But if the Sine or Tange7it be in the Seventh or Eight circle, the

figures in the Fourth circle signifie so many hundreds. And if the

Tangent bee in the Sixt circle, the figures of the Fourth circle,

signifie so many times tenne thousand, or whole Radij.

And by this meanes the Sine of 23°, 30' will bee found 3987: and

the Sine of it's complement 9171. And the Tangent of 23°, 30

will be found 4348: and the Tangent of it's complement, 22998.

And the Radius is 10000, that is the figure 1 with foure cyphers,

or circles. And hereby you may finde out both the summe, and

also the difference of Sines, and Tangents.

7 The Fijt circle is of Aequall numbers, which are noted with the

figures 1, 2, 3, 4, 5, 6, 7, 8, 9, 0; and every space is divided into 100

aequall parts.

This FiJt circle is scarse of any use, but onely that by heipe

thereof the given distance of numbers may be multiphed, or

divided, as neede shall require.

As for example, if the space between 1100 and 110833+ bee to

bee septupled. Apply the Index vnto 1|08334- in the Fourth

circle, and it will cut in the Fift circle 03476+ ; which multiplyed

by 7 makes 24333: then againe, apply the Index vnto this number

24333 in the Fift circle, and it will cut in the Fourth circle 1| 75 12+.

And this is the space betweene 1100 and 110833+ septupled, or the

Ratio betweene 100 and 1083^^ seven times multiplied into it selfe.

And contrarily, if 117512 bee to bee divided by 7: Apply the

Index vnto 117568 in the fourth circle, and it will cut in the fit

circle 24333: which divided by 7giveth 03476+ Then againe vnto
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this Number in the Fift circle apply the Index, and in the Fourth

circle it wil cut vpon 110833+ for the Septupartion sought for.

The reason of which Operation is, because this Fijt circle doth

shew the Logarithmes of Numbers. For if the Index be applyed

unto any number in the Fourth circle, it will in the Fift circle cut

vpon the Logarithme oj the same number, so that to the Logarithme

found you praefixe a Caracteristicall {as Master Brigs termes it)

one lesse then in the number of the places of the integers proposed

(Which you may rather call the Graduall Number). So the Loga-

rithme of the number 2 will be 0.30103. And the Logarithme of

the Number 43 16 will bee found 1.63949.

Numbers are multiplied by Addition oj their Logarithmes: and

they are Divided by Substraction oj their Logarithmes.

8 In the middest among the Circles, is a double Nocturnall

instrument, to shew the hower of the night.

9 The right Hne passing through the Center, through 90, and
45 I call the Line oj Vnitie, or of the Radius.

10 That Arme oj the Index which in euery Operation is placed

at the Antecedent, or first terme, I call the Antecedent arme: and that

which is placed at the consequent terme, I call the Consequent Arme.

Oughtred's Rectilinear Slide Rule

An Addition Vnto the Vse of the Instrvment called the Circles of Proportion,

For the Working of Nauticall Questions. . . London, 1633, contains the following

description of the rectilinear slide rule, consisting of "two Rvlers:"

I call the longer of the two Rulers the Staffe, and the Shorter the

Transversarie. And are in length one to the other almost as 3 to 2.

The Rulers are just foure square, with right angles: and equall

in bignesse: they are thus divided.

The Transversarie at the upper end noted with the letters S, T,

N, E, on the severall sides, hath a pinnicide or sight: at the lower

edge of which sight is the line oj the Radius, or Vnite line, where the

divisions beginne.

After explaining the different lines on the two nJers, Oughtred continues:

Thus have you on the two Rulers the very same lines which are

in the Circles oj Proportion: and whatsoever can be done by those

Circles, may also as well be performed by the two Rulers: and the

Rules which have bin here formerly set downe for that Instrument,

may also be practised upon these: so that you bee carefull to observ^e

in both the different propriety in working. It will not therfore

be needfull, to make any new and long discourse, concerning these
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Rulers, but onely to shew the manner, how they are to be used, for

the calculation of any proportion given.

In working a Proportion by the Rulers, hold the Transversary in

your lejt hand, with the end at which the liyie of the Radius or Vnite

line is, from you ward: turning that side of the Ruler upward, on

which the line of the kind of the first terme is, whether it be Number,

Sine, or Tangent: and therein seeke both the first terme, and the other

which is homogene to it. Then take the Staffe in your right hand

with that side upward, in which the line oj the kind of the Jourth

terme sought for is: and seeke in it the terme homogene to the Jourth.

Apply this to the first terme iyi the Transversarie: and the other

homogene terme shall in the Staffe shew the Jourth terme.

As if you would multiply 355 by 48: Say

1 .355 :: 48. 17040.

For if in the Hne of Numbers on the Staffe you reckon 355, and

apply the same to 1 in the line of Numbers on the Transversarie:

then shall 48 on the Transversarie shew 17040 on the Staffe.^

' For additional details relating to Delamain's and Oughtred's slide rules,

consult an article entitled "On tPie History of Gunter's Scale and the Slide

Rule during the Seventeenth Century," in the University oj California

Publications in Mathematics, Vol. I, No. 9, pp. 187-209, Feb. 17, 1920.



PASCAL

On His Calculating Machine

(Translated from the French by L. Leland Locke, A, M.,

Brooklyn, New York.)

Blaise Pascal, philosopher, mathematician, physicist, inventor, was born

at Clermont, June 19, 1623, and died at Paris, Aug. 19, 1662.

To Pascal (see p. 67) must be given the credit of having conceived and
constructed the first machine for performing the four fundamental operations

of arithmetic, of which a complete description and authentic models have been

preserved. His first machine was completed in 1642, and the Privilege was
granted by Chancellor Seguier on May 22, 1649. Pascal's account of his

invention, here reproduced, was written subsequent to the Privilege. It is

found in his collected works, the most recent edition being the Oeuvres de

Blaise Pascal," by Brunschvieg and Boutroux, Paris, Vol. I, pp. 303-3 14, 1908.

The perfected machine, made at the direction of and dedicated to Seguier, is

one of the most interesting relics of Pascal as well as being the first significant

model in the development of machine calculation.

Pascal's " Advis," the first discussion of the problem of machine calculation,

may be somewhat clarified, if his accomplishment is viewed in the light of

present-day design. The instrument may be classed as a machine on two

grounds: First, the transfer of tens, usually designated as the "carry," is

performed automatically; second, an initial installation is transmitted through

the medium of intermediate parts and finally registered on the result dials.

The primary conception due to Pascal is that of building a machine which

would automatically produce the carry. A simple ratchet or latch is intro-

duced between successive orders which has the property of moving the dial of

higher order one unit forward as the dial of lower order passes from 9 to 0.

The Pascal machine may be classed as a modern counting machine, with

provision for the entry of numbers in all orders, provided such entries are made
separately. The common disk and cylinder dials of today originated in this

model. Pascal used crown wheels with pin teeth, a device which resulted in a

minimum of friction. The chief problem in the design of a machine of this

kind is so to adjust the load of the carry that a minimum of effort expended

on the initial installation will produce the carry as far as desired. Such a

condition arises when the dials all register 9 and when 1 is then added in the

lowest order. Pascal's solution would do credit to a designer of much later

date. A weighted ratchet is gradually raised as the number being installed

approaches 9. As it passes from 9 to 0, the ratchet is released and in falling

transfers 1 to the next higher order. If all dials stand at 9, only a slight lifting

remains for each ratchet. This cumulative load would become excessive over

many orders, thus definitely limiting the capacity of the machine. Pascal's

165
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statement that a thousand dials may be turned as easily as one would, of

course, fail in practice.

The one feature of his design which more than any other reveals his genius is

the use of the complements of numbers in subtraction, enabling him to perform

all four operations with a single direction of operation, a modification of this

device being still in use in many key-driven machines.

Advertisement

Necessary to those who have curiosity to see the Arithmetic

Machine, and to operate it

Dear reader, this notice will serve to inform you that I submit

to the pubHc a small machine of my invention, by means of which

you alone may, without any effort, perform all the operations of

arithmetic, and may be relieved of the work which has often times

fatigued your spirit, when you have worked with the counters or

with the pen. I can, without presumption, hope that it will not

be displeasing to you, since Monseigneur le Chancelier has honored

it by his favorable opinion, and since, in Paris, those who are most

versed in mathematics have judged it not unworthy of their appro-

bation. However in order not to appear negligent in making it

acquire yours also, I have felt obliged to make clear all the diffi-

culties that I have judged capable of confronting your understand-

ing when you take the trouble to consider it.

I have no doubt that after having seen it, there will come at

once to your thought that I should have explained by writing both

its construction, and its use, and that, to render the discourse

intelligible, I should myself be obliged, following the method of

the geometers,^ to represent by figures the dimensions, the disposi-

tion and the relation of all of the parts and how each should be

placed to compose the instrument, and to place its movement in

* [A word then used to denote mathematicians in general as well as those

concerned with the study of geometric forms.]
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Its perfection; but do not believe that, after having spared neither

time nor labor nor expense to put it in a state of being useful, I

have failed to do everything necessary to satisfy you on that point,

—which would indicate failure of accomphshment if 1 have not

been prevented from doing it by a consideration so powerful that

I myself hope that it will compel you to excuse me. I trust that

you will approve my refraining from this phase of the work, when
you reflect on the one hand on the ease with which by a brief

conference the construction and the use of this machine can be

explained, and on the other hand on the embarassment and the

difficulty there would be in trying to express by writing the

dimensions, the forms, the proportions, the position, and the rest

of the properties of all the different pieces. Furthermore, you

may well consider what learning means to the number of those who
can be taught by word of mouth, and how an explanation in

writing will be as useless as a written description of all the parts

of a watch, although the verbal explanation is so easy. It is

therefore apparent that such a written discourse would produce

no other effect than a distaste on the part of many persons, making
them conceive of a thousand difficulties at every point where there

is none at all.

Now, dear reader, I deem it necessary to say that I foresee two
things capable of forming some clouds in your spirit. I know that

there are a number of persons who make profession of finding

fault everywhere, and that among them will be found those who
will say that the machine may be simplified, and this is the first

mist that I feel it necessary to dispel. Such a proposition can

only be made by certain persons who have indeed some knowledge

of mechanics or of geometry, but who, not knowing how to join

the one to the other, and both of these to physics, flatter themselves

or are deceived by their imaginary conceptions, and persuade

themselves that many things are possible which are not. Having
only an imperfect knowledge in general, this is not sufficient to

make them forsee the inconveniences arising, either from the nature

of the case or as to the places which the pieces of the machine

should occupy. The movements of these parts are different, and

they must be so free as not to interfere with one another. When,
therefore, those whose knowledge is so imperfect propose that this

machine be simphfied, I ask you to say to them that I will reply

for myself, if they wIU simply ask me; and to assure them on my
part, that I wIH let them see, whenever they wish, many other
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models, together with a perfect instrument which is much less

complex, and which I have publicly operated for six months. It

will thus appear that I am quite aware that the machine may be

simplified. In particular I could, if I had wished, institute the

movement of the operation on the front face,^ but this could only

be substituted with much inconvenience for that which it is now
done on the top face with all the convenience that one should wish

and with pleasure. You may also say to them that my design does

not always have in view the reducing in controlled movement all

the operations of arithmetic. [Hence] I am persuaded that it will

be successful only if the movement is simple, easy, convenient

and quick of execution, and if the machine is durable, solid, and

capable of undergoing without alteration the strain of transporta-

tion. Finally you may say that if they had thought as much as I

on this matter and had considered all the means which I have

taken to reach my goal, experience would have shown them that a

more simple instrument could not have all of the qualities that I

have successfully given to this little machine.

As for the simplicity of movement of the operations, I have so

devised it that, although the operations of arithmetic are in a way
opposed the one to the other,—as addition to subtraction, and

multiplication to division,—nevertheless they are all performed

on this machine by a single unique movement.

The facility of this movement of operation is very evident since

it is just as easy to move one thousand or ten thousand dials, all

at one time, if one desires as to make a single dial move, although

all accomplish the movement perfectly. (I do not know if there

remains another principle in nature such as the one upon which I

have based this ease of operation.) In addition to the facility of

movement in the operation, if you wish to appreciate it, you may
compare it with the methods of counters and with the pen. You
know that, in operating with counters, the calculator (especially

when he lacks practice) is often obliged, for fear of making an

error, to make a long series and extension of counters, being

afterward compelled to gather up and retake those which are

found to be extended unnecessarily, in which you see these two

useless tasks, with the double loss of time. This machine facili-

' [The ratchet design was based on a horizontal position of the intermediate

shaft. The stylus-operated dial, being on the top face with a vertical shaft,

required a pair of crown wheels at right angles to transmit the motion to the

horizontal shaft. Pascal here proposes placing the dial on the front face.]
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tates the work and eliminates all unnecessary features. The most

ignorant find as many advantages as the most experienced. The
instrument makes up for ignorance and for lack of practice, and

even without any effort of the operator, it makes possible shortcuts

by itself, whenever the numbers are set down. In the same way
you know that in operating with the pen one is obliged to retain

or to borrow the necessary numbers, and that errors slip in, in

these retentions and borrowings, except through very long prac-

tice, and in spite of a profound attention which soon fatigues the

mind. This machine frees the operator from that vexation; it

suffices that he have judgment; he is relieved from the failing of

memory; and without any retaining or borrowing, it does by itself

what he wishes, without any thinking on his part. There are a

hundred other advantages which practice will reveal, the details

of which it would be wearisome to mention.

As to the amount^ of movement, it is sufficient to say that it is

imperceptible, going from left to right and following our method of

common writing except that it proceeds in a circle.

And, finally, its speed is evident at once in comparing it with

the other two methods of the counters and the pen. If you still

wish a more particular exolanation of its rapidity, I shall tell

you that it is equal to the agility of the hand of the operator.

This speed is based, not only on the facility of the movements
which have no resistance, but also on the smallness of the dials

which are moved with the hand. The result is that, the key board

being very short, the movement can be performed in a short time.

Thus, the machine is small and hence is easily handled and carried.

And as to the lasting and wearing qualities of the instrument,

the durability of the metal of which it is made should be a sufficient

warrant: I have been able to give entire assurance to others only

after having had the experience of carrying the instrument over

more than two hundred and fifty leagues of road, without its

showing any damage.

Therefore, dear reader I ask you again not to consider it an

imperfection for this machine to be composed of so many parts,

because without these I could not give to it all the qualities which

I have explained, and which are absolutely necessary. In this

you may notice a kind of paradox, that to render the movement of

operation more simple, it is necessary that the machine should be

constructed of a movement more complex.

^ This has reference to the movement of the stylus in setting down a number.
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The second possibility for distrust, dear reader, might be the

imperfect reproductions of this machine which have been produced

by the presumption of certain artisans. In these cases I beg of

you to carefully consider [the product], to guard yourself from

surprise, to distinguish between "la lepre et la lepre,"^ and not to

judge the true original by the imperfect productions of the igno-

rance and the temerity of the mechanics. The more excellent

they are in their art, the more we should fear that vanity forces

them to consider themselves capable of undertaking and of produc-

ing new instruments, of which the principles and the rules of which

they are ignorant. Intoxicated by that false persuasion^ they

grope aimlessly about, without precise measurements carefully

determined and without propositions. The result is that after

much time and labor, either they do not produce anything equal

to what they have attempted, or, at most, they produce a small

monstrosity of which the principal members are lacking, the others

being formless and without any proportion. These imperfections,

rendering it ridiculous, never fail to attract the contempt of all

those who see it, and most of them blame without reason, the

inventor instead of inquiring about it from him, and then censuring

the presumption of these artisans, who by their unjustified daring

undertake more than they are equal to, producing these useless

abortions. It is important to the public to recognize their weak-

ness and to learn from them that, for new inventions, it is neces-

sary that art should be aided by theory until usage has made the

rules of theory so common that it has finally reduced them to an

art and until continued practice has given the artisans the habit

of following and practicing these rules with certainty. It was not

in my power, with all the theory imaginable, to execute alone my
own design without the aid of a mechanic who knew perfectly the

practice of the lathe, of the file, and of the hammer to reduce the

parts of the machine in the measures and proportions that I

prescribed to him. Likewise It is impossible for simple artisans,

skillful as they may be in their art, to make perfectly a new instru-

ment which consists, like this one, of complicated movements,

without the aid of a person who, by the rules of theory, gives him

the measures and proportions of all of the pieces of which it shall

be composed.

Dear reader, I have good reason to give you this last advice,

after having seen with my own eyes a wrong production of my idea

1 [Bossut reads, "between the copy and the copy."]
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by a workman of the city of Rouen, a clockmaker by profession,

who, from a simple description which had been given him of my
first model, which I had made some months previously, had the

presumption, to undertake to make another; and what is more, by

another type of movement. Since the good man has no other

talent than that of handling his tools skillfully, and has no knowl-

edge of geometry and mechanics (although he is very skillful in

his art and also very industrious in many things which are not

related to it), he made only a useless piece, apparently true,

polished and well filed on the outside, but so wholly imperfect on

the inside that it was of no use. Because of its novelty alone, it

was not without value to those who did not understand about it;

and, notwithstanding all these essential defects which trial shows,

it found in the same city a place in a collector's cabinet which is

filled with many other rare and curious pieces. The appearance

of that small abortion displeased me to the last degree and so

cooled the ardor with which I had worked to the accomphshment

of my model, that I at once discharged all my workmen, resolved

to give up entirely my enterprise because of the just apprehension

that many others would feel a similar boldness and that the false

copies which they would produce of this new idea would only ruin

its value at its beginning and its usefulness to the public. But,

some time afterward, Monseigneur le Chancelier, having deigned

to examine my first model and to give testimony of the regard

which he held for that invention, commanded me to perfect it.

In order to eliminate the fear which held me back for some time,

it pleased him to check the evil at its root, and to prevent the

course it could take in prejudicing my reputation and inconvenienc-

ing the pubhc. This was shown in the kindness that he did in

granting me an unusual privilege, and which stamped out with

their birth all those illegitimate abortions which might be pro-

duced by others than by the legitimate alliance of the theory with

art.

For the rest, if at any time you have thought of the invention

of machines, I can readily persuade you that the form of the

instrument, in the state in which it is at present, is not the first

attempt that I have made on that subject. I began my project

by a machine very different from this both in material and in form,

which (although it would have pleased many) did not give me
entire satisfaction. The result was that in altering it gradually

I unknowingly made a second type, in which I still found incon-
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veniences to which I would not agree. In order to find a remedy,

I have devised a third, which works by springs and which is very

simple in construction. It is that one which, as I have just said,

I have operated many times, at the request of many persons, and

which is still in perfect condition. Nevertheless, in constantly

perfecting it, I have found reasons to change it, and finally recog-

nizing in all these reasons, whether of difficulty of operation, or in

the roughness of its movements, or in the disposition to get out of

order too easily by weather or by transportation, I have had the

patience to make as many as fifty models, wholly diff"erent, some

of wood, some of ivory and ebony, and others of copper, before

having arrived at the accomphshment of this machine which I

now make known. Although it is composed of many different

small parts, as you can see, at the same time it is so solid that, after

the experience of which I have spoken before, I assure you that

all the jarring that it receives in transportation, however far, will

not disarrange it.

Finally, dear reader, now that I deem it ready to be seen, and

in order that you yourself can see and operate it, if you are inter-

ested, I pray you to grant me the liberty of hoping that this same

idea of finding a third method of performing all the operations of

arithmetic, totally new, and which has nothing in common with

the two ordinary methods of the pen and of the counters, will

receive from you some esteem. I hope that in approving my aim

of pleasing and assisting you, you will be grateful to me for the

care that I have taken to make all of the operations, which by the

preceding methods are painful, complex, long, and uncertain,

hereafter easy, simple, prompt, and assured.
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On His Calculating Machine

(Translated from the Latin by Dr. Mark Kormes, New York City.)

Pascal's calculating machine, described in the preceding article, was intended

to add numbers mechanically. The first one made for the purpose of multiply-

ing was constructed by Gottfried Wilhelm, Freiherr von Leibniz (1646-1716)

about the year 1671. One of these machines is still to be seen in the Kastner

Museum in Hannover, the city in which Leibniz spent his later years. An
article by Jordan, published in Die Zeitscbrijt Jiir Vermessungswesen, in 1897,

brought to light a manuscript by Leibniz describing his machine and is now in

the Royal Library of the same city. This manuscript was written in 1685, some

years after the machine was invented, and it bears the title: "Machina arith-

metica in qua non additio tantum et subtractio sed et multiplicatio nullo,

divisio vero psene nullo animi labore peragantur."

When, several years ago, I saw for the first time an Instrument

which, when carried, automatically records the numbers of steps

taken by a pedestrian, it occurred to me at once that the entire

arithmetic could be subjected to a similar kind of machinery so that

not only counting but also addition and subtraction, multiplication

and division could be accomplished by a suitably arranged machine

easily, promptly, and with sure results.

The calculating box of Pascal was not known to me at that time.

I believe it has not gained sufficient publicity. When I noticed,

however, the mere name of a calculating machine in the preface

of his "posthumous thoughts" (his arithmetical triangle I saw
173
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first in Paris) I immediately inquired about it in a letter to a

Parisian friend. When I learned from him that such a machine

exists I requested the most distinguished Carcavius by letter to

give me an explanation of the work which it is capable of perform-

ing. He replied that addition and subtraction are accomplished

by it directly, the other [operations] in a round-about wa}' by

repeating additions and subtractions and performing still another

calculation. I wrote back that I venture to promise something

more, namely, that multiplication could be performed by the

machine as well as addition, and with greatest speed and accuracy.

He replied that this would be desirable and encouraged me to

present my plans before the illustrious King's Academy of that

place.

In the first place it should be understood that there are two parts

of the machine, one designed for addition (subtraction) the other

for multiplication (division) and that they should fit together.

The adding (subtracting) machine coincides completely with

the calculating box of Pascal. Something, however, must be

added for the sake of multiplication so that several and even all

the wheels of addition could rotate without disturbing each other,

and nevertheless anyone of them should precede the other in such

a manner that after a single complete turn unity would be trans-

ferred into the next following. If this is not performed by the

calculating box of Pascal it may be added to it without difficulty.

The multiplying machine will consist of two rows of wheels,

equal ones and unequal ones. Hence the whole machine will have

three kinds of wheels: the wheels of addition, the wheels of the

multiplicand and the wheels of the multiplier. The wheels of

addition or the decadic wheels are now visible in Pascal's adding

box and are designated in the accompanying figure by the numbers

1, 10, 1(X), etc. Everyone of these wheels has ten fixed teeth.

The wheels which represent the multiplicand are all of the same

size, equal to that of the wheels of addition, and are also provided

with ten teeth which, however, are movable so that at one time

there should protrude 5, at another 6 teeth, etc., according to

whether the multiplicand is to be represented five times or six

times, etc. For example, the multiplicand 365 consists of three

digits 3, 6 and 5. Hence the same number of wheels is to be used.

On these wheels the multiplicand will be set, if from the right wheel

there protrude 5 teeth, from the middle wheel 6, and from the left

wheel 3 teeth.
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In order that this could be performed quickly and easily a

peculiar arrangement would be needed, the exposition of which

would lead too far into details. The wheels of the muItipHcand

should now be adjoined to the wheels of addition in such a manner

that the last corresponds to the last, the last but one to the last

but one, and that before the last but one to that before the last

but one, or 5 should correspond to 1,[6 to 10, and 3 to 100. In the

addition box itself there should show through small openings the

number set as 0, 0, 0, etc. or zero. If after making such an arrange-

ment we suppose that 365 be multiplied by one, the wheels 3, 6,

and 5 must make one complete turn (but while one is being rotated

all are being rotated because they are equal and are connected by

cords as it will be made apparent subsequently) and their teeth

Pars immobllls
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now protruding will turn the same number of fixed teeth of the

wheels 100, 10, 1 and thus the number 365 will be transferred to

the addition box.

Assuming, however, that the number 365 is to be multiplied by

an arbitrary multiplier (124) there arises the need of a third kind

of wheels, or the wheels of the multiplier. Let there be nine such

wheels and while the wheels of the multiplicand are variable so

that the same wheel can at one time represent 1 and at another

time 9 according to whether there protrude less or more teeth,

the wheels of the multiplier shall on the contrary be designated

by fixed numbers, one for 9, one for 1, etc.

This is accomplished in the following manner: Everyone of the

wheels of the multiplier is connected by means of a cord or a chain

to a little pulley which is affixed to the corresponding wheel of the

multiplicand: Thus the wheel of the multiplier will represent a

number of units equal to the number of times the diameter of the

multiplier-wheel contains the diameter of the corresponding pulley.

The pulley will turn namely this number of times while the wheel
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turns but once. Hence if the diameter of the wheel contains the

diameter of the pulley four times the wheel will represent 4.

Thus at a single turn of the multiplier-wheel to which there corre-

sponds a pulley having a quarter of its diameter the pulley will

turn four times and with it also the multiplicand-wheel to which it

[the pulley] is affixed. When, however, the multiplicand-wheel

is turned four times its teeth will meet the corresponding wheel of

addition four times and hence the number of its units will be

repeated as many times in the box of addition.

An example will clarify the matter best: Let 365 be multiplied

by 124. In the first place the entire number 365 must be multi-

plied by four. Turn the multiplier-wheel 4 by hand once; at the

same time the corresponding pulley will turn four times (being as

many times smaller) and with it the wheel of the multiplicand 5,

to which it is attached, will also turn four times. Since the wheel

5 has five teeth protruding at every turn 5 teeth of the correspond-

ing wheel of addition will turn once and hence in the addition box

there will be produced four times 5 or 20 units.

The multiplicand-wheel 6 is connected with the multiplicand-

wheel 5 by another cord or chain and the multiplicand-wheel 3 is

connected with wheel 6. As they are equal, v/henever wheel 5

turns four times, at the same time wheel 6 by turning four

times will give 24 tens (it namely catches the decadlc addition-

wheel 10) and wheel 3 catching the addition-wheel 100 will give

twelve hundred so that the sum of 1460 will be produced.

In this way 365 is multiplied by 4, which is the first operation.

In order that we may also multiply by 2 (or rather by 20) it is

necessary to move the entire adding machine by one step so to say.
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SO that the multiplicand-wheel 5 and the multiplier-wheel 4 are

under addition-wheel 10, while they were previously under 1, and
in the same manner 6 and 2 under 100 and also 3 and 1 under 1000.

After this is done let the multiplier-wheel 2 be turned once: at the

same time 5 and 6 and 3 will turn twice and 5 catching twice [the

addition-wheel] 10 will give 10 tens, 6 catching 100 will give

twelve hundred and 3 catching 1000 will give six thousand,

together 7300. This number is being added at the very same turn

to the previous result of 1460.

In order to perform as the third operation, the multiplication

by 1 (or rather by 100), let the multiplication machine be moved
again (of course the multiplicand-wheels together with the multi-

plier-wheels while the addition-wheels remain in their position)

so that the wheels 5 and 4 be placed under 100 and in the same way
6 and 2 under 1000 and 3 and 1 under 10,000, If wheel 1 be turned

once at the same time the wheels 3, 6, and 5 will turn once and thus

add in the addition box that many units, namely, 36,500. As a

product we obtain, therefore:

1,460

7,300

36,500

45,260

It should be noted here that for the sake of greater convenience

the pulleys should be affixed to the multiplicand-wheels in such a

manner that the wheels must move when the pulleys move but

that the pulleys do not need to move while the wheels are turned.

Otherwise when one multiplier-wheel (e. g., 1) be turned and thus

all the multiplicand-wheels moved, all the other multiplier wheels

(e. g., 2 and 4) would necessarily move, which would increase the

difficulty and perturb the motion.

It should be also noted that it does not make any difference in

what order the multiplier-wheels 1, 2, 4, etc. be arranged but they

could very well be placed in numerical order 1, 2, 3, 4, 5. For

even then one is at liberty to decide which one to turn first and

which afterwards.

In order that the multiplier-wheel, e. g., the one representing 9

or whose diameter is nine times as great as the diameter of the

corresponding pulley, should not be too large we can make the

pulley so much smaller preserving the same proportion between

the pulley and the wheel.
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In order that no irregularity should follow the tension of the

cords and the motion of pulleys tiny iron chains could be used in

place of the cords and on the circumference of the wheels and

pulleys where the chains would rest there should be put little brass

teeth corresponding always to the individual links of the chain;

or in place of cords there could be teeth affixed to both the pulleys

and the wheels so that the teeth of the multiplier-wheel would

immediately catch the teeth of the pulley.

If we wanted to produce a more admirable machine it could be

so arranged that it would not be necessary for the human hand to

turn the wheels or to move the multiplication machine from opera-

tion to operation: Things could be arranged in the beginning so

that everything should be done by the machine itself. This,

however, would render the machine more costly and complicated

and perhaps in no way better for practical use.

It remains for me to describe the method of dividing on the

machine, which [task] I think no one has accomplished by a

machine alone and without any mental labor whatever, especially

where great numbers are concerned.

But whatever labor remains to be done in [the case of] our

machine it could not be compared with that intricate labyrinth

of the common division which is in the case of large numbers the

most tedious [procedure] and [the one] most abundant in errors

that can be conceived. Behold our method of division! Let

the number 45,260 be divided by 124. Begin as usual and ask

for the first simple quotient or how many times 452 contains 124.

It is but very easy for anyone with mediocre ability to estimate

the correct quotient at first sight. Hence let 452 contain 124

thrice. Multiply the entire divisor by this simple quotient which

can be easily accomplished by one simple turn of the wheel.

The product will be 372. Subtract this from 452. Combine the

remainder 80 with the rest of the dividend 60. This gives 8060.

(But that will be effected by itself in the machine during the multi-

plication if we arrange in it the dividend in such a manner that

whatever shall be produced by multiplication will be automatically

deducted. The subtraction also takes place in the machine if we
arrange in it the dividend in the beginning; the performed multi-

plications are then deducted from it and a new dividend is given

by the machine itself without any mental labor whatever.)

Again divide this [8060] by 124 and ask how many times 806

contains 124. It will be clear to every beginner at first sight that
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it is contained six times. Multiply 124 by 6. (One turn of the

multiplier wheel) gives 744. Subtract this result from 806, there

remains 62. Combine this with the rest of the dividend, giving

620. Divide this third result again by 124. It is clear immedi-

ately that it is contained 5 times. Multiply 124 by 5; [this] gives

620. Deduct this from 620 and nothing remains; hence the quo-

tient is 365.

The advantage of this division over the common division con-

sists mostly in the fact (apart from infallibility) that in our method

there are but few multiplications, namely as many as there are

digits in the entire quotient or as many as there are simple quo-

tients. In the common multiplication a far greater number is

needed, namely, as many as [are given by] tlie product of the

number of digits of the quotient by the number of the digits of the

divisor. Thus in the preceding example our method required

three multiplication:: because the entire divisor, 124, had to be

multiplied by the single digits of the quotient 365,—that is, three.

In the common method, however, single digits of the divisor are

multiplied by single digits of the quotient and hence tliere are

nine multiplications in the given example.

It also does not make any difference whether the few multiplica-

tions are large, but in the common method there are more and

smaller ones; similarly one could say that also in the common
method few multiplications but large ones could be done if the

entire divisor be multiplied by an arbitrary number of the quotient.

But the answer is obvious, our single large multiplication being

so easy, even easier than any of the other kind no matter how
small. It is effected instantly by a simple turn of a single wheel

and at that without any fear of error. On the other hand in the

common method the larger the multiplication the more difficult

it is and the more subject to errors. For that reason it seemed to

the teachers of arithmetic that in division there should be used

many and small multiplications rather than one large one. It

should be added that the largest part of the work already so

trifling consists in the setting of the number to be multiplied, or to

change according to the circumstances the number of the variable

teeth on the multiplicand-wheels. In dividing, however, the

multiplicand (namely the divisor) remains always the same, and

only the multiplier (namely the simple quotient) changes without

the necessity of moving the machine. Finally, it is to be added

that our method does not require any work of subtraction; for while
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multiplying in the machine the subtraction is done automatically.

From the above it is apparent that the advantage of the machine

becomes the more conspicuous the larger the divisor.

It is sufficiently clear how many apphcations will be found for

this machine, as the elimination of all errors and of almost all

work from the calculations with numbers is of great utility to the

government and science. It is well known with what enthusiasm

the calculating rods [baculi] of Napier,^ were accepted, the use of

which, however, in division is neither much quicker nor surer than

the common calculation. For in his [Napier's] multiplication there

is need of continual additions, but division is in no way faster

than by the ordinary [method]. Hence the calculating rods

[baculi] soon fell into disuse. But in our [machine] there is no

work when multiplying and very little when dividing.

Pascal's machine is an example of the most fortunate genius but

while it facilitates only additions and subtractions, the difficulty

of which is not very great in themselves, it commits the multipli-

cation and division to a previous calculation so that it commended

itself rather by refinement to the curious than as of practical use

to people engaged in business affairs.

And now that we may give final praise to the machine we may
say that it will be desirable to all who are engaged in computations

which, it is well known, are the managers of financial affairs, the

administrators of others' estates, merchants, surveyors, geog-

raphers, navigators, astronomers, and [those connected with] any

of the crafts that use mathematics.

But limiting ourselves to scientific uses, the old geometric and

astronomic tables could be corrected and new ones constructed by

the help of which we could measure all kinds of curves and figures,

whether composed or decomposed and unnamed, with no less

certainty than we are now able to treat the angles according to the

work of Regiomontanus and the circle according to that of Ludol-

phus of Cologne, in the same manner as straight lines. If this

could take place at least for the curves and figures that are most

important and used most often, then after the establishment of

tables not only for lines and polygons but also for ellipses, para-

bolas, hyperbolas, and other figures of major importance, whether

described by motion or by points, it could be assumed that geometry

would then be perfect for practical use.

' [See p. 182.)

J
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Furthermore, although optical demonstration or astronomical

observation or the composition of motions will bring us new
figures, it will be easy for anyone to construct tables for himself

so that he may conduct his investigations with httle toil and with

great accuracy; for it is known from the failures [of those] who
attempted the quadrature of the circle that arithmetic is the surest

custodian of geometrical exactness. Hence it will pay to under-

take the work of extending as far as possible the major Pythagorean

tables; the table of squares, cubes, and other powers; and the tables

of combinations, variations, and progressions of all kinds, so as to

facilitate the labor.

Also the astronomers surely will not have to continue to exercise

the patience which is required for computation. It is this that

deters them from computing or correcting tables, from the con-

struction of Ephemerldes, from working on hypotheses, and from

discussions of observations with each other. For it is unworthy
of excellent men to lose hours hke slaves in the labor of calculation,

which could be safely relegated to anyone else if the machine were

used.

What I have said about the construction and future use [of the

machine], should be sufficient, and I beheve will become absolutely

clear to the observers [when completed].
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The Napier Rods

(Translated from the Latin by Professor Jekuthiel GInsburg, Yeshiva College,

New York City.)

John Napier (1550-1617), Laird of Merchiston, Edinburgh (see p. 149), was

known in his time quite as widely for his computing rods as for his invention

of logarithms. While these rods are almost unknown at the present time, their

advent was a distinct step in advance in mechanical computation. As is well

known, they consist merely in putting on rods a scheme of multiplication

which had long been in use among the Arabs and then using the rods for other

operations as well. The following translation is from certain particularly sig-

nificant parts of the Rabdologix, sev nvmerationis per virgulas libri duo,

Edinburgh, 1617 (posthumously published). The word rabdologia is

from the Greek pa^dos {rbab dos. "rod") and Xo7ia {logi a, "collec-

tion"). When Leybourn published his English translation (The Art

of Numbring By Speaking-Rods: Vulgarly terjned Nepeir's Bones,

London, 1667), he used a false etymology, not recognizing Napier's

use of Xo-yta.

Napier gives (p. 2) the number of the rods. Ten rods will suffice

for calculations with numbers less than 11,111; twenty for numbers

less than HI, 111, 111; and thirty rods for 13-pIace numbers less

than 111, 111, HI, 111, 1.

Each rod is divided lengthwise into ten equal parts in the fol-

lowing way: nine parts in the middle, one half of a part above and

another half below. Horizontal lines joining the points of division

will divide the surface into nine squares plus two half squares. The
diagonals are then drawn as here shown.

To mark the faces of the rods: the face turned toward the eye

during the marking is called the "first;" the one to the right side

of the observer, the "second;" the one toward the left, the

"fourth."

The nine little areas on each face serve for entering the multiples of one of

the nine digits by 1, 2, 3, 4, 5, 6, 7, 8, 9. If the products are expressed by one

digit, the lower half of the square is used; if by two, then one of the digits

namely, the digits of the tens) is put in the upper area and the other in the

lower one.

The first four rods are marked as follows: In the squares of the first face

of each (that is, the face turned to the eye of the observer) we put zeros. This

uses up four of the sixteen available faces.

Then, turning around each rod lengthwise so that the third face will now
be turned toward the eye, but upside down, we write in the nine squares the

182



NAPIER 183

O t 2 I ^ t 3



184 SOURCE BOOK IN MATHEMATICS

products of 9 by 1, 2, 3, 4, 5, 6, 7, 8, 9—namely, the numbers 9, 18, 27, 36, 45,

54, 63, 72, 81.

This takes care of four more of the available sixteen faces, leaving eight faces

for the remaining eight digits. These will be filled in the following way: The
second face of the first rod will be given to the multiples of 1 by the first nine

digits (that is, the numbers 1, 2, 3, 4, S, 6, 7, 8, 9), while the opposite face will

be given to similar multiples of its complement to the number 9—namely, the

multiples of 8 (8, 16, 24, 32, 40, 48, 56, 64, 72).

4rFades nenu wgu/te
2 ^
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we enter the column headed by 2, and on the third face of each the column
headed by 7, its complement. The remaining two second faces we give to 3

and 4, and the opposite faces to their complements 6 and 5.

If an inventory be taken now, we still find that each of the columns 0, 1, 2, 7,

8, 9, has occurred just four times, while each of the columns 3, 4, 5, 6, only

three times, and we still have one unused rod.

Hence, we enter on this the columns 3, 4, 5, 6 in the way indicated. So that

now each column is found to have occurred just four times.

The translation of Napier's rule for multiplying numbers by the use of

rods (pp. 16-17) follows.

Set up one of the numbers given for multiplication (preferably

the larger) by means of the rods. Write the other on paper with

a line under it. Then under each written figure put that multiple

found in the rods of which the figure is so to speak an index. It

makes no difference whether the first figures on the right side of

each multiple follow each other obhquely in the same order as the

numbers signifying their indexes, or as the first figures to the left.

The multiples thus arranged are to be added arithmetically and

this will give the product of the multiplication.

Thus let it be required to multiply the year of the Lord 1615 by
365.

The first number is to be formed by the rods, the second written

on paper as here shown. The triple, sextuple, and quintuple of the

tabulated numbers are taken, corresponding to the figures in the

numbers on paper (3, 6, 5) which are the indices.

365 365

4845 8075

9690 9690

8075 4845

589475 589475

Thus the triple of the number 1615 which is to be transcribed from

the rods is 4845. The sextuple which is 9690 and the quintuple

8075 are written obliquely under their indices 3, 6, 5, either begin-

ning under them as in the first scheme, or terminating under them

as in the second. . .The multiples arranged in this way are to be

added arithmetically, and the desired number 589,475 will thus

be obtained, which is the product of the multiplication.
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On the Proportional or Sector Compasses

(Translated from the Italian by Professor David Eugene Smith, Teachers

College, Columbia University, New York City.)

Galileo Galilei (1564-1642), the greatest physicist, astronomer, and mathe-

matician of Italy in his time, and one of the greatest in the world, was interested

not only in the higher branches of his chosen subjects but also in the improve-

ment of methods of computation and of measuring. Before the slide rule was
invented (see p. 156) or logarithms were known (see p. 149), he devised the

simple but ingenious proportional compasses, or, as he called them, the

geometric and military compasses (compasso) . They were first described in

LeOperazioni delCompassoGeometrico et Militare (Padua, 1606). The follow-

ing extract from this work will suffice to make the general purpose of the

instrument known.

The Operations of the Geometric and Military Compasses.^

On Arithmetic Lines. Division of the Line. First Operation

Coming to the special explanation of the methods of using the

new geometric and military compasses (Fig. 1), we will first con-

sider the side in which are shown four pairs of lines, with their

divisions and numbers. Of these we shall first speak of the inner-

most ones. These are called the arithmetic lines because their

divisions are in arithmetic proportion; that is, they proceed by

equal increments up to 250. We shall find several ways of using

these lines. First, we shall by their help show how to divide a

proposed straight line into as many equal parts as we wish, using

any one of several methods mentioned below. When the pro-

posed line is of medium length, not exceeding the spread of the

instrument, we open an ordinary pair of compasses^ the full

length of the line and transfer this length to any number on these

arithmetic lines, taking care that there is a smaller number that

is contained in this one as often as the part of the proposed line is

contained in the whole. . .[For example], to divide the line into

five equal parts, let us take two numbers, one being five times the

^ The Italian usage is compasso, the singular form.

2 He speaks of the "geometric and military compasses" as "the instrument,"

and of ordinary compasses used in transferring lengths as "compasses."
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other,—say 100 and 20. Now open the instrument so that the

given line as transferred by the compasses shall reach from 100

[on one leg] to 100 [on the other]. Now, without moving the

instrument, let us take the distance between the points marked 20
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and 20, and this will manifestly be the fifth part of the proposed

line. In the same way we can find every other division, taking

care that we do not use numbers beyond 250. . .

The same result will be obtained by solving the problem another

way, like this: If we wish to divide the line AB (Fig. 2) into 11

parts, take a number that is eleven times another,—say 110 and

10. Then transfer the whole line AB by the compasses so that it

reaches from 110 [on one leg] to 110 [on the other]. It is impossi-

ble in this figure to get the distances between the points 10 and 10,

because each is covered by the nut. Instead of this, we take the

distances between 100 and 100, closing the compasses a little so

that one point [100] lies on B and the other on C. Then the

remaining distance AC will be 3^11 of AB. In the same way we
may place one point of the compasses on A and let the other lie

on E, leaving EB equal to CA. Then close up the compasses and

take the distance between the points 90 and 90, transferring it

from B to D and from A to F, after which CD and EF will each be

3-f 1 of the whole line. In the same way, transferring the distances

from 80 to 80, 70 to 70, etc., we shall find the other divisions, as

can be seen in the line AB.
If, however, we have a very short line to divide into many parts,

such as AB (Fig. 3) to be divided into thirteen parts, we proceed

by another rule, as follows: Produce AB to any point C, laying off

on it as many lines as you wish, say six, so that AC shall be seven

times AB. It is then evident that if AB contains 13 equal parts,

AC will contain 91 [of the same length]. We therefore transfer

the distance between 90 and 90 to the line CA from C toward A,

thus leaving the 91st part of CA, or the 13th part of AB, toward A.

If we wish, we may now close up, point by point, the [transferring]

compasses at 89, 88, 87, etc., transferring the distances from C
toward A, and we shall find the other parts of the proposed line

AB.
Finally, if the line to be divided is very long, so as to greatly

exceed the maximum opening of the instrument, we can neverthe-

less divide it, say into seven equal parts. First, take two numbers,

one seven times the other,—say 140 and 20. Now open the instru-

ment as far as you please, taking with the compasses the distance

from 140 to 140. Then as many times as this distance is contained

in the length of the given line, that number of times the distance

from 20 to 20 will be the seventh part of it . . .
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Hoiv from a Proposed Line we can take any stated Parts.

Second Operation

This operation is much more useful and necessary [than the

first], since without our instrument it would be very difficult,

while with it the solution is found at once. Suppose, for example,

we are required to take from the 197 parts of a given line 113 parts.

We open the instrument until the given line can be transferred

by the compasses so that it reaches from 197 [on one leg] to 197

[on the other]. Without moving it, the distance from 113 to 113

will then be ^1^97 of the given hne. .

.

How the Same Lines Juriiish two or even an infinite number oj

Scales for increasing or decreasing the Scale of a Drawing.

Third Operation

If we wish to reduce a drawing to another scale, it is evidently

necessary to use two scales, one for the given drawing and the

other for the new one. Such scales are at once given by the

instrument. One will be the line as already divided into equal

parts, and will be used in measuring the given figure. The other

will be used for the new drawing, and this has to be adjustable;

that is, it must be constructed so that we can lengthen or shorten

it according as the new drawing is to be larger or smaller. Such

an adjustable scale is the one that we get from the same lines by

adjusting the instrument. That you may understand more clearly

the process, consider this example:

Suppose that we have the figure ABCDE (Fig. 4) and wish to

draw a similar figure with side FG corresponding to side AB. We
must evidently use two scales, one to measure the hnes of ABCDE
and the other to measure those of the new drawing, these being

longer or shorter than the former according to the ratio which FG
has to AB. Take therefore the length of AB with a pair of com-

passes and then place one of the points at the vertex of the instru-

ment, noting where the other falls on one of the lines,—say at 60.

Then transfer FG with the compasses so that one point rests on

this 60 and the other on the corresponding 60 [on the other arm of

the instrument]. If the instrument be now allowed to remain

fixed, all the lines in the given figure can be measured on the

straight scale, and the corresponding fines of the new figure can

be measured transversely. For example, if we wish the length of

CH corresponding to the given BC, we simply lay off BC from the

vertex,—say to 66,—and then turn the other [leg of the measuring
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compasses] until the point rests on the 66 [of the other arm of the

instrument]. This will then have to BC the same ratio as FG to

AB.
If you wish to greatly enlarge a figure, you will need to use two

scales in the opposite way [from that shown above]; that is, you

will have to use the straight scale [on the arm] for the required

drawing and the transverse measurement [from one arm to the

other] for the given one. For example, suppose that we have the

iigure ABCDEF (Fig. 5) which we wish to enlarge so that GH
corresponds to AB. We measure GH, supposing it to be, say, 60

points on one of the arms. We then open the instrument so that

the distance from 60 to 60 is AB. Leaving the instrument fixed,

we then find HI corresponding to BC by seeing what two corre-

sponding points, say 46 and 46, determine the ends of BC. Then
the length from the vertex to 46 will be HP. . .

The Rule of Three. Solved by Means oj the Compasses arid the

same Arithmetic Lines. Operation IV

The hnes [of the proportional compasses] serve not so much for

solving geometric linear problems as for certain arithmetic rules,

among which we place one corresponding to one of Euclid's

problem, thus: Given three numbers, find their fourth propor-

tional. This is merely the Golden Rule, which experts call the

Rule of Three,—to find the fourth number proportional to three

that are proposed. To illustrate by examples for the purpose of

a clearer understanding,—if 80 gives us 120, what will 100 give?

We now have three numbers in this order: 80, 120, 100, and to find

the fourth number sought [we proceed as follows:] Find on one arm

120; connect this with 80 on the other arm; find 100 [on the same

arm as 80] and draw a parallel to the connecting line^ and what j'ou

find will be 150, the fourth number sought. Observe also that

the same thing would result if instead of taking the second number

[120] you had taken the third [100], and instead of the third you

had taken the second [120]^. .

.

' [Galileo then proceeds to show how the vertices are found, but this is

obvious.)

^ [In the original:. . .prendi sopra lo strumcnto rcttamente il secondo num-
cro dc' proposti, cioe 120, ed applicato trasversalmcnte al primo, cio6 all' 80;

dipoi prendi trasvcrsalmente il tcrzo numero, cioe 100, e mcsuralo rcttamente

sopra la scala, equello chc troverai, cioe 150, sarii il quarto numero cercato.]

^ [Galileo then proceeds to discuss the question when the numbers are such as

to require other adjustments, as in the "First Operation" already explained.)
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Inverse Rule oj Three, solved by means oj the Same Lines.

Operation V
In the same way we can solve problems involving the inverse

Rule of Three, as in this example: If there is food sufficient for

100 soldiers for 60 days, how many would it feed for 75 days. The
numbers may be arranged as 60, 100, 75. Find 60 on one arm of

the instrument. Connect it with the third number, 75, on the

other arm. Without moving it, take 100 on the same arm as 60

and draw a parallel to the connecting line and what you find will be

80, the number sought. . .

Rule of Exchange. Operatio7i VI

By means of these same arithmetic lines we can change money
by finding the equal values. This is done very easily and quickly

as follows: Adjust the instrument by finding on one of the lines the

value of the piece of money to be exchanged. Connect it with the

value of the other piece which we wish to exchange; but in order

that you may understand the matter more clearly, we shall

illustrate it by an example. Suppose that we wish to exchange

gold scudi into Venetian ducats, and that the value of the gold

scudo is 8 lire and the value of the Venetian ducat is 6 lire 4 soldi.

Since the ducat is not precicely measured by the lire, there being

4 soldi to be considered, it is best to reduce both to soldi, the value

of the scudo being 160 soldi and that of the ducat 124 [soldi]. To
adjust the instrument for translating scudi into ducats lay off the

value of the scudo, or 160, and then open the instrument and

connect the 160 to 124, the value of the ducat. Now leave the

instrument unchanged. Then any proposed number of scudi can

be changed into ducats by laying off" the number of scudi on the arm
[of ducats] and drawing a parallel to the line already drawn from

160 to 124. For example. 186 scudi will then be found equal to

240 ducats. 1

^ [This section closes with the Rule of Compound Interest,. . .Operation VII.

The next section discusses geometric lines; the third, stereometric lines, includ-

ing cube root; the fourth, "metallic lines," finding the size of bodies with

respect to weight; and the rest dealing with mensuration, closing with an
extended discussion of operations with the quadrant.]



D'OCAGNE

On Nomography

(Translated from the French by Nevin C. Fisk, M.S., University of Michigan,

Ann Arbor, Michigan.)

Philbert Maurice d'Ocagne was born in Paris, March 25, 1862. His educa-

tion was received at the College Chaptal, the Lycee Fontanges, and the Ecole

Polytechnique.

For many years he has been professor of geometry at the Ecole Polytechni-

que and professor of topometry and applied geometry at the Ecole des Ponts

et Chaussees. He is a member of the Academic des Sciences and an officer of

the Legion d'Honneur.

D'Ocagne has published numerous books and articles on nomography,

graphical and mechanical calculus, and geometry. The selections following

are taken from his Traite de Nomograpbie, published by Gauthier-Villars,

Paris, in 1899. A second edition of this book appeared in 1921.

D'Ocagone's Traite de Nomograpbie presents a collection and correlation

of important developments in graphical proceedure during the latter part of

the nineteenth century. Outstanding among these developments is the align-

ment chart, the principle of which is due to d'Ocagne himself. D'Ocagne may
also be credited with the application of the alignment chart to many engineer-

ing formulas.

The subject of nomography received much of its impetus from the problems

arising in connection with the construction of railroads in France. Most of the

men contributing to its growth during the nineteenth century were engineers.

Nomography has thus been essentially a branch of applied mathematics finding

use in engineering, military science, and industry. At present it is one of the

most useful mathematical tools of the technical man.

The^ purpose of Nomography is to reduce to simple readings on

graphical charts, constructed once for all, the computations which

necessarily intervene in the practice of various technical arts.

If one makes a system of geometric elements (points or lines)

correspond to each of the variable connected by a certain equation,

the elements of each system being numbered- in terms of the values

of the corresponding variable, and if the relationship between the

variables established by the equation may be translated geometri-

1 [Introduction, page v. Pages given in the footnotes refer to the Traitk

de Nomograpbie.]

^ [French; coles.]
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cally into terms of a certain relation of position easy to set up

between the corresponding geometric elements, then the set of

elements constitutes a chart^ of the equation considered. This

is the theory of charts, that is to say the graphical representation of

mathematical laws defined by equations in any number of variables,

which is understood today under the name of Nomography.

1. Normal Scale of a Function.^—Let /(a) be a function of the

variable a, taken in an interval where it is uniform, that is, where

it has for each value of a only a single determinate value. Let

us lay off on an axis Ox, starting from the origin 0, the lengths

Xi = //(ai), X2 = IRai), Xs = //(as),- • •

/ being an arbitrarily chosen length, and let us inscribe beside the

points which limit these segments, points

which are marked by a fine stroke per-

pendicular to the axis, the corresponding

values of the variables ai, a2, aa,. . .The

set of points thus obtained constitutes

the scale of the function /(a). The
length / is called the modulus of this

scale.

3. Geometrical Construction of a Scale.^—In order to construct

the scale of the function /(a), we may have recourse to the curve

C whose equation is

X = IJiy)

It is sufficient to take on the curve the point whose ordinate is a

in order that the extremity of its abcissa may give on Ox the point

numbered a for the desired scale. If the curve C may be obtained

point by point by means of a simple geometric construction, all

calculations can be dispensed with.

II. CHARTS OF EQUATIONS WITH TWO VARIABLES.

9. Charts with adjacenf^ scales.^ Let us first take the equation

to be represented under the form

^ [French; abaque.]

^ [Page 1 et seq.]

' [Page 7.]

* [French; accol^es.]

MPage 17.]
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a form frequently occurring in practice. Let suppose the scales

X = laz and x = //i(ai)

to be constructed on the same axis, starting from the same origin.

Then two values of ai and a2, corresponding by virtue of the

preceding equation, are inscribed at the same point of the axis

bearing the two scales. If a value of one of the variables, say ai

is given, the corresponding value of 0:2 is read from the second scale

at the point graduated ai on the first.

12. Cartesian Charts for Two Variables.^—We may apply a

uniform scale to each of the two variables by establishing the

linkage between corresponding points through the medium of a

curve. Let us imagine that the scales

X = hai and y = /2a2

are carried on two rectangular axes Ox and Oy, and let us suppose

that perpendiculars are erected at the points of division marked

on each axis. If the values ai and az together satisfy the equation

(1) F(ai, aa) =

the p>erpendiculars to the axes at the points graduated ai and a2

intersect at a certain point. The points corresponding to various

couples of values of ai and ^2 satisfying the equation (1) are

distributed along a curve C whose equation referred to the axes

Ox and Oy is

The various points of the curve C determined individually are

easily marked on the plane, thanks to the cross-section^ system

defined above, and one observes that the curve C obtained by

connecting all these points constitutes a chart of the equation (1).

Such a chart derived by the use of cartesian coordinates is called

cartesian.

In order to find one of the variables, say a^, when ai is given, it

is sufficient to note the point (P) where the curve C is met by the

perpendicular to Ox passing through the point on that axis

numbered ai, and to read the graduation 02 at the foot of the

perpendicular dropped from the point (P) upon the axis Oy.

^ [Page 24 et seq.]

^ [French; quadrillage.]

i
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16. Cartesian Charts Jor Three Variables.^—Suppose it be desired

to construct a chart for the equation

(1) F(ai, aa, cxq) =

The first plan to present itself is this. Let us give a determined

value to one of the variables, preferably that one which will

usually be calculated as a function of the other two, say az. We
shall then have an equation in the two variables ai and a2 which

we may represent as indicated in section 12 by mean of a curve

traced on the cross-section network^ defined by the equations

(ai) X = hai

/i and h being moduh chosen to give the most satisfactory chart.

The equation of this curve will be

(r i' "')
=

This curve along which the element as conserves a constant value

has been called by Lalanne a curve "d'egal element," and by the

German author Vogier an isopleth curve. The latter term has

since been adopted by Lalanne. We shall call it simply a

num'bered curve. ^ In the same manner as above let us construct

curves corresponding to a series of values of as increasing by regular

steps, taking care to label each curve with the corresponding value

of as. Let us remark further that it is necessary only to trace

the portion of each curve contained within a rectangle bounded

by the perpendiculars erected to Ox and C^ respectively at the

points corresponding to the limiting values Oi and 6i for ai, and

02 and 62 for 02, values which are given in the problem since we

have assumed that ai and az are the independent variables. We
thus obtain within a ruled* rectangle a system of numbered curves

which furnishes the representation desired within the limits

admitted for the independent variables. This ruled rectangle,

resembling a sort of checkerboard, has given the name "abaque"

to diagrams of this kind, and, by extension, to every sort of

numbered chart. Making the convention once for ail of designat-

ing by the terms horizontal and vertical the lines parallel to Ox

and Oy respectively, we may state that the method of using such a

' [Page 32 et seq.]

^ [French; quadrillage.]

' [French; courbe cotke.]

* [French; quadrille.]
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chart in order to obtain the value of 0:3 when ai and a2 are given

is to read the graduation as of the curve passing through the point

of intersection of the vertical numbered ai with the horizontal

numbered a2.

24. PrincipleA—We have seen in section 15 that in substituting

other functional scales for uniform scales which at first sight one

would be inchned to use along the axes Ox and Oy, we may always

transform into a straight line the curve representative of an equa-

tion linking the variables to which the two scales correspond. In

what case may such a modification applied to the scales Ox and

Oy of a cartesian chart for three variables transform simultane-

ously all the curves of the chart into straight lines? The answer

to this question is easy to obtain. In order that the curves (as)

constitute a straight line diagram with graduations

(ai) X = /iji(ai)

(02) V = ^2/2 (02)

it is necessary and sufficient that their equation be of the form

X V
(as) r/sC^s) + 7-^3(0:3) + ^aiccs) =

/l i2

This will be the case if the proposed equation is of the form

/i(ai)/3(«3) +/2(a2) ^3(0:3) + 1^3(03) =

We thus obtain at the same time the form of the equations to

which this artifice is applicable, and an indication of the way in

which it may be put into play.

In the case in which a single curve constitutes the chart for an

equation in two variables as in section 15, such a transformation

offers no appreciable advantage, the work required for the estab-

lishment of a functional scale being practically equivalent to that

required for the determination of points for the corresponding

curve; the sole difference is in the tracing of the curve joining the

points individually obtained. This is not the case here and the

advantage becomes appreciable. If the labor demanded by

the change in graduation is equivalent to that involved in the con-

struction of a curve, one sees that when there are n curves to be

drawn the economy achieved may be represented approximately

by the work required to draw n — 1 curves. In fact, once the

new scale system is estabhshed, it is necessary to locate only two

1 [Page 50 et seq.]
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points to determine each of the straight lines intended to replace

the curves which had to be constructed point by point in the

primitive system, straight lines which have the further advantage

of being easy to draw with accuracy.

The principle of such a transformation was indicated for the

first time by Leon Lalanne who gave it the name "geometrical

anamorphosis."^ It was under the form indicated in section 28^

that the idea first occurred to him in connection with applications

treated in sections 29^ and 108. •*

56. Principle of Aligned Points.^—We have already explained

in section 30 the reasons for which it is desirable whenever possible

to have only points appear as numbered elements in the representa-

tion of an equation. We have seen furthermore how the use of a

"transparent"^ with three indices allows the realization of this

end for equations representable by three systems of parallel

straight lines, (section 26) that is to say, equations of the form^

/l+/2=/3
We shall now expound another method which allows the attain-

ment of the same end for the much more general category of

equations representable by three systems of any straight lines

whatsoever, comprising as a consequence the foregoing as a

particular case; that is to say, those equations which are of the

form

/i <Pi ^1

J2 <P2 1^2 =

Jz <PZ ^^

The idea which allows us a priori to take account of the possi-

bility of such a result is blended with that of the principle of duafity

^ "Memoire sur les tables graphiques et sur la Geometric anamoqshique,"

Annales des Fonts et Chausees ponts cbaussees, -erer semestre, 1846.

^ [Section 28 of the present work treats of logarithmic anamorphosis. It

appears that Lalanne is to be credited with the invention of logarithmic paper.]

^ [Section 29 of the Traite presents a straight-line chart on logarithmic

paper for the multiplication of two variables.]

* [Section 108 treats of superposed charts with logarithmic graduations.]

^ [Page \23 et seq. This principle was first announced by d'Ocagne in the

Annales des Ponts et Chausees for November, 1884, p. 531, under the title

"Procede nouveau de calcul graphique."]

® [A sheet of celluloid or similar transparent material on which straight lines

are engraved. In the case referred to, three intersecting lines were used.]

''[The author has made the convention of writing/i for/ (ai),/2 for/(ai), etc.]
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which is fundamental in the field of pure geometry today. We
know that it is possible in an infinity of ways to construct a figure

composed of points corresponding to a given figure composed of

straight lines, so that to any three concurrent lines of the given

figure there correspond three collinear points on the other. Every

transformation possessing such a property, of which the typical

case is transformation by polar reciprocals, is said to be dualistic.

Suppose then that we have applied such a transformation to a

chart made up of three systems of straight lines, retaining, let it

be well understood, the graduation of each element in the passage

t n g

from one figure to the other. We thus obtain a new diagram

on which to each of the variables «:, a2, and az there

corresponds a system of numbered points distributed along a

curve called their support. In the transformation eff"ected, this

curve will be the correlative of the envelope of the corresponding

system of straight lines on the first chart. These three systems

of numbered points constitute curvilinear scales. Just as on the

first chart the three straight lines, numbered in terms of a system

of values of ai, 02, as satisfying the equation represented, are

concurrent, so here the three corresponding points are collinear.

The method of using the chart follows from this fact. The straight

line joining the points numbered a\ and oli on the first two curvi-

linear scales intersects the third scale at the point graduated 0:3.
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To avoid drawing this line, one may make use of a transparent

with one index line or a fine thread which is stretched between the

points ai and a^.

88. General Principled—Suppose that the variables a, ay and

a2 on the one side and a, as and Oi on the other are linked by equa-
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Make the index pass through the points numbered ai and 0:2, then

pivot the index bout the point where it intersects the scale (a)

until it passes through the point numbered as- It then cuts the

last scale in the point numbered 04. Since in general it is not

necessary to know the corresponding value of the auxiliary variable

a, we may dispense with graduating the scale of this variable; it is

sufficient to draw its support which will be called the pivot Hne.

If however it is desired in any case to note the position of the pivot,

the line may be graduated in any manner whatsoever. The chart

thus constructed by combining two alignment charts having a

scale in common is called a double ahgnment chart in order to

recall the way in which it is used.^

In practice it is rarely necessary to apply this method except

in the case in which the auxihary scale is uniform, that is to say,

when the function /(a) reduces to a, the function (p reduces to 1,

and the function ^p reduces to in the equations (E) and {£').

These equations may then be written

a



II. FIELD OF ALGEBRA

Cardan's Treatment of Imaginary Roots

(Translated from the Latin by Professor Vera Sanford, Western Reserve

University, Cleveland, Ohio.)

For a biographical note on Cardan see page 203. Although Cardan (1501-

1576) spoke of the complex roots of a certain equation as "impossible," he

seems to have been the first to use such numbers in computation, and he even

devoted a full page of his Ars Magna (1545) to showing the solution of the

problem in which this question occurred. The translation which follows was
made from the first edition of the Ars Magna, ff. 6Sr. and 66r.

A second type of false position^ makes use of roots of negative

numbers.2 I will give as an example: If some one says to you,

divide 10 into two parts, one of which multiplied into the other

shall produce 30 or 40, it is evident that this case or question is

impossible. Nevertheless, we shall solve it in this fashion. Let

us divide 10 into equal parts and 5 will be its half. MuItipHed

by itself, this yields 25. From 25 subtract the product itself,

that is 40, which, as I taught you in the chapter on operations in

the sixth book^ leaves a remainder m: 15. The root^ of this added

and then subtracted from 5 gives the parts which muItipHed

together will produce 40. These, therefore, are 5 p:I^ m:15 and

5 m:I^m:15.5
Proof

That the true significance of this rule may be made clear, let

the hne AB which is called 10, be the hne which is to be divided

^ [The preceding section of this chapter discusses the solution of equations

of the type x^ = 4x + 32, which Cardan wrote in the form

qdratu aeqtur 4 rebus p: 32.]

* [" . . .est per radicem m."]

' [The Ars Magna begins with Book X, the preceding nine being Cardan's

arithmetic, the Practica aritbmetice, Milan, 1539.]

* [For "root," Cardan uses the symbol I^.]

^ [Although the symbols + and — appeared in print in Widman's arithmetic

of 1489, the signs were not generally adopted for some time, and the use of the

letters p and m continued in Italy until the beginning of the seventeenth

century.

It should be noted that Cardan made use of the letter IJ to represent both

an unknown quantity (res) and a root (radix).]

201
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into two parts whose rectangle is to be 40. Now since 40 is the

quadruple of 10, we wish four times the whole of AB. Therefore,

make AD the square on AC, the half of AB. From AD subtract

four times AB. If there is a remainder, its root should be added

to and subtracted from AC thus showing the parts (into which

AB was to be divided). Even when such a residue is minus, you

will nevertheless imagine I^ m:15 to be the difference between

AD and the quadruple of AB which you should add and subtract

from AC to find what was sought. That is 5 p: I^v:25 m:40^ and

5 m:I^v:25 m:40 or 5 p:I^ - 15 and 5 m:I^ — IS. Multiplying

5 p:I^m:15

5 m:I^m:15

25 m:m:15 qd. est 40

5 p:I^m:15 by 5 m:I^m:15, the imaginary

parts being lost,^ gives 25 m:m:15 which

is p. 15. Therefore the product is 40.

However, the nature of AD is not the same as that of 40 or AB
because a surface is far from a number or a line. This, however,

is closest to this quantity which is truly imaginary^ since operations

may not be performed with it as with a pure negative number,

nor as in other numbers. Nor can we find it by adding the square

of half the number in producing the number and take away from

the root of the sum and add half of the dividend. For example,

in the case of dividing 10 into two parts whose product is 40, you

add 25, the square of one half of 10, to 40 making 65. From the

root of this subtract 5 and then add 5 and according to similar

reasoning you will have I^ 65 p:5 and I^ 65 m:5. But these

numbers difi'er by 10, and do not make 10 jointly. This subtiHty

results from arithmetic of which this final point is as I have said

as subtile as it is useless.

' [The V acts as a sign of aggregation and might be considered an abbrevia-

tion for the radix universalis, or vniversalis.]

2 [" . . .dimissis incruciationibus."]

' [. . .uere est sophistica.]
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Solution of the Cubic Equation

(Translated from the Latin by Professor R. B. McCIenon, Grinnell College,

Grinnell, Iowa.)

In his Ars Magna (Niirnberg, 1545) Girolamo Cardano (Hieronymus Carda-

nus, 1501-1576) states that Scipio del Ferro discovered the method of solving

an equation of the type x^ }- px = q about the year 1515. Nicolo Tartaglia

(in the Latin texts, Tartalea) agrees to this but claims for himself the method

of solving the type a;^ + px^ = q and also the independent discovery already

made by Scipio del Ferro. Cardan secured the solution from Tartaglia and
published it in his work above mentioned. The merits of the discoveries and

the ethics involved in the publication may be found discussed in any of the

histories of mathematics.

The selection here made is from Chapter XI of the Ars Magna, "De cubo &
rebus aequalibus numero," the first edition, the type considered being

x^ -^ px ^ q, the particular equation being cub* p; 6 reb* aeqiis 20; that is,

x^ + 6x = 20. The edition of 1570 differs considerably in the text. A
facsimile of the two pages is given in Smith's History oj Mathematics, vol. II,

pp. 462, 463.

The translation can be more easily followed by considering the general plan

as set forth in modern symbols.

Given

x3 + 6x = 20.

Let

Then

for

whence

and

Hence

But

u^ - v^ = 20 and uh^ = (}4 X 6)' =

(u — z')^ + 6(u — ii) = u' — v^,

u' — 3u^v + 3uv- — v^ -j- 6u — 6v = u^

Suviv — u) = 6{v — u)

uv = 2.

X = u — V.

/hence

u^ = 20 + v^ = 20 + ~

u6 = 20u3 + 8,

which is a quadratic in u^. Hence u^ can be found, and therefore v', and
therefore u — v.

203
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Concerning a Cube and "Things"^ Equal to a Number

Chapter XI

Scipio del Ferro of Bologna about thirty years ago invented

[the method set forth in] this chapter, [and] communicated it to

Antonio Maria Florido of Venice, who when he once engaged in a

contest with Nicolo Tartalea of Brescia announced that Nicolo

also invented it; and he [Nicolo] communicated it to us when we
asked for it, but suppressed the demonstration. With this aid

we sought the demonstration, and found it, thougli with great

difficulty, in the manner which we set out in the following.

Demonstration

For example, let the cube of GH and six times the side GH be

equaP to 20. I take two cubes AE and CL whose difference shall

D
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therefore from AB times 3 AC times CK there results 6 "things"

AB, or 6 times AB, so that 3 times the product of AB, BC, and

AC is 6 times AB. But the difference of the cube AC from the

cube CK, and likewise from the cube BC, equal to it by hypothesis,

is 20;^ and from the first theorem of the 6th chapter, this is the sum
of the solids DA, DE, and DF, so that these three solids make 20.

^

But taking BC minus, the cube of AB is equal to the cube of AC
and 3 times AC into the square of CB and minus the cube of BC
and minus 3 times BC into the square of AC.^ By the demonstra-

tion, the difference between 3 times CB times the square of AC,
and 3 times AC times the square of BC, is [3 times]* the product of

AB, BC, and AC.^ Therefore since this, as has been shown, is

equal to 6 times AB, adding 6 times AB to that which results from

AC into 3 times the square of BC there results 3 times BC times

the square of AC, since BC is minus. ^ Now it has been shown
that the product of CB into 3 times the square of AC is minus;

and the remainder which is equal to that is plus, hence 3 times CB
into the square of AC and 3 times AC into the square of CB and

6 times AB make nothing.^ Accordingly, by common sense, the

difference between the cubes AC and BC is as much as the totahty

of the cube of AC, and 3 times AC into the square of CB,

and 3 times CB into the square of AC (minus), and the cube ofBC
(minus), and 6 times AB.^ This therefore is 20, since the difference

of the cubes AC and CB was 20.^° Moreover, by the second

theorem of the 6th chapter, putting BC minus, the cube of AB
will be equal to the cube of AC and 3 times AC into the square of

BC minus the cube of BC and minus 3 times BC into the square

of AC.^^ Therefore the cube of AB, with 6 times AB, by common
sense, since it is equal to the cube of AC and 3 times AC into the

square of CB, and minus 3 times CB into the square of AC, ^- and

^ [That is, u^ — v^ = 20.]

• * [That is, (u - v)^ + 3(u - v^v + 3(u - v)v^ = 20.]

^ [That is, (u — r)^ = u' + Sur^ — p' — 3i'u^.]

* [The original omits "triplum" here.)

' [That is, Snz^ — 3uy- = 3(u — ti)ui;.]

* [That is, 6(u — r) + 3uj;2 = 3uh'.]

'' [In the text this is AB.]
« [That is -3iru2 + 3ut;2 + 6(u - r) = 0.]

' [That is, u' — r^ = u' + 3ud^ — Svu- — v^ + 6(u — r) = 20.]

>" [That is, u» - v^ = 20.]

*^ [That is, (u — v)' = u' + Sui'^ — y^ _ 3i>u^.]

" [The text has AB.]
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minus the cube of CB and 6 times AB, which is now equal to 20,

as has been shown, will also be equal to 20.^ Since therefore the

cube of AB and 6 times AB will equal 20, and the cube of GH,

together with 6 times GH, will equal 20, by common sense and

from what has been said in the 35th and 31st of the 11th Book of

the Elements,^ GH will be equal to AB, therefore GH is the differ-

ence ofAC and CB. But AC and CB, or AC and CK, are numbers

or lines containing an area equal to a third part of the number of

"things" whose cubes differ by the number in the equation,

wherefore we have the

RULE
Cube the third part of the number of "things," to which you add

the square of half the number of the equation,^ and take the root

of the whole, that is, the square root, which you will use, in the one

case adding the half of the number which you just multiplied by

itself,* in the other case subtracting the same half, and you will

have a "binomial" and "apotome" respectively; then subtract

the cube root of the apotome from the cube root of the binomial,

and the remainder from this is the value of the "thing."^ In the

example, the cube and 6 "things"^ equals 20; raise 2, the 3rd part

of 6, to the cube, that makes 8; multiply 10, half the number, by

itself, that makes 100; add 100 and 8, that makes 108; take the

root, which is \/l08, and use this, in the first place adding 10,

half the number, and in the second place subtracting the same

amount, and you will have the binomial \/l08 + 10, and the

apotome -\/l08 — 10; take the cube root of these and subtract

that of the apotome from that of the binomial, and you will have

the value of the "thing," "S/a/IOS + 10 - S/VlOS - 10.

^ [That is, x* + 6x = u^ + 3ui;" — Tivu^ — v^ + 6(u — r) = 20.]

2 [Evidently an incorrect reference to Euclid. It docs not appear in the

edition of 1570.]

3 [That is, if the equation is x^ + px = q, take (Hp)' + (M?)^-]
* [That is, adding \q.]

5 [That is. "^^ihpY + (k)^ + k - ^VilpY + (k)' - k-]
6 [x3 + 6x = 20.)
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Solution of the Biquadratic Equation

(Translated from the Latin by Professor R. B. McCIenon, Grinnell College,

Grinnell, Iowa, with notes by Professor Jekuthiel Ginsburg, Yeshiva

College, New York City.)

Luigi (Ludovico) Ferrari (1522-c. 1560), a man of humble birth, was taken

into Cardan's household as a servant at the age of fifteen. He showed such

unusual ability that the latter made him his secretary. After three years of

service Ferrari left and took up the work of teaching. Such was his success

that he became professor of mathematics at Bologna but died in the first year

of his service there. Zuannc de Tonini da Coi, a teacher at Brescia had pro-

posed a problem which involved the equation

x" + 6x2 + 36 = 60x.

Cardan, being unable to solve it, gave it to Ferrari. The latter succeeded in

finding a solution and this was published, with due credit, by Cardan in his

Ars Magna (Niirnberg, 1545). For an outline of the solution in modern

symbolism see Smith, History oj Mathematics (Boston, Mass., 1925), vol. II,

p. 468.

Rule II

Another rule ... is due to Luigi Ferrari, who invented it at my
request. By it we have the solutions of absolutely all types of

fourth powers, squares, and numbers; or fourth powers, cubes,

squares, and numbers ^ .

.

Demonstration

Let the square AF he divided into two squares AD and DF,

and two supplementary parts DC and DE; and I wish to add the

gnomon KFG around this so that the whole AH may remain a

square. I say that such a gnomon consists of twice the product of

GC, the added line, by CA, with the square of GC; for FG is con-

^ [Cardan uses "square-square" for fourth power. He now proceeds to

state all types of biquadratics, beginning with the equivalents of

(1) x< = ax^ + bx + c,

(2) X* = ax2 + bx^ + c,

(3) x* = ax^ + b.

His list includes twenty types.

He then considers one of these types, as shown in the translation.]
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tained by the lines GC and CF, from the definition given at the

beginning of the 2nd [book] of the Elements^; and CF is equal to

CA, from the definition of a square; and by the 44th [proposition]

of the 1st [book] of the Elements,^ KF is equal to FG. Therefore

the two areas GF and FK consist of GC into twice CA. Also the

square of GC is FH, in consequence of the 4th [proposition] of

the 2nd [book] of the Elements.^ Therefore the proposition is

evident.*

If therefore AD is made 1 square-square, and CD and DE [are

made] 3 "squares," and DF [is made] 9,^ BA will necessarily be a

/r N H

K
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rectangles] CL and KM.^ Then in order to complete the

square it will be necessary to add the area LNM. This has

been shown to consist of the square on GC, which is half

the number of [added] squares, since CL is the area [made]

from [the product of] GC times AB, where AB is a square, AD
having been assumed to be a fourth power.^ But FL and MN
are each equal to GC times CB, by Euclid, I, 42, and hence the

area LMN, which is the number to be added, is a sum composed of

the product of GC into twice CB, that is, into the number of

squares which was 6, and GC into itself, which is the number of

squares to be added. This is our proof.

This having been completed, you will always reduce the part

containing the square-square to a root, viz., by adding enough to

each side so that the square-square with the square and number may
have a root.^ This is easy when you take half the number of the

squares as the root of the number; and you will at the same time

make the extreme terms on both sides plus, for otherwise the

trinomial or binomial changed to a trinomial will necessarily fail

to have a root. Having done this, you will add enough squares

and a number to the one side, by the 3rd rule,* so that the same

being added to the other side (in which the unknowns were) will

make a trinomial having a square root by assumption; and you will

have a number of squares and a number to be added to each side,

after which you will extract the square root of each side, which

will be, on the one side, 1 square plus a number (or minus a number)

1 [Such an addition will convert the original figure, AF into the following.]

A-

E M
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and on the other side 1 unknown or more, plus a number (or

minus a number; or a number minus unknowns) wherefore by the

5th chapter of this book you will have what has been proposed.

Question V

Example.—Divide 10 into 3 parts in continued proportion such

that the 1st multiplied by the 2nd gives 6 as product. This

problem was proposed by Johannes CoIIa, who said he could not

solve it. I nevertheless said I could solve it, but did not know
how until Ferrari found this solution. Put then 1 unknown as

the middle number, then the 1st will be :; ~, > and the 3rd
1 unknown

will be 3^ of a cube. Hence these together will be equal to 10.

Multiplying all by 6 unknowns we shall have 60 unknowns equal

to one square-square plus 6 squares plus 36. Add, according to

the 5th rule, 6 squares to each side, and you will have 1 square-

square plus 12 squares plus 36, equal to 6 squares plus 60

unknowns; for if equals are added to equals, the totals are equal.

But 1 square-square Iqdqd. p: 6 qd. p:36 sequalia 60 pos.^

6 qd. 6 qd.

Iqdqd. p:12 qd. p:36 seqiia 6 qd. p:60 pos,

2 pos. 1 qd. p: 12 pos,

plus 12 squares plus

36 has a root, which

is 1 square plus 6.

If 6 squares plus 60 unknowns also had a root, we should have the

job done; but they do not have; hence we must add so many
squares and a number to each side, that on the one side there may
remain a trinomial having a root, while on the other side it should

be made so. Let therefore a number of squares be 1 unknown^

and since, as you see in the figure of the 3rd rule, CL and MK
are formed from twice GC into AB, and GC is 1 unknown,* 1

1 [That is, X* + Gx"^ + 36 = 60x, hence x^ + 12x2 -|- 35 = 6^2 + 60x.]

2 [Having reduced the equation to the form

(x2 + p)2 = p2 + px- - qx — r,

he makes use of another unknown for the purpose of converting the left side

into (x^ + p +y)-. This is done by adding 2y{x- + p) + y* to each side.

The equation then becomes

(x2 + p+yy- =v^ -\- P-v^ - gx - r + ly{x'- + p) + y\

an equation in the form

x^ + a = 6x + c.

The problem now reduces to one of finding such a value of y as shall make
the right side a square.)

^ [That is, GC = y, andy is half the coefficient of x^ in the part to be added.]
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1

will always take the number of squares to be added as 2 unknowns,

that is, twice GC; and since the number to be added to 36 is

LNM it therefore is the square of GC together with the product of

twice GC into CB or of GC into twice CB, which is 12, the number
of the squares in the original equation. I will therefore always

multiply 1 unknown, half the number of squares to be added, into

the number of squares in the original equation and into itself and

this will make 1 square plus 12 unknowns to be added on each side,

and also 2 unknowns for the number of the squares.^ We shall

therefore have again, by common sense, the quantities written

1 qdqd. p:2 pos. p:12.qd I^p: 1 qd.p:12

pos. additi numeri p:36 sequalia.

2 pos. 6 qdratoru, p : 60 pos. p : 1 qd. p : 1

2

pos. numeri additi.^

below equal to each other;

and each side will have

a root, the first, by the

3rd rule, but the 2nd

quantity by an assumption as to y. Therefore the first part of

the trinomial multiplied by the third makes the square of half the

2nd part of the trinomial. Thus from half the 2nd part multiplied

by itself there results 900, a square, and from the 1st [multiplied]

into the 3rd there results 2 cubes plus 30 squares plus 72 unknowns.

Likewise, this may be reduced . . . since equals divided by equals

produce equals, as 2 cubes plus 30 squares plus 72 unknowns
equals 900,' therefore 1 cube plus 15 squares plus 36 unknowns
equals 450.*

^ [The problem has been reduced to

X* + 12^2 + 36 = 6a- + 60a:,

or

(x2 + 6)"- = 6x2 ^ 60a:.

To convert the left-hand side into (a:^ + 6 -{- yy, it is necessary to add
2y{x^ + 6) + y- to both sides, which converts the equation into

(x^- + 6+y)- = 6.x2 + 60.V + y^ + Uy + 2yx'.]

- [That is,

x* + (2y + 12).v- +y'+ Uy + 36

= {2y + 6)x^ + 60x+y'- + Uy
in which the first member reduces to (.v- + 6 + y)-.]

^ [To find the value of y that will make the second member a square. Cardan
had to consider the trinomial ax^ + 2bx + c, as we should write it. This is

a square when b^ = ac, for then b"^ — ac = 0. But here 6 = 30, and so 6'

("the square of half the second part") is 900, and a ("the first") is 2y + 6,

and c = y^ -{- 12y. Then "the first into the third" is ac, or

(2y + 6)(y2 + 12y) = 2y' + 30y^ + 72y,

which Cardan describes as " 2 cubes plus 30 squares plus 72 unknowns."]
< [Since 2y=' + 30y^ + 72y = 900, y^ + ISy^ + 36y = 450.]
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It IS therefore sufficient for reducing to the rule, to have always

1 cube plus the number of the former squares, with a 4th of it

added to it plus such a multiple of the assumed quantity as the

first number of the equation indicates;^ so that if we had 1 square-

square plus 12 squares plus 36 equals 6 squares plus 60 unknowns

we should have 1 cube plus 15 squares plus 36 unknowns equal to

450, half the square of half the number of unknowns. And if we
had 1 square-square plus 16 squares plus 64 equal to 80 unknowns

we should have 1 cube plus 20 squares plus 64 unknowns equal to

800.2 ^nd if we had 1 square-square plus 20 squares plus 100

equal to 80 unknowns we should have 1 cube plus 25 squares plus

100 unknowns equal to 800.^ This being understood, in the

former example we had 1 cube plus 15 squares plus 36 unknowns

equal to 450; therefore the value of the unknown, by the 17th

chapter, is

V^287| + V+^OS^ + 'V^287i - \/80449i~^

This then is the number of squares which is to be doubled and

added to each side (since we assumed 2 unknowns to be added)

and the number to be added to each side, by the demonstration,

is the square of this, with the product of this by 12, the number

of squares.*

1 |y3 -1- (12 + ^H)y- + 36y = H{^%)'. The "number of former squares"

means the coefficient of x^, 12; and the "first number of the equation " means

the constant term, 36.]

2 \y' + (16 + i%)y2
-I- 64y = Hi^H)--]

3 [y3 + (20 + 2%)y2 + lOOy = K(8^)M
* [2yx^ -1- 12y +y^ 12 being the coefficient of x* in the original equation,

X* -H 12x2 + 36 = 60x + 6x2.]

i
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Note on the Equation x" + y" = z"

(Translated from the French by Professor Vera Sanford, Western Reserve

University, Cleveland Ohio.)

Pierre de Fermat (c. 1608-1665), a member of the provincial parliament of

Toulouse, became interested in the theory of numbers through Bachet's

translation of Diophantus. Fermat's many discoveries in this field were

given in letters to other mathematicians or were noted on the pages of the

books which he read. The theorem which follows appears beside the eighth

proposition of the second book of Diophantus:
—"To divide a square number

into two other square numbers." Fermat's note^ reads:

To divide a cube into two other cubes, a fourth power, or in

general any power whatever into two powers of the same denomina-

tion above the second is impossible, and I have assuredly found an

admirable proof of this, but the margin is too narrow to contain it.

1 Precis des Oeuvres Matbematiques de P. Fermat et de VAritbmitique de Diopbante, E.

Brassinne, Paris, 18S3, pp. 53-54. It should be noted that no one as yet has proved this

theorem except for special cases.
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The So-called Pell Equation

f^TransIated from the Latin by Professor Edward E. Whitford, College of the

City of New York.)

Pierre de Fermat (c. 1608-1665) was the first to assert that the equation

X- - Ay- = 1

where A is any non-square integer, always has an unlimited number of solu-

tions in integers. This equation may have been suggested to him by the

study of some of the double equations of Diophantus; for he says in a note on

the works of the latter (IV, 39j, "Suppose if you will, that the double equation

to be solved is

2m 4" 5 = square,

6m + 3 = square.

The first square must be made equal to 16 and the second to 36; and others

will be found ad infinitum satisfying the equation. Nor is it difficult to

prop)ound a general rule for the solution of this kind of equation."

Fermat was a profound scholar in all branches of learning and a mathema-

tician of exceptional power. He has left the impression of his genius upon all

branches of mathematics known in his time.

Fermat' first proposed the general problem of the Pell equation as a challenge

problem to the English mathematicians Lord Brouncker and John Wallis

(see p. 46). This was written in Latin in the form of a letter. In these

contests of wits the Englishmen did not use French and the Frenchmen did not

use English and the letters passed through intermediaries. The name Pell

equation originated in a mistaken notion of Leonard Euler^ (see p. 91) that

John Pell was the author of the solution which was really the work of Lord

Brouncker. Euler in his cursory reading of Wallis's algebra must have con-

fused the contributions of Pell and Brouncker.' Nevertheless it seems not

improbable that Pell solved the equation, for we find it discussed in Rahn's

algebra* under the form

X = Uyy - 33.

This shows that Pell had some acquaintance with the general equation, and

that Euler was not so far out of the way when he attributed to him some

1 Oeutrres de Fermat, publiees par les soins de MM. Paul Tannery et Charles Henry, Paris,
|

1894. vol. H, p. 333-5.

' P. H. Fuss, editor, Correspondance matbimatique et physique de quelques celebres geometres
\

du XVI 1 1 ieme siecle, letter IX of L. Euler to C. Goldbach, Aug. 10, 1732, St. Petersburg,

1843, p. 37.

' G. Wertheim, "tjber den Ursprung des Ausdruckes 'Pellsche Gleichung,"* Bibtiotbeca

Matbematica, vol. II (3), p. 360. Leipzig, 1901.

* J. H. Rahn, An introduction to algebra, translated out of tbe Higb Dutch into English by

Thomas Brancker, M. A. Much altered and augmented hy D. P., London, 1668, p. 143.

214



PERMAT 215

work upon it. Pell was an extensive contributor to Rahn's algebra and is

referred to in the title of this book by the initials D. P.

The Pell equation affords the simplest case of Dirichlet's elegant and very

general theorem on the existence of units in any algebraic field or domain. It

is of great importance in the theory of binary quadratic forms. The problem

to find all the rational solutions of the most general equation of the second

degree in two unknowns reduces readily to that for x- — Ay^ = B, all of whose
solutions follow from the solution of x^ — Ay- — 1. The honor of having

first recognized the deep importance of the Pell equation for the general solu-

tion of the indeterminate equation of the second degree belongs to Euler.^

The first admissible proof of the solvability of the equation .v- — Ay^ = 1 was
given by Lagrange.-

Useful tables of solutions have been given by Euler, Legendre, Degen,
Tenner, Koenig, Arndt, Cayley, Stern, Seeling, Roberts, Bickmore, Cunning-
ham, and Whitford.

The letter of Fermat, dated February, 1657, which is called the second

challenge of Fermat to the mathematicians, runs as follows:

There is scarcely any one that sets forth purely arithmetical

questions, and scarcely any one that understands them. Is it not

because arithmetic has heretofore been treated geometrically

rather than arithmetically? This is certainly intimated by many
works of ancient and modern writers, including Diophantus him-

self. Although he got away from geometry a httle more than the

rest, while limiting his analysis to rational numbers only, yet the

"Zetetica" of Vieta, in which the method of Diophantus is extended

to continuous quantity and therefore to geometry, sufficiently

proves that this branch is not wholly separated from geometry.

Therefore arithmetic claims for itself the theory of whole

numbers as its own estate. Arithmeticians ("children of arith-

metic") should strive either to advance or restore it, which was
only imperfectly represented by Euclid in his Elements, and more-

over not sufficiently perfected by those who followed him. Per-

haps it lies concealed in those books of Diophantus which the

damages done by time have destroyed.

To these, in order to show them the light which may lead the

way, I propose the following theorem or problem to be either

proved or solved. Moreover, if they discover this, they will admit

that questions of this sort are not inferior to the more celebrated

ones from geometry, either in subtlety or in difficulty or in method
of proof.

' L. Euler. "De solutionc problematum Diophantaeorum per numeros integros,"

CommentaTii Academiae scientiarum xmpeTialis Petropolitanae, 1732, vol. VI, p. 175, St.

Petersburg, 1738.

-J. L. Lagrange, "Solution d'un probleme d'arithmetiquc," Miscellanea Taurinensis,

vol. IV, p. 41, Turin, 1766. Oeuvres de Lagrange, Paris, 1867, vol. I, p. 671
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Given anj' number not a square, then there are an infinite

number of squares which, when multiplied into the given number,

make a square when unity is added.

Example.—Given 3, a non-square number; this number multi-

plied into the square number 1, and 1 being added, produces 4,

which is a square.

Moreover, the same 3 multiplied into the square 16, with 1

added makes 49, which is a square.

And instead of 1 and 16, an infinite number of squares may be

found showing the same property; I demand, however, a general

rule, any number being given which is not a square.

It is sought, for example, to find a square which when multi-

plied into 149, 109, 433, etc., becomes a square when unity is

added.

In the same month (February, 1657) Fermat, m a letter to Frenicle,

suggests the same problem, and expressly states the important condition

implied in the foregoing that the solution be in integers:

Every non-square is of such a nature that one can find an infinite

number of squares by which if j'ou multiply the number given and

if you add unity to the product, it becomes a square.

Example: 3 is a non-square number, which multiplied by 1,

which is a square, makes 3, and by adding unity makes 4, which is

a square.

The same 3, multiplied by 16, which is a square, makes 48,

and with unity added makes 49, which is a square.

There is an infinity of such squares which when multiplied by 3

with unity added likewise make a square number.

I demand a general rule,—given a non-square number, find

squares which multipfied by the given number, and with unity

added, make squares.

What is for example the smallest square which multiplied by 61

with unity added, makes a square?

Moreover, what is the smallest square which, when multipfied

by 109 and with unity added, makes a square?

If you do not give me the general solution, then give the particu-

lar solution for these two numbers, which I have chosen small in

order not to give too much difficulty.

After I have received your reply, I will propose another matter.

It appears without saying that my proposition is to find integers

which satisfy the question, for in the case of fractions the lowest

type of arithmetician could find the solution.
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On General Exponents

(Translated from the Latin by Professor Eva M. Sanford, College for Women,
Western Reserve University, Cleveland, Ohio.)

John Wallis (1616-1703), Savilian professor of geometry at Oxford (1649-

1703), contemporary of Newton, was the first writer to set forth with any com-

pleteness the meaning of negative and fractional exponents. Steps in this

direction had already been taken by Nicole Oresme (c. 1360), Chuquet (1484),

Stifel (1544), and Girard (1629), but it remained for Wallis (1655) and Newton
(1669) to generalize the subject for rational exponents. The following extract

is from Wallis's Aritbmeticu Infinitorum as published in his Opera Malbematica,

Oxford, 1695, vol. I, pp. 410, 411. The Aritbmetica Infinitorum first appeared

in 1655, and the use of the generalized exponent occurs in connection with the

study of series, Proposition CVI.

Prop. CVI

If any series of reciprocals be multiplied or divided by another

series (whether reciprocal or direct) or even if the series multiplies

or divides another; the same laws are to be observed as in direct

series (see propositions 73 and 81).

Example.—If the series of the reciprocals of squares {{, j,

^, &c.) whose index is —2 be multiplied term by term into the

series of the reciprocals of cubes (j, |-, -^, &c.) whose index is

— 3, the product will be a series of the reciprocals of the fifth

powers* (|, -g^, Y^, &c.) whose index — 5 = — 2 — 3 as is

evident.

Furthermore, if a series of the reciprocals of cubes (|, ^, i^,

&c.) whose index is — 3 be multiplied term by term by a series of

squares (1, 4, 9, &c.) whose index is 2, the result is the series \,

|, T^, &c. This is 1, \, \, &.C., a series of the reciprocals of

first powers whose index —1 = —3 +2.
Likewise, if the series of the reciprocals of the square roots^

1 1 1 „

Vl \/2 \/3

* [5u6guin/ani5.]

^ [Subsecundans.]
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whose index is — ^ be multiplied term by term by the series of

squares (1, 4, 9, &c.) whose index is 2, the product will be the series

1 4 9

or

or

vi V2' vr
^""

iVl, iV2, f\/3, &c.,

VT, VS, V27, &c.,

the square roots of the cubes or third powers, whose index

3- = — i 4- 2

Furthermore, if a series of the reciprocals of squares whose index

is — 2 divides a series of the reciprocals of integers whose index is

— 1, the product will be the series of first powers whose index

1 = —1+2, or— 1 minus —2.

Likewise if a series of the reciprocals of integers whose index is

— 1 divides a series of the reciprocals of squares whose index is

— 2, then the product will be a series of the reciprocals of first

powers whose index —1 = —2 + 1, that is, —2 minus —1.

Likewise if a series of reciprocals of first powers whose index is

— 1 divides a series of squares whose index is 2, the product will

be a series of third powers whose index 3 = 2 + 1, that is 2 minus

-1.

Likewise if a series of the reciprocals of first powers whose index

is — 1 be divided by a series of squares whose index is 2, the product

will be a series of the reciprocals of third powers whose index

— 3 = —1 — 2, that is —1 minus 2.

And the same thing will happen in any other cases whatsoever

of this sort, and hence the proposition is proved.^

^ [In the wide page of the original there are arranged alongside the above

paragraphs, beginning with the fourth one, the following series.

H)



WALLIS AND NEWTON

On the Binomial Theorem for Fractional and Negative
Exponents

(Selected from the English version by Professor David Eugene Smith,

Teachers College, Columbia University, New York City.)

John Wallis (1616-1703), in his work De Algebra Tractatus, Historicus &
Practicus was instrumental in making known several discoveries made by
Newton. Among them is Newton's generalization of the Binomial Theorem
to include fractional and negative exponents. This was first published in

Latin, and was later translated by Wallis into English. The following

extract is from this translation. In it Wallis assigns credit to Newton and

sets forth his results, as yet unpublished. These results appear in the article

which follows this one.

CHAP. XCI.i

The Doctrine of Infinite Series, further prosecuted by Mr. Newton.

Now (to return where we left off:) Those Approximations (in the

Arithmetick of Infinites) above mentioned, (for the Circle or

Ellipse, and the Hyperbola;) have given occasion to others (as

is before intimated,) to make further inquiry into that subject;

and seek out other the Hke Approximations, (or continual

approaches) in other cases. Which are now wont to be called by

the name of Infinite Series, or Converging Series, or other names

of a like import. (Thereby intimating, the designation of some

particular quantity, by a regular Progression or rank of quantities,

continually approaching to it; and which, if infinitely continued,

must be equal to it.) Though it be but little of this nature which

hath yet been made publick in print.

Of all that I have seen in this kind; I do not find any that hath

better prosecuted that notion, nor with better success, than Mr.

Isaac Newton, the worthy Professor of Mathematicks in Cambridge

:

Who about the Year 1664, orl665, (though he did afterwards for

divers years intermit those thoughts, diverting to other Studies,)

did with great sagacity apply himself to that Speculation. This

I find by Two Letters of his (which I have seen,) written to Mr.

1 Page 330.

219



220 SOURCE BOOK IN MATHEMATICS

Oldenburg, on that Subject, (dated June 13, and Octob. 24. 1676,)

full of very ingenious discoveries, and well deserving to be made
more publick. In the latter of which Letters, he says, that by the

Plague (which happened in the Year 1665), he was driven from

Cambridge; and gave over the prosecution of it for divers years.

And when he did again resume it, about the Year 1671, with

intention then to make it publick; (together with his new dis-

coveries concerning the Refractions of Light,) he was then by

other accidents diverted.

He doth therein, not only give us many such Approximations

fitted to particular cases; but lays down general Rules and

Methods, easily appHcable to cases innumerable; from whence

such Infinite Series or Progressions may be deduced at pleasure;

and those in great varieties for the same particular case. And
gives instances, how those Infinite or Interminate Progressions

may be accommodated, to the Rectifying of Curve Lines (Geome-

trick or Mechanick;) Squaring of Curve-lined Figures; finding the

length of Archs, by their given Chords, Sines, or Versed Sines;

and of these by those; fitting Logarithms to Numbers, and

Numbers to Logarithms given; with many other of the most

perplexed Inquiries in Mathematicks.

In order hereunto, he applies not only Division in Species; (such

as we have before described;) but Extraction of Roots in Species,

(Quadratick, Cubick, and of other consequent, and intermediate

Powers;) as well in Single, as in Affected Equations.

How this was by him made use of in the way of Interpolation,

we have shewed before; upon a discovery that the Vnciae or

Numbers prefixed to the members of Powers, created from a

Binomial Root, (the Exponent of which Powers respectively he

calls m,) doth arise from such continual Multiphcation as this,

1 X^ X^ X^ X^ X =^. X e.c.>

Which Process, if m (the Exponent of the Power) be an Integer

will (after a certain number of places, such as the nature of each

Power requires) terminate again at 1, as it did begin: But if m be

a Fraction, it will (passing it) run on to Negative numbers

infinitely.

According to this notion; having found the numbers answering

the Power commonly expressed by \/q, (which is the intermediate

1 Page 331.
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between an Unite and the Lateral,) whose Exponent is | = m; to

be these

1 . I . - I . + . tV . - tIt • + T^F • - ^c.

He applys this (for instance) to that of mine, (accommodated as is

before shewed, to the Quadrature of the Circle, or a Quadrant

thereof, (\/:RR— cc; or (putting K=l,) \/:l—cc. And finds

V:! — cc: = l — |cc— |c^—tVc^ &c. (Which multiplied into itself,

restores 1 — cc.) The Process thus.

l-cc(l,-icc,-|c^-Ac^ &c. l-icc-fc^-iVc' &c.
1 into 1— ice— ic^— tVc^ &c.

0-cc 1 — cc— ^c*— |c^ &c.

-cc+lc^ -\-lc^-\-lc^ &c.

-k^ &c.

-|c^+|c«+^c3 1-cc.

&c. &c.

From whence (and from others of the hke nature) he derives this

Theorem for such Extractions,

P+PQ - = P-+-AQ+-^—BQ+—r—CQH—j—DQ+^c.
' ^' n n n In 5n 4n

Where P-\-PQ is the Quantity, whose Root is to be extracted, or

any Power formed from it, or the Root of any such Power extracted.

P is the first Term of such Quantity; Q, the rest (of such proposed

Quantity) divided by that first Term. And — the Exponent of

such Root or Dimension sought. That is, in the present case,

(for a Quadratick Root,) ^.

(Note here, for preventing mistakes, that whereas it is usual

to express the Exponent of a Power, or the number of its Dimen-

sions, by a small Figure, at the head of the letter, as a^ for aaa;

the same is here done by a Fraction, when such Exponent is not

an Integer Number, as a f for -x/aaa; which Fraction is so to be

understood, as if the whole of it were above the letter; and signifies

the Exponent of the Power; not as at other times, a Fraction

adjoined, as if it were a+f : And the same is to be understood

afterwards in many places; where the like happens, by reason that

there is not room to set the whole Fraction above the Letter, but

equal with it.)

And according to this Method; if of any such Quantity proposed,

we seek a Square, Cube, or Higher Power, whose Exponent is an
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Integer; we shall find for it, a Series terminated, consisting of so

many members as the nature of each Power requires; (the Side of

2, the Square of 3; the Cube of 4; ^c.) But if a Root or Inter-

mediate Power be sought, whose Exponent is a Fraction, or an

Integer^ with a Fraction annexed, (as ^, 1|, 2|, &c; that is, ^, -f,

f, &c: Or f , f, 1^, If, that is, I, f, f, |, &c:) We shall have (for its

value) an Interminate or Infinite Series; to be continued as far

as we please. And the farther it is continued, the more exactly

doth it represent the quantity sought.

Of this Process, he giveth divers Examples; which (because they

are not yet Extant in Print,) I have thought fit here to transcribe.

Example I. V-cc+xx, or cc-j-xx\l, =(^+^-^3+l^6-iJ^7
7;^;10 ... VV+ -,, „&c. For in this case, is P = cc. Q='^-. m = l. n = 2.
256c^ cc

m . ^^ XX ^ m— n. — yi

Examp. II. yy^:c^-\-c*x—x^: or c*+c^x— x^|^.

= c-
c*x-x^ -2c8xx+4c^x«-2x"'

_ . , ^ir=r-^ \-&c. As will be evident by

substituting l=m. 5 = n. c^ = P. and c^)c*x— x^(Q.

Or we might in like manner substitute — x^ = P, and — x^)c^x+c^ (Q.

A J U /5 51 4 5 ,

C'X+ C'
,

2C«XX+ 4C^+ C'»
, ^And then \/^:c^-\-c*x-x^:= —x-\—^j 1 ^^-^ h&c.

bx* Ibx^

The former way is most eligible, if x be very small; the latter if x

be very great.

Examp. III. -7^—^ That is, NXy^— aayrh =N into
V -y o.ay:

'

,. = 3. A{ = P|^=y=X-|)=y-'. that is, i. b( ="aQ=-1x'x

— aa\ _aa _

yy /~3y3"

Examp. IV. The Cubick Root of the Biquadrate of d+c, that

is, J+i!-|. is dt+^+^-^,-\-SLc. For P = J. d)eiQ. m = 4.

n = 3. A( = P^) = c/i. &c.

> Page 332.
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Examp. V. After the same manner may Single Powers be

formed; as the Sursolid, or Fifth Power of d-\-e: That is, d-\-e]^,

or 5Telf. For then P = d. d)eiQ. m = 5. n = l. a(=P-) =

d'. B( =^AQj = 5d*e. C = lOd'ee. D = lOddeK E = 5dc'. F = e.^

g( =^^^^FQJ = 0. That is, 'd+^^=d^-\-Sd*e+lOd^ee-^lOdde^

-\-5de*+e\

Examp. VI. And even bare Divison, (whether single, or

repeated,) may be performed by the same Rule. As j-r-, that
d-f-e

is d+e\~\ or d-\re\~^. For then P = d. d)e{Q. m=— 1. n = l.

A( = p5 =,-) = ,-.or'. b( =^AQ=-1X^x|)= ^'. And

,3

in hke manner, C= j^. D =—vj-. &c.

ThatMs,^ =l-^+^-^+&c.

Examp. VII. In like manner d-\-e\~^: That is, an Unite Three

1 3e
times divided by d+e, or divided by the Cube of J+e: Is j^

—
-^

a"* a*

, Gee lOe^
, „

Examp. VIII. And N Xd-\-.e\~' ; That is, N divided by the Cubick

Root of d+e: is N: X ^^^+^,-^+&c.
Examp. IX. And NXcZ+eh*; That is, N divided by the Sur-

solidal Root of the Cube of d+e: Or
^S:d^+3dWdee+e^:

' ^'

1 3e 12ee 52e^

And by the same Rule, we may in Numbers (as well as Species,)

perform the Generation of Powers; Division by Powers, or by
Radical Quantities; and the Extraction of Roots of higher Powers;

and the like.

1 Page 333.
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NEWTON

On the Binomial Theorem for Fractional and Negative

Exponents

(Translated from the Latin by Professor Eva M. Sanford, College for Women,
Western Reserve University, Cleveland, Ohio.)

Isaac Newton (1642-1727) was the first to state the binomial theorem for

negative and fractional exponents. The formula appears in a letter written

on June 13, 1676, to Oldenburg, the Secretary of the Royal Society, for trans-

mission to Leibniz who had asked for information regarding Newton's work

with infinite series On the receipt of this communication, Leibniz requested

further details and Newton replied on October 24th of the same year. Both

letters were printed in the Commercium Epistolicum (1712) with other papers

that bore upon the Newi;on-Leibniz controversy. For a biographical note on

Newton, see page 613

.

Letter of June 13,1676^

Although the modesty of Dr. Leibniz in the Excerpts which you

recently sent me from his Letter, attributes much to my work in

certain Speculations regarding Infinite Series,^ rumor of which is

already beginning to spread, I have no doubt that he has found

not only a method of reducing any Quantities whatsoever into

Series of this type, as be bimselj asserts, but also that he has found

various Compendia, similar to ours if not even better.

Since, however, he may wish to know the discoveries that have

been made in this direction by the English (I myself fell into this

Speculation some years ago) and in order to satisfy his wishes to

some degree at least, I have sent you certain of the points which

have occurred to me.

Fractions may be reduced to Infinite Series by Division, and

Radical Quantities may be so reduced by the Extraction of Roots.

These Operations may be extended to Species^ in the same way as

^[Commercium Epistolicum (1712; 1725 edition, pp. 131-132).]

2 [Probably as early as 1666, Newton had told Barrow and others of his work

in infinite series in connection with the problem of finding the area under a

curve, but this work was not published until 1704 when it appeared as an

appendix to Newton's Opticks.]

^ [That is "to algebraic numbers." In his Aritbmetica Universalis (1707;

1728 edition) Newton says, "Computation is either perform'd by Numbers, as

in Vulgar Arithmetick, or by Species, as usual among Algebraists. . ."]
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that in which they apply to Decimal Numbers. These are the

Foundations of the Reductions.

The Extractions of Roots are much shortened by the Theorem

p-^rp^rn ^pm m rn-n rn-^QQ
'n n n 2n in^

rn-3nj^Q
^^

4n

where P + PQ stands for a Quantity whose Root or Power or

whose Root of a Power is to be found, P being the first Term of that

quantity, Q being the remaining terms divided by the first term,

and — the numerical Index of the powers of P + PQ. This

may be a Whole Number or (so to speak) a Broken Number; a

positive number or a negative one. For, as the Analysts write

a^ and a^ &c. for aa and aaa, so for -s/a, -s/a^y \/c . a^, &c. I write

ai a^ a*, &c.; for -> —> — j a~^ a~^ a~^: for ,
a aa aaa Vc . a» + 66x,

aaY, 0?" \- hhx\~^\ and for ? I write
Vcra^ + hhx X a^ + 66x:

aah X a' + 66x|~^ In this last case, if a^ + hhx\~^ betaken to

mean P + PQ, in the Formula, then will P — a^, Q = bbx/a^,

m = — 2, n = 3. Finally, in place of the terms that occur in the

course of the work in the Quotient, I shall use A, B, C, D, &c.

Thus A stands for the first term P"^; B for the second term —AQ:
n

and so on. The use of this Formula will become clear through

Examples. "2

Letter of October 24, 1676^

One of my own [methods of deriving infinite series] I described

before; and now I shall add another, namely the way in which I

discovered these Series, for I found them before I knew the Divi-

sions and Extractions of Roots which I now use. The explanation

of this method will give the basis of the Theorem given at the

beginning of my former Letter which Dr. Leibniz desires of me.

^ [Evidently a misprint for 3n.]

^ [The examples show the application of the formula in cases in which the

exponents are K, H, ~H, H, 5, -1, -H-]
^ [Commercium Epistolicum (1712; 1725 edition, pp. 142-145). This letter

begins with a note of appreciation of the work in series done by Leibniz.]
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"Towards the beginning of my study of Mathematics, I

happened on the works of our most Celebrated Wallis^ and his

considerations of the Series by whose intercalation he himself

shows the values of the Area of a Circle and Hyperbola, and of that

series of curves that have a common Base or Axis x and whose

Ordinates are in the Form 1 — xx|5 . 1 — xx\^ . 1 — xx\^ . 1 — xx\^

.1 — xx|* . 1 — xx\^ . &c. Then if the Areas of the alter-

nate ones which are x, x — |x^ x — fx^ + |x^ x — fx'

+ |x^ — jx'', &c. could have values interpolated between these

terms, we should have the Areas of the intermediates, the first of

which i — xx|* is the Circle. For these interpolations, I noticed

that the first term in each is x and that the second term -§x^

^x^ fx^ fx"\ &c., are in Arithmetic progression. Thus the

^x^
two first terms of the Series to be intercalated should be x — ^>

For intercalating the rest, I considered that the Denominators

1, 3, 5, 7, &c. were in Arithmetic progression and so only the

Numerical Coefficients of the Numerators would require investiga-

tion. Moreover, in the alternate Areas given, these were the

figures of the powers of the eleventh number, namely, IP, 11 \

IP, IP, IP. That is, first 1, then 1, 1, thirdly 1, 2, 1, fourth,

1, 3, 3, 1, fifth 1, 4, 6, 4, 1, &c. Therefore, I sought a method of

deriving the remaining elements in these Series, having given the

two first figures. I found that when the second figure m was

supplied, the rest would be produced by continuous multiplication

of the terms of this Series:

For Example: Let (second term) m = 4, then the third term will

771 — 1 • 771 — 2
be 4X—^^— ' that is 6; and 6 X—;,— ; that is 4, the fourth; and

771 — 3 771 — "T

4 X —5— tiiat is 1, the fifth; and 1 X —r
—

> that is 0, the sixth
4 5

at which the series ended in this case.

I therefore, applied this Rule to the Series to be inserted. Thus

^ [John Wallis (1616-1703) Savilian professor at Oxford, whose Aritbmetica

Infinitorum appeared in 165S. At a later date, Newton wrote an appendix

to Wallis's Algebra.]
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for a Circle, the second term would be ^, I then let m = |,

1 ^—1 1 1 -—2
and the terms which resulted were ^ X ^—x— or — ^> — x X '^

^

1 1 1 _ 3 5
or + T-?; + T7 X ^^—

i— or — , -q) and so infinity. From this I

Id Id 4 IZo

learned that the desired Area of a segment of a Circle is

3 5 7 9
^c-

By the same process the areas of the remaining Curves to be

inserted were found, as the area of a Hyperbola, and of the other

alternates in this Series 1 + xx]^- , 1 + xx\^ , 1 + xx\^ , 1 + xx\^
,

&c.

The same method may be used for intercalating other Series,

even with intervals of two or more terms lacking at once.

This was my first entry into these studies; which would surely

have slipped from my memory had I not referred to certain notes

a few weeks ago.

But when I had learned this, I soon considered that the terms

1 — xx\^ , 1 — xx\^ , 1 — xx\^ , 1 — xx\^ , &c. that is 1, 1 — xx,

1 — 2xx + x^, 1 — 3xx + 3x* — x^, &c. could be interpolated

in the same way and areas could be derived from them; and that

for this nothing more is required than the omission of the denomi-

nators 1, 3, 5, 7, &c. in the terms expressing the areas, that is, the

coefficients of the terms of the quantity to be intercalated 1 — xx\^ ,

or 1 — xx\^ , or more generally 1 — xx|™ could be produced by
• ... • • 771 -^ 1

contmuous multiplication of the terms of this Series m X —7y
— X

Thus, (for example), 1 — xx]' would amount to 1 — ^x^ —
W - i\x^ &c. And 1 - xx\i would come to 1 - iv^ + fx*

+ ^^x^ &c. And 1 — xx|^ would be 1 — |xx — ^x^ — /ix"
&c.

Thus the general Reduction of Radicals into infinite Series

became known to me through the Rule which I set at the beginning

of the former Letter, before I knew the Extractions of Roots.

But, having learned this, the other could not long remain hidden
from me. To prove these operations, I multiplied 1 — ^x^ —
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^x* — -jig-x^ &c. by itself, and I — xx resulted, the remaining

terms vanishing into infinity by the continuance of the series.

Similarly 1 — ^xx — Jx* — /yX® &c. twice multiplied by itself

produced 1 — xx. Which, that these might be a Demonstration

of these conclusions, led me naturally to try the converse, to see

whether these Series which it was certain were Roots of the

quantity 1 — xx could not be extracted by Arithmetical means.

The attempt succeeded well . . .

^

Having discovered this, I gave up entirely the interpolation of

Series, and used these operations alone as a more genuine basis,

nor did I fail to discover Reduction by Division, a method certainly

easier.

' [The algebraic work is given here.]



LEIBNIZ AND THE BERNOULLIS

On the Polynomial Theorem

(Translated from the Latin by Professor Jekuthiel Ginsburg, Yeshiva College,

New York City.)

In a letter to Jean (I) Bernoulli, dated May 16, 1695, Leibniz speaks of a

rule invented by him for finding the coefficients of a polynomial raised to any

power whatsoever. This led to some correspondence between them, which

appears in the Commercium Pbilosopbicum et Matbematicum (Lausanne and

Geneva, 1745). Extracts from this correspondence are given here in transla-

tion, the footnotes explaining their origin. Jacques (I) Bernoulli discussed

the matter in his Ars Conjectandi (posthumously printed at Basel in 1713),

and his method is given after the extracts from the correspondence of Leibniz

with Jean I, his brother.

Jacques (1) Bernoulli returned to the same problem in a note published

posthumously in his Opera (Vol. 2, Geneva 1744, pp. 995-6). It represents

an attempt to apply the polynomial theorem to the solution of the related

but more complicated problem of finding the power of an infinite series of terms

arranged according to the ascending power of x. The attempt was inspired

by one of the two articles on the subject of the "infinitonome" published by

De Moivre in the Pbilosopbical Transactions for the years 1697 and 1698.

Bernoulli's plan apparently was to apply the previously-found theorem, first to

the case of an infinite number of terms and then to an infinite series arranged

according to ascending powers of x. This plan was not carried beyond a few

theoretical remarks which are of little practical applicability.

The special problem of finding any power of an infinite power series has been

the subject of a large number of ingenious memoirs, first among which are

those by De Moivre.

[Leibniz to Jean Bernoulli, May 16, 1695]

I have conceived then of a wonderful rule for the coefficients of

powers not only of the binomial x -\- y, but also of the trinomial

X {- y -\- z, in fact, of any polynomial; so that when given the

power of any degree say the tenth, and any term contained in it,

as x^h^,^ it should be possible to assign the coefficient (numerum
coefficientem) which it must have. .

.

^ [Commercium Pbilosopbicum. . ., I, p. 47. The term x^yh^ there given is

evidently a misprint.]
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[Jean Bernoulli to Leibniz, June 8, 1695^]

Let it be required to raise any polynomial s -\- x -\- y + z etc.

to an arbitrary power r, and let it be required to find the coefficient

of the term s^x^y^z" etc. I say that that coefficient will be

r.r— l.r — 2. r — 3. r — 4.. .g+l
1.2.3...6X1.2.3...CX1 .2.3...eetc. '

that is, the required coefficient will be given by the product of all

terms of the arithmetic progression which begins with the number

of the power of the multinomial and decreases by 1 until the

number is reached which is greater by one than the power of the

first character, this product to be divided by the product of all

terms of all the arithmetic progressions ascending from 1 up to the

respective numbers of powers of all the letters except the first. Note

that the tedious division and a considerable part of the multiplica-

tion could be eliminated by cancelling before the operation those

multiplicative parts [Bernoulli's terms for factors] that the numera-

tor has in common with the denominator. As an example we will

take what you proposed: It is required to find the coefficient of

the term s^x^y^ comprehended in the value of the trinomial

s -\- X -\- y raised to the tenth power. Substituting in the general

formula the values r = 10, 6 = 3, c = 2. We will have for the

required coefficient
:j

—'
'-? w t ' o = 10 . 9 . 4 . 7 = 2520. If the

coefficient of s^xV^z^ in the expansion of the quadrinomial s + x +
y + z to the 20th power be required, it will be =

20 . 19 . 18 . 17 . 16 . 15 . 15 . 13 . 12 . 11 . 10 . 9 ^
1.2.3.4.5.6X 1.2.3.4X1.2

19.17.5.7.13.12. 11 . 10.9 = 1745944200.

It would be a pleasure to see your rule and it would be well to test

whether they agree [experiri liceret, ut inter se consentiant];

yours is possibly simpler:

[Jacques(I) Bernoulli, in the Ars Coyijectandi^

It is proper here to note the peculiar avuTrdi^eLav between com-

binations and powers of multinomials. At the beginning of the

1 [Ibid., p. 55. In this Jean Bernoulli derives the regula mirabilis referred to

above by Leibniz.]

2 [The formula is found at the end of Chapter VIII of the second part of his

classical work. Having disposed of the problem to find the number of arrange-

ments of many various things when each one may also be combined with itself

according to one exponent, he proceeds as in the above translation.
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chapter it has been shown that in order to find the "binions"

of all the letters a, b, c, d, each of the letters must be put before

every other one (including itself); and in order to get the "terni-

ons," every one of the "binions" must be written before every one

of the letters. But the same must take place when the Hteral

quantity [quantitas literalis] a + 6 + c + c? is raised to the second,

third, and higher powers. It follows from this that when the

same symbols are regarded as parts of any multinomial, the

"binions" will represent all the terms of the square; the "terni-

ons," the terms of the cube; and the "quaternions," the terms of

the fourth power. The terms of the power will be expressed by

the addition of the combinations of the parts of the base to the

order indicated by the index of the power. Since, however, all

the terms containing the same letters, arranged in different ways,

represent the same quantity, they should be combined in one term

for the sake of brevity. To this terms should be prefixed the

number of such equivalent terms, which number is called the

coefficient of the term. It is evident that the coefficient of any

term is equal to the number of permutations of its characters.

The total number of terms is equal to the number of combinations of

the order of the index of the power that can be formed of the

elements of the base (when the order of terms is disregarded) . This

number can be found by the rule explained in Chapter V.

The great value of this observation may be seen from the fact

that by its means, it is possible to promptly determine both the

number of terms in a power and the coefficient of any term.

Thus, for example, the tenth power of the trinomial (o + 6 + c),

11 12
consists of

'

30 66 terms, by the rule of chapter V; and the

coefficient of the term a^b^c ^ by the second rule of chapter I, is

1.2.3.4.5.6.7.8.9.10 .„^
1.2.3.4inl.2.3inl.2 "" '^^'^^'

Similarly the cube of the quadrinomial a -\- b -h c -\- d will be

4 5 6
composed of ^

' ' x) 20 terms, and the terms aab and abc will

have as coefficients the numbers 3 and 6.

1 [It is interesting that Jacques (I) Bernoulli used the example discussed in

the correspondence between Leibniz and Jean (I) Bernoulli.]
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(Selected and Edited by Margaret McGuire, A.M., Teachers College, Columbia
University, New York City.)

William George Homer (1786-1837) was educated at Kingsv\'ood School,

near Bristol, but had no university training and was not a noted mathema-
tician. In 1809, he established a school at Bath, where he remained until his

death. It was there that he discovered the method of approximating roots of

higher numerical equations which is his sole claim for fame. His method

closely resembles that which seems to have been developed during the thir-

teenth century by the Chinese and perfected by Chin Kiu-shao about 1250.^

It is also very similar to the approximation process effected in 1804 by Paolo

Ruffini (1765-1822). 2 The probability is, however, that neither Horner nor

Ruffini knew of the work of the other and that neither was aware of the

ancient Chinese method. Apparently Horner knew very little of any previous

work in approximation, as he did not mention in his article the contributions of

Vieta, Harriot, Oughtred, or Wallis.

The paper here reproduced, the first written by Horner on approximations,

was read before the Royal Society July 1, 1819 and was published in the

Pbilosopbical Transactions oj the Royal Society oj London, 1819, pp. 308-335.

The modern student of mathematics will notice at once the length and difficulty

of Horner's treatment when comparing it with the simple, elementary explana-

tion in modern texts. In speaking of tlie publication of the article in the

Transactions, T. S. Davies said: "The elementary character of the subject was

the professed objection; his recondite mode of treating it was the professed

passport for its admission." The paper was reprinted in the Ladies' Diary of

1838 and two revisions were published,—the first in Leybourn's Repository,

(1830) and the second (posthumously) in the first volume (1845) of The

Mathematician. In his original article, Horner made use of Taylor's Theorem,

obtaining his transformations by methods of the calculus, but in his revisions

he used ordinary algebra and gave a more simple ex-planation of the process.

XXI. A new method of solving numerical equations oJ all orders,

by continuous approximation.^ By W. G. Horner, Esq. Com-

municated by Davies Gilbert, Esq. F. R. S.

Read July 1, 1819.

1. The process which it is the object of this Essay to establish,

being nothing else than the leading theorem in the Calculus of

1 Smith, D. E., History of Mathematics (New York, 192S) Vol. II, p. 381.

2 Cajori, F. "Horner's Method of Approximation Anticipated by Ruffini" Bulletin oj

American Mathematical Society, XVH (1911), pp. 409-414.

'The only object proposed by the author in offering this Essay to the

acceptance of the Royal Society, for admission into the Philosophical Transac-

tions, is to secure beyond the hazard of controversy, an Englishman's property

232
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Derivations, presented under a new aspect, may be regarded as a

universal instrument of calculation, extending to the composition

as well as analysis of functions of every kind. But it comes into

most useful application in the numerical solution of equations.

2. Arbogast's developement of

(See Calc. des Der. § 33) supposes all the coefficients within the

parenthesis to be known previously to the operation of (p. To the

important cases in which the discovery of y, 5, &c. depends on the

previous developement of the partial functions

(p(a-^^x), ^(a+/3x+7x2), &c.

it is totally inapplicable. A theorem which should meet this

deficiency, without sacrificing the great facihtating principle

of attaching the functional symbols to a alone, does not appear

to have engaged the attention of mathematicians, in any degree

proportionate to the utility of the research. This desideratum

it has been my object to supply. The train of considerations

pursued is sufficiently simple; and as they have been regulated

by a particular regard to the genius of arithmetic, and have been

carried to the utmost extent, the result seems to possess all the

harmony and simplicity that can be desired; and to unite to con-

tinuity and perfect accuracy, a degree of facility superior even to

that of the best popular methods.

Investigation of the Method.

3. In the general equation
<px =

I assume x = R4-r+r'+r"+
and preserve the binomial and continuous character of the opera-

tions, by making successi-vely

x = R 4-z =R +r +z'

= R'+z' =R'+ r'+z"

= R"+z" = «&c.

in a useful discovery. Useful he may certainly be allowed to call it, though the

produce of a purely mathematical speculation; for of all the investigations of

pure mathematics, the subject of approximation is that which comes most
directly, and most frequently into contact with the practical wants of the

calculator.

How far the manner in which he has been so fortunate as to contemplate it

has conduced, by the result, to satisfy those wants, it is not for him to deter-

mine; but his belief is, that both Arithmetic and Algebra have received some
degree of improvement, and a more intimate union. The abruptness of

transition has been broken down into a gentle and uniform acclivity.
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Where R" represents the whole portion of x which has already been

subjected to <p, and Zx = r^-\-z'' the portion still excluded; but of

which the part r^ is immediately ready for use, and is to be trans-

ferred from the side of z to that of R, so as to change ^R=^ to ^R^'

without suspending the corrective process.

4. By Taylor's theorem, expressed in the more convenient

manner of Arbogast, we have

<px = (p(R+z) =
^R+D^R . z+DV^ . z^+DVR . z^+

Where by D^R is to be understood ^r-^
—-—tr-' viz. the n^^

1.2 n.dR"
derivee with its proper denominator; or, that function which

Arbogast calls the derivee divisee, and distinguishes by a c sub-

scribed. Having no occasion to refer to any other form of the

derivative functions, I drop the distinctive symbol for the sake of

convenience. Occasionally these derivees will be represented by

a, b, c, &c.

5. Supposing ^R and its derivees to be known, the mode of

valuing ^R' or <p(R-j-r) is obvious. We have only to say in the

manner of Lagrange, when preparing to develope his Theory of

Functions,
ipR' = <pR+Ar
A = Dv?R+Br
B = DVR+Cr
C = DVR+ Dr

V = D"-2,pR+Ur
U= D"-i^R+r [I.]

Taking these operations in reverse order, we ascend with rapidity

to the value of (p(R-\-r) or ^R'.

6. The next point is, to apply a similar principle to discover the

value of <p(R-\-r+r') = v^CR'+r') = ^R". We here have

^R" = ^R'+AV
A' = Dv:>R'+BV
B' =DVR'+CV
e= DVR'+D'r'

V'=D"-2v'R'+UV
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But the former operation determined (pR' only, without giving

the value of any of the derived functions. The very simple

scale of known quantities, therefore, by which we advance so

rapidly in the first process, fails in those which follow.

7. Still we can reduce these formulae to known terms; for since

we have in general

P^P^^ r4-l^r-f-2_.....r+Sp^
U^U^ipa = —j

^ \J''+''(pa
1 z 5

(See Arbogast, § 137); by applying a similar reduction to the

successive terms in the developement of D''VR' = D'"v(R+r), we
obtain ^

,
m+1 m+3^

, , r> , . o
H j ^D'"+VR . r34-&c.

And it is manifest that this expression may be reduced to a form

somewhat more simple, and at the same time be accommodated to

our principle of successive derivation, by introducing the letters

A, B, C, &c. instead of the functional expressions.

8. As a general example, let

M = D'" ^R+Nr
N = D'»+VR+Pr
P = D'"+VR+Qr

represent any successive steps in the series in Art. 5 ; then are

D'" <^R =M-Nr
D'»+VR =N-Pr
D'"+VR = P-Qr

^ This theorem, of which that in Art. 4 is a particular case [m = o], has been

long in use under a more or less restricted enunciation, in aid of the transforma-

tion of equations. Halley's Speculum Analyticum, Newton's limiting equa-

tions, and the formulae in Simpson's Algebra (ed. 5, p. 166, circa fin.) are

instances. In a form still more circumscribed [r = 1, /? = o, 1, 2, &c.] it

constitutes the Nouvelle Metbode of Budan; which has been deservedly charac-

terized by Lagrange as simple and elegant. To a purpose which will be

noticed hereafter, it applies very happily; but regarded as an instrument of

approximation, its extremely slow operation renders it perfectly nugatory:

and as Legendre justly reported, and these remarks prove, it has not the

merit of originality.
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And by substituting these equivalents in the developement just

enounced, it becomes

9. With this advantage, we may now return to the process of

Art. 6, which becomes

A' = (A+Br+Cr2+Dr3+Er4+&c.)+BV
B' = (B+2Cr+3Dr2+4Er3+&c.)+CV
C = (C+3Dr+6Er2+&c.)+DV

U' = (U+^V)+r' .... [II.]

Taking these operations in reverse order as before, by determining

U', V'....C, B', A', we ascend to the value of <^R".

10. In this theorem, the principle of successive derivation

already discovers all its efficacy; for it is obvious that the next

functions U", V" C", B", A", <pR"', flow from the substitution

of A', B', C,....V', U', ^R", r', r", for A, B, C....V, U, <pR', r, r\

in these formulae; and from these U'", V", &c.; and so on to any

desirable extent. In this respect, Theorem II, algebraically

considered, perfectly answers the end proposed in Art. 2.

11. We perceive also, that some advance has been made toward

arithmetical facility; for all the figurate coefficients here employed

are lower by one order than those which naturally occur in trans-

forming an equation of the n^^ degree. But it is much to be

wished, that these coefficients could be entirely dispensed with.

Were this object eff'ected, no multipliers would remain, except

the successive corrections of the root, and the operations would

thus arrange themselves, in point of simplicity, in the same class

as those of division and the square root.

12. Nor will this end appear unattainable, if we recur to the

known properties of figurate numbers; which present to our view,

as equivalent to the n"* term of the m"* series:

1. The difference oj the n"* and n— 1"* term oj the m+1"' series.

2. The sum oJ the first n terms of the m—V" series.

3. The sum oJ the n"" term oj the m— 1'\ and the n — 1"" term oj the

m"" series.
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The depression already attained has resulted from the first

of these properties, and a slight effort of reflection will convince

us that the second may immediately be called to our aid.

13. For this purpose, let the results of Art. 9 be expressed by

the following notation:

^R" = <^R' +AV
A' = Ai +BV
B' = B2 +CV

V' = V„_2+UV
U' = U„_i+r'

the exponents subjoined to any letter indicating the degree

of the figurate coefficients in that formula of the theorem, of which

such letter is the first term.

14. Although this statement appears only to have returned to

us the conditions of Art. 6, with all their disadvantages, and to

have merely substituted

Ai for D^R' or a'

B2 for DVR' or b'

C3 for DVR' or c'

&c. yet, by means of the property just alluded to, the essential

data A, B, C, &c. which have disappeared, will again be extricated.

For the developement of D^v'R'j found in Art. 8, undergoes thereby

the following analysis:

M+nrNr+^^^Pr-+7 '

^+^
' "^+

V

+

=M+Nr+ Pr2+ Qr3+
+Nr+2Pr2+3Qr3+
+Nr+3Pr2+6Qr3+

+Nr+mPr'>+^j^^^Qr^+-

which equivalence will be thus expressed:

M^= M+Nir+N2r+N3r+ +N„,r
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Returning therefore once more to our theorem, we now have

<pR" = <pR'-\-A'r'

A = (A+B,r)+BV
B' = (B+Cir+C2r)+CV
C = (C+Dir+ D2r+D3r)+DV'

V' = (V+Uir+U2r+U3r+ U„_:r)+UV
U' = (U+7r^.r)+r'

15. This theorem employs exactly the same total number of

addends as Theorem II, but with the important improvement,

that the number of addends to each derivee is inversely as their

magnitude, contrary to what happened before. Figurate multi-

pliers are also excluded. And it is easy to convince ourselves that

no embarrassment will arise from the newly introduced functions.

For if we expand any of the addends N^r in the general formula

equivalent to M^, and analyze it by means of the third property

of figurate series, we shall find

Mfcr= Nfc_ir+Pirr.

And since we take the scale in our Theorem in a reverse or ascend-

ing order, this formula merely instructs us to multiply an addend

already determined by r, and to add the product to another known

addend; and if we trace its eff"ect through all the descending scale,

to the first operations, we observe that the addends to the last

derivee, from which the work begins, are simply r repeated n—

1

times.

16. Because No = N, the addend exterior to the parenthesis,

might for the sake of uniformity be written No'r'. The harmony

of the whole scheme would then be more completely displayed.

To render the simplicity of it equally perfect, we may reflect that

as the factors r, r', &c. are engaged in no other manner than has

just been stated, viz. in effecting the subordinate derivations, their

appearance among the principal ones is superfluous, and tends to

create embarrassment. Assume therefore

fcN = N,r,

and we have

^R" = ^R'+ oA'

A' = (A+ ,B)+ oB'
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B' = (B4-iC+2C)+oC'
C = (C+iD+2D+3D) + oD'

V'=(V+iU+2U+3U+ ._2U)+ oU'

U' = (U+n-l.r)+ r' . [Ill]

the subordinate derivations being understood.

17. The Theorems hitherto give only the synthesis of <px, when
x= R+r+r'+ &c. is known. To adapt them to the inverse or

analytical process, we have only to subtract each side of the first

equation from the value of (px; then assuming v?x— ^R^ = A^, we
have

A' =A-oA
A =a+oB

&c. as in Theorem I.

A" = A'-oA'

A'=(A+iB)+ oB'

&c. as in Theorem II. or III.

The successive invention of R, r, r', &c. will be explained among the

numerical details. In the mean time, let it be observed that these

results equally apply to the popular formula ^x = constant, as to

(px= 0.

18. I shall close this investigation, by exhibiting the whole

chain of derivation in a tabular form. The calculator will then

perceive, that the algebraic composition of the addends no longer

requires his attention. He is at Hberty to regard the characters

by which they are represented, in the light of mere corresponding

symbols, whose origin is fully explained at their first occurrence

in the table, and their ultimate apphcation at the second. The
operations included in the parentheses may be mentally effected,

whenever r is a simple digit. And lastly, the vertical arrangement

of the addends adapts them at once to the purposes of arithmetic,

on every scale of notation.



240 SOURCE BOOK IN MATHEMATICS

<l < ^
=a

u5
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Illustrations.

19. The remarks which are yet to be adduced will bear almost

exclusively on the Analytic portion of the Theorem, from which

the Synthetic differs only in the less intricate management of the

first derivee; this function having no concern with the discovery

of the root, and its multiple being additive like all the rest, instead

of subtractive.

From the unrestricted nature of the notation employed, it is

evident that no class of equations, whether finite, irrational or

transcendental, is excluded from our design. In this respect

indeed, the new method agrees with the estabhshed popular

methods of approximation; a circumstance in favour of the latter,

which is overlooked by many algebraists, both in employing those

methods, and in comparing them with processes pretending to

superior accuracy. The radical feature which distinguishes them

from ours is this: they forego the influence of all the derivees,

excepting the first and perhaps the second; ours provides for the

effectual action of all.

20. Concerning these derivees little need be said, as their nature

and properties are well known. It is suffi:cient to state that they

may be contemplated either as differential coefficients, as the

Hmiting equations of Newton, or as the numerical coefficients

of the transformed equation in R+z. This last elementary

view will suffice for determining them, in most of the cases to

which the popular solutions are adequate; viz. in finite equations

where R, an unambiguous limiting value of x, is readily to be

conjectured. When perplexity arises in consequence of some

roots being imaginary, or differing by small quantities,^ the second

notation must be called in aid. The first, in general, when <px

is irrational or transcendental.

21. The fact just stated, namely, that our theorem contains

within itself the requisite conditions for investigating the limits,

or presumptive impossibility, of the roots, demonstrates its

sufficiency for effecting the developement of the real roots, inde-

pendently of any previous knowledge of R. For this purpose, we

might assume R = o; r, r, &c. = l or .1 &c. and adopt, as most

suitable to these conditions, the algorithm of Theorem II, until

we had arrived at R*, an unambiguous limiting value of x. But

^ [Horner did not show how to separate two nearly equal roots. He elabo-

rated this discussion in his second paper published in Leybourn's Repository,

Vol. V, part II, London, 1830, pp. 21-75.]
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since these initiatory researches seem more naturally to depend

on the simple derivees, a, b, &c. than on A, B, &c. their aggre-

gates; and since, in fact, as long as r is assumptive or independent

of R, our system of derivation offers no peculiar advantage; I

should prefer applying the limiting formulae in the usual way; pass-

ing however from column to column (Wood, § 318.) of the results,

at first by means of the neat algorithm suggested in the note on

Art. 7, and afterwards by differencing, &c. as recommended by

Lagrange, {Res. des Eq. Num. § 13), when the number of

columns has exceeded the dimensions of the equation. (Vide

Addendum.)

If, during this process the observation of De Gua be kept in

view, that whenever all the roots of^x are real, D"*"V^ and D'"+V^

will have contrary signs when D'"<^x is made to vanish, we shall

seldom be under the necessity of resorting to more recondite criteria

of impossibility. Every column in which o appears between

results affected with like signs, will apprize us of a distinct pair of

imaginary roots; and even a horizontal change of signs, occurring

between two horizontal permanences of an identical sign, will

induce a suspicion, which it will in general be easy, in regard of the

existing case, either to confirm or to overthrow.

22. The facilities here brought into a focus, constitute, I believe,

a perfectly novel combination; and which, on that account, as

well as on account of its natural affinity to our own principles, and

still more on account of the extreme degree of simplicity it confers

on the practical investigation of limits, appears to merit the

illustration of one or two familiar examples.

Ex. 1. Has the equation x*—4x^+8x2— 16x -1-20 = any real

•oot?—See EuLER, C. D. p. 678.
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the second column, and 4, 0, 8 in the third, show that the equation

has two pairs of imaginary roots. Consequently it has no real

root.

Ex. 2. To determine the nearest distinct limits of the positive

roots of x^— 7x+7 = 0, See Lagrange, Res. des E. N. § 27, and
note 4. § 8.

Operating as in the former example, we have

=
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it is to this latter equation that the analytical part of our theorem

is more immediately adapted. Now the slightest degree of reflec-

tion will evince, that our method is absolutely identical for all

equations of the same order, whether they be binomial or adfected,

as soon as the transformation in R has been accomplished. The
following description, therefore, of a familiar process in arithmetic,

will convey an accurate general idea of our more extensive calculus,

and obviate the necessity of any formal precepts.

In Evolution, the first step is unique, and if not assisted by
an effort of memory, could only be tentative. The whole subse-

quent process may be defined, division by a variable divisor. For

an accurate illustration of this Idea, as discoverable in the existing

practice of arithmeticians, we cannot however refer to the mode
of extracting any root, except that of the square; and to this, only

in its most recently improved state. Here, in passing from one

divisor to another, two additive corrections are introduced; the

first depending on the last correction of the root, the second on the

correction actually making. And this new quotient correction of

the root, since it must exist previously to the completion of the

divisor by which it is to be verified, is required to be found by means

of the incomplete divisor; and may be taken out, either to one digit

only, as is most usual, or to a number of digits equal to that which

the complete and incomplete divisors possess in common. And
farther, as these divisors may not, in the first instance, agree accu-

rately even in a single digit, it is necessary at that stage of the

operation, mentally to anticipate the effect of the new quotient,

so as to obtain a sufficiently correct idea of the magnitude of the

new divisor.

24. This is an accurate statement of the relation which the

column headed by the first derivee bears to the analysis. The

remaining columns contribute their aid, as successively subsidiary

to each other; the contributions commencing with the last or

n—V* derivee, and being conveyed to the first through a regular

system of preparatory addends dependent on the last quotient-

correction, and of closing addends dependent on the new one.

The overt and registered manner of conducting the whole calcula-

tion, enables us to derive important advantage from anticipated

corrections of the divisors, not only at the first step, but, if requi-

site, through the whole performance, and also, without the neces-

sity of a minute's bye-calculation, communicates, with the result,

its verification.
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25. Let us trace the operation of the theorem as far as may be

requisite, through the ascending scale of equations.

1. In Simple equations, the reduced equation may be represented

by A = az; whence z = ~. Now the theorem directs us to proceed

thus:

a A(r+r'+
— ar

-ar'

A"
-ar'

A'"

&c.

precisely the common arithmetical process of division.

2. In Quadratics, we have A = az-\-z'^, and proceed in this

manner:

1 a A(r+r'+
r —Ar
A ~A^

-AV
-A^

ll
&C.

A'
—

&c.

the known arithmetical process for extracting the square root.

3. At Cubic equations, the aberration of the old practice of

evolution commences, and our theorem places us at once on new

ground. We have here

A(r+r+.
-Ar

and must proceed thus:
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This ought to be the arithmetical practice of the cube root, as an

example will prove.

Ex. I. Extract the cube root oj 48228544.

Having distributed the number into tridigital periods as usual,

we immediately perceive that the first figure of the root is 3 = R.

Consequently, the first subtrahend is R' = 27, the first derivee

3R2 = 27, the second 3R= 9; the third ( = 1,) need not be written.

Hence

48228544(364
9. 27.. 27
6 = 576 —

21228
96 3276 19656
12. 612.
4 ; 4336 1572544

1572544
1084 = 393136

In this example the reader will perceive that no supplementary

operations are concealed. The work before him is complete, and

may be verified mentally. I need not intimate bow much more

concise it is than even the abbreviated statement of the old process.

(See Hutton's Course.)

The station of 1, 2, &c. numeral places respectively, which the

closing addends occupy in advance of the preparatory ones, is an

obvious consequence of combining the numeral relation of the

successive root-figures with the potential relation of the successive

derivees. In fact, as is usual in arithmetic, we tacitly regard the

last root-figure as units, and the new one as a decimal fraction;

then the common rules of decimal addition and multiplication

regulate the vertical alineation of the addends.

26. The advantage of mental verification is common to the

solution of equations of every order, provided the successive

corrections of the root be simple digits: for the parenthetic deriva-

tions will, in that case, consist of multiplying a given number by

a digit, and adding the successive digital products to the corre-

sponding digits of another given number; all which may readily

be done without writing a figure intermediate to these given

numbers and the combined result. For this reason the procedure

by single digits app)ears generally preferable.
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Nevertheless, to assist the reader in forming his own option,

and at the same time to institute a comparison with known

methods on their own grounds, I introduce one example illustrative

of the advantage which arises from the anticipatory correction

of the divisors spoken of in Art. 24, when the object is to secure a

high degree of convergency by as few approximations as possible.

The example is that by which Newton elucidates his method. I

premise as the depreciators of Newton do, that it is an extremely

easy problem; and I say this to invite comparison, not so much

with his mode of treating it, as with theirs.

Ex. II. What is the value of x in the equation x^— 2x= 5.^

The root is manifestly a very little greater than 2. Make it

x= 2-\-z, and the equation becomes

1 = 10z+6z2+z3.

Hence, arranging the derivees,

6.

'

10.. 1.000(

6

The first digit will obviously be so nearly 1, that by anticipating

its effect on the divisor, we are sure this will be very nearly 106.

Hence

10.6)1.000(.094 first correction

The square is 942 = 8836.

Hence we have

6... 10 1.000000000(.094

094 572836 : 993846584

6094x94=- 10572836 ^ 6153416

188 581672

3

The first digit of the next correction will evidently be 5; the

effect of which we have as before anticipated as far as one digit.

The divisor will therefore be 11158 correct to the last figure.

Hence
11158)6153416(55148, second correction.

The square is 30413, &c. to 10 digits.

^ [The equation x^ — 2x — 5 = is Newton's classic example, also used by

Ruffini.]
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Hence,
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th part of that number (reckoning from the point at which the

highest place of the closing addend begins to advance to the right

of that of the first derivee) needs to be found by means of the

process peculiar to the complete order of the equation; after

which, -—::—V may be found by the process of the 7i— 1"' order,

1

n-1

by that of the n •2"* order, &c.
n— 1 . n—

2

2. Several of these inferior processes will often be passed over

per saltum; and when this advantage ceases, or does not occur, the

higher the order of the process, the fewer will be the places deter-

minable by it. And in every case, the latter half of the root will

be found by division simply. Meantime, the number of figures

employed in verification of each successive root-digit, instead of

increasing, is rapidly diminishing.

3. The process with which we commence, need not be of a higher

order than is indicated by the number of places to which we would

extend the root; and may be even reduced to an order as much
lower as we please, by means of an introductory approximation.

Ex. III. Let the root of the equation in Ex. II. be determined

to the tenth place of decimals.

Arranging the derivees as before, we proceeded thus: ^

' [Horner's arrangement differs from that of Ruffini in that the coefficients of

the transformed equation appear in a diagonal line, while Ruffini arranges

them in the extreme right hand column,

begin as follows:

The modern arrangement would

1 -2

+ 2 +4

-5

+4
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10....

5481
609
184

62

,|62

74

105481
5562..

25096

1.000000(. 0945514815
949329

11129396
82 2511

314

1115764
31

3

111611
3

11161

2

12

50671000
44517584

6153416
5578825

574591
558055

92
1

4
l|l|li6|l)16536(14815

11161

5375
4465

910
893

17
11

6
6

Consequently the root is 2.0945514815, correct to the proposed

extent, as appears on comparing it with the more enlarged value

already found. The work occupied a very few minutes, and may
be verified by mere perusal, as not a figure was written besides

those which appear. By a similar operation, in less than half an

hour, I have verified the root to the whole extent found in Ex. 11.^

Ex. VI. If it were proposed to obtain a very accurate solution

of an equation of very high dimensions, or of the irrational or

transcendental kind, a plan similar to the following might be

adopted. Suppose, for example, the root of

x^ = 100, or X log X = 2

were required correct to 60 decimal places. By an easy experi-

ment we find x = 3.6 nearly; and thence, by a process of the third

order, x = 3.597285 more accurately.

' [Examples IV and V, which have been omitted, show the extraction of roots

of the equations .v' — 7 x = —7 and .v^ -f 2x* + 3.v' + 4.\- — 5.v = 321.]
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Now, 3597286 =98X71X47X11, whose logarithms, found to 61

decimals in Sharpe's Tables, give R log R = 2.00000096658, &c.

correct to 7 figures; whence the subsequent functions need be

taken out to 55 figures only. They are

a = Mod+ log R = .990269449408, &c.

6 = Mod--2R = 0^60364. &c.

c=-6 -T-3R = -.01^55, &c.

&c. The significant part disappears after the 8th derivee; conse-

quently, the process will at first be of the eighth order. If the root

is now made to advance by single digits, the first of these will

reduce the process to the seventh order; one more reduces it to the

sixth order; two more, to the fifth, &c. The last 27 figures will be

found by division alone.

But if the first additional correction is taken to 8 figures, and

the second to 16, on the principle of Example II, we pass from the

8th order to the 4th at once, and thence to the 1st or mere division,

which will give the remaining 29 figures. This mode appears in

description to possess the greater simplicity, but is perhaps the

more laborious.

It cannot fail to be observed, that in all these examples a great

proportion of the whole labour of solution is expended on the com-

paratively small portion of the root, which is connected with the

leading process. The toil attending this part of the solution, in

examples similar in kind to the last, is very considerable; since

every derivee is at this stage to receive its utmost digital extent.

To obviate an unjust prejudice, I must therefore invite the reader's

candid attention to the following particulars:

In all other methods the difficulty increases with the extent of

the root, nearly through the whole work; in ours, it is in a great

measure surmounted at the first step: in most others, there is a

periodical recurrence to first conditions, under circumstances of

accumulating inconvenience; in the new method, the given condi-

tions affect the first derivees alone, and the remaining process is

arithmetically direct, and increasingly easy to the end.

The question of practical facility may be decided by a very

simple criterion; by comparing the times of calculation which I

have specified, with a similar datum by Dr. Halley in favor of

his own favorite method of approximation. (Philosophical

Transactions for 1694.)
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Addendum I. (Vide Art. 21.) Note. But in this case, it will

be more elegant to find the differences at once by the theorem )]

A«+iD-^R'=^^A'D'"+VR-r+^^ .^^A'D'"+VR.r+ &c.

which, supposing r to be constant, is a sufficiently obvious corol-

lary to the theorem in Art. 7. AH the results may then be derived

from the first column by addition. Thus, for the latter trans-

formations in Ex. II. Art. 22, the preparatory operation would be

1st. Terms.



ROLLE'S THEOREM

(Translated from the French by Professor Florian Cajori, University of

California, Berkeley, Calif.)

Writers on the history of mathematics of the early part of the present cen-

tury did not know where in the writings of Michel RoIIe the theorem named

after him could be found—the theorem according to which /(x) = has at

least one real root lying between two consecutive real roots of/(x) = 0. One

historian went so far as to express the opinion that the theorem is wrongly

attributed to RoIIe. Finally, in 1910, the theorem was found in a little-

known book of Rolle, entitled. Demonstration (Tune Methode pour rksoudre les

Egalitez de tous les degrez; suivie de deux autres Metbodes, dont la premiere

donne les moyens de resoudre ces mimes egalitez par la Geometrie, et la seconde,

pour resoudre plusieurs questions de Diopbante qui n'ont pas encore este resolues.

A Paris, Chez Jean Cusson, rue Saint Jacques, a I'lmage de Saint Jean Baptiste.

M.DC.XCI. (pp.
128).i Copies of this book are in the" Bibliotheque Nation-

ale," in the "Bibliotheque de L'Arsenal," and in the "Bibliotheque de I'lnstitut

de France," in Paris. In this treatise the theorem in question is established

only incidentally, in RoIIe's demonstration of the "method of cascades" for

the approximation to the roots of numerical equations.

Nowhere in his Demonstration, nor in his Traite d'algebre, a widely read

t)Ook published at Paris a year earlier (1690), is there given a formal definition

of a "cascade." But it is implied in what RoIIe states that, if in an equation

fix) = 0, /(x) is "multiplied by a progression," the result when simplified and

equated to zero is a "cascade." He prefers to use the progression 0, 1, 2, 3,

. . .Then, after multiplying each term of an equation by the corresponding

term of the progression, he divides the resulting expression by x and equates

the quotient to zero. Thus, multiplying the terms of a -|- 6z -f cz- -f ... by

the respective terms of 0, 1, 2,. . ., he obtains bz + Icz- -{-...; dividing this

by z and equating to zero, he arrives at the first or proximate "cascade,"

6 -{- 2cz -H . . . = 0. It will be seen that this result is the first derivative of the

initial expression, equated to zero.

RoIIe's "method of cascades" is given in his Traite d'algebre, without suffi-

cient proof. To meet this criticism leveled against it, RoIIe wrote the Demon-

stration. In both treatises RoUe used certain technical terms which we must

explain. Complex roots of an equation, as well as all but one root of each

multiple root, are called "racines defaillantes." We shall translate this

phrase by "imaginary roots and multiple roots." Roots which are not

"defaillantes" he calls "racines effectives;" we shall translate this by "real

and distinct roots." Another term used by RoIIe is " hypotheses" or "limits"

of the roots. If two numbers a and b are substituted for z in/(z), and /(a) and

' See an historical article on RoIIe's theorem in Bibliotbeca Matbematica, 3rd. S., Vol. 11.

pp. 300-313.

253
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f{b) have opposite signs, then between o and b there is a root of /(z) = 0, and

a and b are called "limits" (hypotheses) of the roots.

In the extracts given below, it will be seen that RoIIe's theorem is proved in

Article IX for the case when the roots of the equation are all positive, and in

Artile XI when the roots may be any real or complex numbers.^

Before applying to a given equation his "method of cascades," RoIIe trans-

forms the equation so that the coefficient of the highest power of the unknown

is unity and all real roots are positive. When this is achieved he calls the

equation "prepared." In the reasoning which follows the equations are

assumed to be "prepared."

Before making quotations from RoIIe's Demonstration, it is desirable to give an

example of his "method of cascades." To find an upper limit of the real roots,

he takes the numerically largest negative coefficient —g, divides g by the coeffi-

cient of the highest power of the unknown, and then adds 1 to the quotient and

enough more to get a positive integer; this result is his upper limit. Given the

limits 0, 6, 13 of an equation f{v) = 6v^ — 72v + 198 = 0, Rolle approxi-

mates to the root between, say, 6 and 13 in this manner: The mean of 6 and

13 is 9J^. By substitution of 6 and 9 in /(r), opposite signs are obtained.

Hence 6 and 9 are closer limits. Repeating this process yields the limits 6 and

8, and finally 7 and 8. Take 7 as the approximate root.

The "method of cascades" is illustrated by the following quotation from

RoIIe's Traite d'algebre, 1790, p. 133:

Take the equation r* — 24y' -f 198i;y — 648y -f 473 x 6,'- and

the first rule [rule for finding cascades] gives

4v - 24 X ^

6vv - 72v + 198:o^

4v^ - 72w + 396t; - 648 ^o ^

y4 _ 24z;3 + 198w - 648r + 473 x ^

In the first cascade one finds t;x)6; then the second has 6 . 6 . 13

for limits; and by the means of these limits one finds 4 and 7 as

approximate roots of the second cascade. If one regards these

approximate roots as veritable roots, they may be taken as inter-

mediate limits of the next cascade. Accordingly the limits of the

third cascade are 6.4.7. 163, by which one discovers that 3.6.9
are three roots of this third cascade. Consequently, the fourth

cascade has as limits 6.3.6.9. 649. With the aid of these one

finds that unity is an exact root of the proposed equation and that

6 . 8 . 10 . are approximate roots."

1 The first occurence of the name "RoIIe's Theorem" appears to be in the writings of the

Italian Mathematician Giusto Bellavitis. He used the expression "teorema del Rolle"

in 1846 in the Memorie deW I. R. Istituto Veneto di Scienze, Lettere ed Arte, Vol. Ill (reprint),

p. 46, and again in 1860 in Vol. 9. § 14, p. 187.

2 [RoIIe uses the small Greek letter 6 as the symbol for zero. See F. Cajori,

History of Mathematical Notations (1928), Vol. I, §82. Rolle expresses equality

by the sign » used by Descartes. See F. Cajori, op. cit., §191.]
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The first five articles in the Demonstration refer to elementary matters

which it is not necessary to reproduce here. In our quotation we begin with

article VI.

Article VI.—Take in order [of magnitude] any number of

roots which are positive and different from one another, such as

3, 7, 12, 20, and form equations containing them, such as'

z— 3.Z— 7.Z— 12.Z — 20. etc.

This done, in the order shown here, it is evident, that if one sub-

stitutes 6 in place of z, or else a number smaller than the first

root, the results [the resulting factors] are all negative; that if one

substitutes a number greater than the first root and less than the

others, the results are all negative except one; if one substitutes

a number greater than the first two roots and less than the others,

the results are all negative except two; and so on. But if one

limits the number of roots, the substitution of a number which

surpasses the greatest root will give + everywhere. This is clear.

Therefrom it follows that if one multiplies together all the results

obtained from the substitution of each number, so that there are

as many respective products as there are numbers, these products

will be alternatively positive and negative, or negative and

positive. .

.

Coroll. I.—It is clear that these numbers thus chosen, give by

their substitution, a regular sequence of signs and thereby serve

the purpose of limits of the roots.

Coroll. II.—It is evident also that if all the limits, except the

first and last, are not placed singly between the roots, so to speak,

the regular sequence of the signs will be broken.

Coroll. III.—It is likewise clear that the roots [all positive and

distinct] are numbers placed singly between these hmits, and

consequently, if the roots are substituted in an equation whose

roots are these limits, this substitution will yield results alternately

positive and negative, or negative and positive. One sees this in

the example,

y — 6 .y — 21 .y — 30. Roots of the equation,

^

y — 6 .y — 12. y — 26, Roots of the cascade,

^ [The omission of parentheses as seen in RoIIe is not infrequent in books of

the seventeenth and eighteenth centuries. RoIIe's notation is equivalent to

(z - 3)(z - 7)(z - 12) (z - 20) etc. See F. Cajori, op. cit.. Vol. I, §354.]

2 [RoIIe uses the term "equation" (egalit^) even when the polynomial is

not equated to zero, or the equality is not indicated symbolically.)
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where it appears that 6 substituted for y at the cascade . . . gives

the factors whose product is positive; that 21 gives factors whose

product is negative, and that 30 gives factors whose product is

positive; and consequently the roots 6, 21, 30, being each sub-

stituted for y in the cascade, in turn will give alternately + and
— ...Thus the roots are hmits^ of their own limits [taken as

roots] . . .

Coroil. VI.—If one is able to prove that the Methode gives

necessarily the limits of all [distinct, positive] roots, it follows that

there are imaginary and multiple roots when it does not yield

limits. But to establish this truth, other principles are necessary.

Article VII.—If one takes each of the letters y and v to represent

any number, all the arithmetical progressions which have only

three terms are comprised in the following:

y . y + r . y + 2r.

This is unquestionable.

If one has any arithmetical progression and if one takes in that

progression several successive terms, it is evident that these terms

are in arithmetical progression. For example, if one has the

progression ^.1.2.3.4.5. etc., and if one takes 0, 1, 2 or 1, 2, 3

or also 2, 3, 4, etc., it is clear that the terms in each are in arith-

metical progression.

When I say that an equation is multiplied by a progression, it

must be understood that the first term of the equation is multiplied

by the first term of the progression; that the second term of the

equation is multiplied by the second term of the progression, and

so on. When the sum of these products is taken to be equal to 6,

one says that this equation is generated by the progression.

Article VIII.—When the product of the two quantities z — a,

z — b, is multiplied by the progression y + 2v, y + r, y, and b is

substituted in place of the unknown in the product of the progres-

sion, the result of the substitution is measured by [i. e. will have

the factor] b — a. Here is the proof:

ab — az -}- zz ] r\ 1 r T J

, > Product or z — a and z — b.

y . y 4- I' . y + 2r The progression.

1 [This is the first reference to what we now call " Rolle's theorem," restricted

as yet to the case of equations all of whose roots are real and positive.]
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Multiplying,

Product which the progression gives.

aby — ayz + yzz

— byz + 2vzz

— avz

— bvz

Upon substituting b in place of z in the last product, one obtains

bbv — abv, having the factor b — a, which was to be proved . . .

Coroll.—Having as above the quantity

ab — az -\- zz:

- bz

If one multiplies it by z raised to any arbitrary power and if the

product is multiplied by an arithmetical progression, it is clear

that on substituting 6 for z in the product of the progression the

result has the factor b — a. . .

Article IX.—Having as above, the given quantity,

ab — az -\- zz,

- bz

if one multiplies it by / + gz + hzz + rz'^ + nz^, and so on, so

that the unknown z attains any given degree, I say that the partial

products may always be disposed as follows:

A . . . abj — ajz + /zz
, r ( First product
6/z j

B... + g«6^ - «^^^ + ^^M Second product— b%zz ]

C. .

.

+ habzz — haz^ -^ hz'^ \ rr^, . ,
,

_ , 7 3
> 1 hird product

Prog. ^ . 1 .2 .3 .4 etc.

And so on to infinity, where one sees that each of the partial

products which are marked by A . B . C. etc. is always measured

by [i. e., has as a factor] the given quantity, since that quantity

is one of the generators.

Coroll. I.—If the sum of the partial products is multiplied by the

arithmetical progression ^.1.2.3.4. etc., each of the products

A . B . C . etc. is also multiplied by the progression: that is to say,

the product A by . 1 . 2, the product B by 1, 2, 3, and so on.

Observe for the understanding of what follows, that the product

A when altered by the progression by which it is multiplied, is

designated D; that the product B thus altered is designated E; that

the product C after a similar change is marked F, etc.
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Coroll. II,—From this first corollary and Articles VII and VIII,

one may conclude that on substituting b for z in each of the

products D . E . F . etc., each of the results is divisible by 6 — a

without a remainder. But substituting b for z in each of these

products amounts to making the substitution in the total product.

From this it is evident that after this substitution is made, the

total product is measured by 6 — a.

Coroll. III.—If in place of the quantity / + gz + bzz -\- rz^ +
etc. one takes the product of z — c, z — (/, z — e, etc., one arrives

at all the conclusions which have been reached; that is to say, after

substituting b for z in the total product which the progression

brings forth, the result is divisible by 6 — a without a remainder.

This is evident, since, as we see, /, g, h, r, etc. stand for any given

quantities.

Coroll. IV.—It is also clear from the formation of the total

product that all the letters a, 6, c, d, etc. are on the same footing

and all that has been established for b with respect to a, may be

concluded for any of the letters with regard to any of the others.

From this it follows that on substituting separately, in the total

product of the progression, any of the letters a, b, c, d, e, etc. in

place of the unknown z, the result will be divisible by the letter

substituted less any of the others that we may wish. So that

the result which the substitution of a gives, is divisible by a — 6,

by a — c, hy a — d, etc.

In the same way, the substitution of c for z must yield a result,

divisible without a remainder, by c minus any one of the other

roots taken separately. Similarly for the others.

Coroll. V.—If one supposes. . .that the root a is greater than the

root b, that 6 is greater than c, that c is greater than d, etc., it

follows from Article V^ and the preceeding corollary that the

results [products] which give [i. e., which limit] the roots of the

proximate cascade, are alternately positive and negative or

negative and positive.

Coroll. VI.—If an equation is formed as in Article I [all the roots

being positive and distinct], its roots are the limits of the roots of

the proximate cascade, for this cascade is derived by multiplying

by the progression 6.1.2. etc. as in this Article IX. Moreover,

these roots have the limitations imposed upon them in the preced-

^ [Article V in the Derjionstration, which we omitted, states that if the positive

roots a, b, c, d,. . . are so related tht a>b>c>d>..., then the products

{b — a)(b — c)ib — d) and {c — a)(c — b)(c — d) . . . have opposite signs.]
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ing CoToli. V. Hence it follows from this same corollary and
Coroll. Ill of Article VI, that the roots are limits of the roots of

its cascade.'

Coroll. VII.—Since the roots of equations thus formed are limits

of the roots of their cascade, it follows from Coroll. VI ... . that the

roots of the proximate cascade are limits of the roots of the equa-

tion of which it is the cascade.

Since the progression [in Article IX] gives a cascade which is

divisible by the unknown z, one sees that 6 is one of the roots [of

the cascade] and it is evident from this that 6 is the lower limit

[of the roots of the given equation], according to our suppositions.

If one substitutes the roots [of an equation] in its cascade before

dividing it by z, the results are divisible by the letter substituted.

But as this letter represents only some positive number, according

to our assumptions, it does not bring about any change in the

sequence of signs . .

.

Coroll. VIII.—If the roots are irrational, the limits will give the

regular sequence signs, on the supposition that the roots satisfy

the conditions specified in Article I [{. e., are positive and distinct],

for these roots are determined by the equation which contains

them, and the proximate cascade is formed from that equation.

Coroll. IX.—The roots being all positive and distinct, there are

as many of them as the number indicating the degree of the

equation which contains them . .

.

Article X.—Let all the signs of an equation be alternating as the

result of the "preparation" of equations, then it always transpires

that the real and distinct roots are all positive; and one may prove

this truth as shown in what follows.

Let all the powers of an unknown, such as x, which are arranged

in order, have alternately the signs — and -{-, as seen in —x +
XX — x^ -\- x^ etc. From this it is clear that, if one substitutes a

negative unknown in an equation the terms of which are alternat-

ing [in sign], such as -\-q — pz -\- nzz — pz^ -f- etc., it comes about

that the signs of the resulting equation are all positive. And if

the proposed one should be —q-\-pz — nzz + rz^ etc., a trans-

position [of terms] after the substitution, produces the same effect.

And reciprocally, a [complete] equation all the signs of which are

positive, is changed into another in which all terms are alternating,

when one substitutes a negative unknown in place of the unknown

* (This is another passage containing "RoIIe's theorem." See also Coroll.

VIII.]
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of the equation. This is clear. It is clear also that an equation

of which all the terms are positive can not have positive roots, for

when such a root is substituted in the equation, the sum of the

positive terms should destroy that of the negative ones, when as

we suppose, all the terms are in the same member; which is

impossible. . .

Article XI.—If some of the roots are real and distinct, the others

imaginary, these imaginary ones do not prevent the limits from

giving suitable signs to the real and distinct roots. For, the

proposed equation may always be conceived to be formed by the

multiplication of two simpler equations, the one having all roots

real and distinct, the other having all roots imaginary, and by

Article IX the cascade involves limits which agree with the real

and distinct roots [of the given equation]. And one can see that

the imaginary roots do not give rise to the sequence [of signs]

which one finds in real and distinct roots. . .

Article XII.—There are at least as many imaginary roots in

an equation as there are in its proximate cascade. For, if the

roots of the equation which correspond to these imaginaries were

real, it would follow that upon substituting them in the cascade

they would give the regular sequence referred in CoroII. V of

Article IX, while according to the definition of imaginary roots,

they give when substituted always +. This is contrary to

supposition.

If one does not take zero as one of the terms of a progression,

and if this 6 is not placed beneath the last term or beneath the

first term of the equation, the proximate cascade will have the

same degree as the equation itself. Thus the Method would

suppose what is in question.^ But taking zero for one of the

extremes of the progression and marking this progression in general

terms, the letter which serves in this general expression is found

only of the first degree in each term of the cascade, and disappears

in the ordinary cancellation. From this it follows that this

progression produces no other effect on the limits than does 6.1.2.

This happens also when 9 is placed under the last term, for the

reasons just stated.

' [That is, the solution of the cascade equation presents the same problem

as does the original equation.]
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On the Quintic Equation

(Translated from the French by Dr. W. H. Langdon, with Notes by Professor

Oystein Ore, Yale University, New Haven, Conn.)

The Norwegian mathematician, Niels Henrik Abel (1802-1829) very early

showed an unusual mathematical ability, and in spite of the fact that his short

life was a constant struggle against poverty and illness, he wrote a series of

scientific papers that secures him a position among the greatest mathematicians

of all time. In his "Memoire sur les equations algebriques ou Ton demontre

I'impossibilite de la resolution de I'equation generale du cinquieme degr6 CEuvres

complktes, (Vol. I, Christiania (Oslo) 1881, p. 28-33), Abel proves the impos-

sibility of solving general equations of the fifth and higher degrees by means

of radicals. The paper was published as a pamphlet at Oslo in 1824 at Abel's

own expense. In order to cave printing costs, he had to give the paper in a very

summary form, which in a few places affects the lucidity of his reasoning.

After the solutions of the third and fourth degrees had been found by

Cardano and Ferrari, the problem of solving the equation of the fifth degree

had been the object of innumerable futile attempts by the mathematicians of

the 17th and 18th centuries. Abel's paper shows clearly why these attempts

must fail, and opens the road to the modern theory of equations, including

group theory and the solution ofequations by means of transcendental functions.

Abel proposed himself the problem of finding all equations solvable by
radicals, and succeeded in solving all equations with communtative groups,

now called Abelian equations. Among Abel's numerous other achievements

are his discovery of the elliptic functions and their fundamental properties,

his famous theorem on the integration of algebraic functions, theorems on

power series (see p. 286), where further biographical notes appear, etc.

A Memoir on Algebraic Equations, Proving the Impossibility oj a

Solution of the General Equation of the Fifth Degree

The mathematicians have been very much absorbed with finding

the general solution of algebraic equations, and several of them
have tried to prove the impossibility of it. However, if I am not

mistaken, they have not as yet succeeded. I therefore dare hope

that the mathematicians will receive this memoir with good will,

for its purpose is to fill this gap in the theory of algebraic equations.

Let

be the general equation of fifth degree and suppose that it can be

solved algebraically,

—

i. e., that y can be expressed as a function

261



262 SOURCE BOOK IN MATHEMATICS

of the quantities a, 6, c, d, and e, composed of radicals. In this

case, it is clear that y can be written in the form

I J m-l

y='p-\- piK'" + P2K'" +. . . + Pm-iK "
,

m being a prime number, and R, p, pu ps, etc. being functions of

the same form as y. We can continue in this way until we reach

rational functions of a, 6, c, d, and e. We may also assume that

J
R"* cannot be expressed as a rational function of a, 6, etc., p, pi, p2,

etc., and substituting —- for JR, it is obvious that we can make

PI = 1.

Then
J J "-1

y = p-\-R^-^ PaK'" +. . . + p„_iK
'"

Substituting this value of y in the proposed equation, we obtain,

on reducing, a result in the form

J J m-l

P = g + giK'" + g2K'"+...4-g._i/? '" =0,

Q, Qu 92, etc. being integral rational functions of a, 6, c, d, e, p, pz,

etc. and R.

For this equation to be satisfied, it is necessary that g = 0,

1

q\ = 0, ^2 = 0, . . .Qm-i = 0. In fact, letting z = R"", we have

the two equations

z"" - R = 0, and g + giz + . . . + ^r^iz""^ = 0.

If now the quantities g, gi, etc. are not equal to zero, these equa-

tions must necessarily have one or more common roots. U k

is the number of these roots, we know that we can find an equation

of degree k, whose roots are the k roots mentioned, and whose

coefficients are rational functions of R, q, qi, and g„v_i. Let this

equation be
r + riz + r2Z^ + . . . + TkZ^ = 0.

It has all its roots in common with the equation z'" — R = 0;

now all the roots of this equation are of the form a^z, a^ being one

of the roots of the equation a^ — 1 = 0. On substituting, we

obtain the following equations

r + riZ + r2z2+...+ riZ^ = 0,

r -}- ariz + ahzZ^ + • • • + a'^rkz'' = 0,

r + cik-iTiZ + ak-2^r2Z^+ . . . + a^k-iruz'' = 0.
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From these k equations we can always find the value of z, expressed

as a rational function of the quantities r, ri,. . .r*; and as these

quantities are themselves rational functions of a, b, c, d, e, R, p, pz,

. . ., it follows that z is also a rational function of these latter

quantities; but that is contrary to the hypotheses. Thus it is

necessary that

q = 0, qi = 0,. . .gr„_i = 0.

If now these equations are satisfied, it is clear that the proposed
1

equation is satisfied by all those values which y assumes when RT
is assigned the values

i J J J

a being a root of the equation

^m-l ^_ ^m-2 ^ ^ ci+1 =0.

We also note that all the values ofy are different; for otherwise we
should have an equation of the same form as the equation P = 0,

and we have just seen that such an equation leads to a contra-

dictory result. The number m cannot exceed 5. Letting yi, y2,

yg, y4, and ys be the roots of the proposed equation, we have

I 2 m-l

yi = p + K'" + P2R'" + . . . + p^_xK
"*

",

J i m-l

y2 = p + aK" + a^pR"" + - . • + a^-'Pn.-iR "
,

J J m-l

ym=^p-\- a^m"" + a^-'pzR'" + . . . + up^-iR "
.

Whence it is easily seen that

P = ;;;(J^i + y2 + . .

. + Vm),m
J 1

«"* = -(yi + a"-V2 + . . . + aym),m

PzK" = -(yi + «"'-V2 + . . . + ahfm),m

^
1

p^-iK" = -(yi + oy2 + . . . + a—Vm).m

Thus p, p2, . . .Pm-i, ^. and R!^ are rational functions of the roots

of the proposed equation.
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Let us now consider any one of these quantities, say R. Let

R = 5 + v" + 52i;"+...+ 5„_ii; "
.

Treating this quantity as we have just treated y, we obtain the

similar result that the quantities S, 52, ... , 5„_i, v, and i" are

rational functions of the different values of jR; and since these are

1

rational functions of yi, y2, etc., the functions y", v, S, S2 etc.

have the same property. Reasoning in this way, we conclude that

all the irrational functions contained in the expression for y, are

rational functions of the roots of the proposed equation.

This being established, it is not difficult to complete the demon-

stration. Let us first consider irrational functions of the form

J j_

R"^, R being a rational function of a, 6, c, d, and e. Let R"" = r.

Then r is a rational function of yi, y2, ya, yi, and yg, and K is a

symmetric function of these quantities. Now as we are interested

in the solution of the general equation of the fifth degree, it is

clear that we can consider yi, y2, ys, y4, and ys as independent

J
variables; thus the equation R^ = r must be satisfied under this

supposition. Consequently we can interchange the quantities

J

yi, y2, yz, y\, and y^ in the equation K"* = r; and, remarking that

K is a symmetric function, R"^ takes on m different values by this

interchange. Thus the function r must have the property of

assuming m values, when the five variables which it contains are

permuted in all possible ways. Thus either m = 5, or m = 2,

since m is a prime number, (see the memoir by M. Cauchy in the

Journal de I'ecole polytechnique, vol. 17).^ Suppose that m = 5.

Then the function r has five different values, and hence can be

put in the form

K>^ = r = p -{- piyi + p^yi^ 4- Psyi^ 4- p^i\

* ["Memoire sur le nombre des valeurs qu'une fonction peut acquerir," etc.

Let p be the greatest prime dividing n. Cauchy then proves (p. 9) that a

function of n variables, taking less than p values, either is symmetric or takes

only two values. In the latter case the function can be written in the form

A + BA where A and B are symmetric, and A is the sf>ecial two-valued

function

A = (yi - y2)(yi - ys) . (yn-i - yJ-l



ABEL 265

Pf Pi. P2. • • .being symmetric functions of yi, y2, etc. This equa-

tion gives, on interchanging yi and y2,

p + Piyi + Pzyi^ + Payi' + P4yi* = ap + a;piy2 + ap2y2^

+ ap3y2^ + a;P4y2^

where
a* + a^ + a- -\- a + I =0.

But this equation (is impossible) ;* hence m must equal two. Then

m = r,

and so r must have two different values, of opposite sign. We then

have,2 (see the memoir of M. Cauchy),

RH = r = v(yi - y2)(yi - ys) • • • (y2 - ys) . . . (\'i - y^) = vS^^.

V being a symmetric function.

Let us now consider irrational functions of the form

1 1 1

P> Pi. P2, etc., R, Eu etc., being rational functions of a, 6, c, d, and

e, and consequently symmetric functions of yi, yo, ys, y4. and y5.

We have seen that it is necessary that v = fj.=...= 2, R = v^S,

Ri — Vi^Sy etc. The preceeding function can thus be written in

the form
1 2

(P + Pi^^)",
Let

1 J
r=(p+ p,SY,

1 J

ri = {p- - piS-)"".

Multiplying, we have
J

rr, = (p^ - p^'Sr.

^ [In a later paper {Journal Jiir die reine und angewandte Matbematik Vol. 1,

1826) Abel gives a more detailed proof of the main theorem, based on the same
principles. At the corresponding point he gives the following more elaborate

proof. By considering yi as a common root of the given equation, the relation

defining R, yi can be expressed in the form

y, = 5o + s.R}^ + S2R^ + s,R^ + s,R^.

Substituting a'R^ for R we obtain the other roots of the equation, and solving

the corresponding system of five linear equations gives

s^RH = l^(yj -}. Q,4y2 + a^Yi + aV4 + ayi).

This identity is impossible, however, since the right-hand side has 1 20 values,

and the left-hand side has only 5.]

^ [Compare 1.]
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If now TTi is not a symmetric function, m must equal two; but tlien

r would have four different values, which is impossible; hence rti

must be a symmetric function. Let v be this function, then

i J I -A

This function having m different values, m must equal five, since

m is a prime number. We thus have

z=g + giy + g;0^' + gay' + g4y^ = (p + Pi5^^)^ + t;(p + pi5>^) -H,

q, Qi, ?2, etc. being symmetric functions ofyi, ya, ys, etc., and conse-

quently rational functions of a, 6, c, d, and e. Combining this

equation with the proposed equation, we can find y expressed as a

rational function of z, a, b, c, d, and e. Now such a function can

always be reduced to the form

where P, R, P% Pz, and P4 are functions of the form p +pi5^i,

where p, pi, and 5 are rational functions of a, 6, c, d, and e. From

this value of y we obtain

R\i = my, + aV2 + aV3 + aV4 + cty,) = (p + piS>^)>^,

where
0,4 _j_ ^3 _j_ Q,2 _|_ ^ _|_ J ==0.

Now the first member has 120 different values, while the second

member has only 10; hence y can not have the form that we have

found: but we have proved thaty must necessarily have this form,

if the proposed equation can be solved : hence we conclude that

It is impossible to solve the general equation of the fifth degree in

terms of radicals.

It follows immediately from this theorem, that it is also impossi-

ble to solve the general equations of degrees higher than the fifth,

in terms of radicals.



LEIBNIZ

On Determinants

(Translated from the French and Latin by Dr. Thomas Freeman Cope, National

Research Fellow in Mathematics, Harvard University, Cambridge, Mass.)

The work on determinants of Gottfried Wilhelm Leibniz (1646-1716), who
was almost equally distinguished as a philosopher, mathematician, and man-of-

affairs, is far less widely known than his work on the calculus. In fact, his

contributions to this domain of algebra were entirely overlooked until the

publication, in 1850, of the correspondence between him and the Marquis de

I'Hospital. The letters to L'Hospital disclose the remarkable fact that, more

than fifty years before the time of Cramer, who was the real moving spirit in

the development of the theory, the fundamental idea of determinants had

been clear to Leibniz and had been expounded by him in considerable detail

in one of these letters. His work, however, had little or no influence on

succeeding investigators.

A study of the following extracts from the writings of Leibniz shows that

his contributions to this phase of algebra are at least two in number: (1) a

new notation, numerical in character and appearance; (2) a rule for writing out

the resultant of a set of linear equations.

The first of the extracts here given is from a letter of Leibniz to L'Hospital,

which was dated April 28, 1693, and published for the first time (1850) at

Berlin in Leibnizens Matbematiscbe Scbrijten, herausg. von C. I. Gerhardt,

le. Abth., Band II, pp. 238-240. The second extract is from a manuscript

which was published for the first time (1863) at Halle in a subsequent volume

of the above-mentioned work, namely, in the 2e. Abth., Band III, pp. 5-6.

The original manuscript bears no date, but it was probably written before 1693

and possibly goes back to 1678. Each of the articles was published in Muir's

well-known Theory oj Determinants, the second edition (Macmillan & Co.)

of which appeared in 1906. For an excellent account of Leibniz's life and

work, the reader is referred to the Encyclopaedia Britannica, 12th ed., and, for

an analysis of his contributions to the theory of determinants, to the scholarly

treatise of Muir mentioned above. For further biographical notes relating

particularly to his work on the calculating machine and on the calculus, see

pages 173 and 619.

Leibniz on Determinants

I

Since you say that you have difficulty in believing that it is as

general and as convenient to use numbers instead of letters, I must

not have explained myself very well. There can be no doubt
267
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about the generality if one considers that it is permissible to use

2, 3, etc., like a or 6, provided that it is understood that these are

not really numbers. Thus 2 . 3 does 7iot denote 6 but rather ab.

As regards convenience, it is so considerable that I myself often

use them,^ especially in long and difficult computations where it is

easy to make mistakes. For besides the convenience of checking

by numbers and even by the casting out of nines, I find their use

a very great advantage even in the analysis itself. As this is

quite an extraordinary discovery, I have not yet spoken to any

others about it, but here is what it is. When one has need of

many letters, is it not true that these letters do not at all express

the relationship among the magnitudes they represent, while by

the use of numbers I am able to express this relationship. For

example, consider three simple equations in two unknowns, the

object being to eliminate the two unknowns and indeed by a

general law. I suppose that

10+llx + 12y = (1),

and
20 + 21x + 22y = (2),

and
30 + 31x 4- 32y = (3),

where, in the pseudo number of two digits, the first tells me the

equation in which it is found, the second, the letter to which it

belongs. Thus on carrying out the computation, we find through-

out a harmony which not only serves as a check but even makes us

suspect at first glance some rules or theorems. For example,

eliminating y first from the first and second equations, we shall

have:
10.22 + 11 .22x

-12.20- 12.21..
= (4)^

and from the first and third:

10.32 + 11 .32x

-12.30 - 12.31..
= (5).

where it is easy to recognize that these two equations differ only

in that the anterior character 2 is changed to the anterior character

3. Moreover, in similar terms of an equation, the anterior

' [/. e. numbers in place of letters.]

^ [This is an abbreviated form, as Muir points out, for

+ 10.22 + 11.22X = Ol"|

-12.20 - 12.21X = OJ J.
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characters are the same and the posterior characters have the

same sum. It remains now to eliminate the letter x from the

fourth and fifth equations, and, as the result, we shall have:^

lo • 2i . 32 lo . 22 . 3i

li . 22 . 3o = li . 2o . 32

I2 . 2o . 3i I2 . 2i . 3o,

which is the final equation freed from the two unknowns that we
wished to eliminate, which carries its own proof along with itself

from the harmony observable throughout, and which we should

find very troublesome to discover using the letters a, 6, c, especially

when the number of letters and equations is large. A part of the

secret of analysis is the characteristic, rather the art, of using nota-

tion well, and you see, Sir, by this little example, that Vieta and

Descartes did not even know all of its mysteries. Continuing the

calculation in this fashion, one will come to a general theorem for

any desired numbers of letters and simple equations. Here is

what I have found it to be on other occasions:

—

Given any number of equations which is sufficient for eliminating

the unknown quantities which do not exceed the first degree:—for

the final equation are to be taken, first, all possible combinations oj

coefficients, in which one coefficiei^t only from each equation is to

enter; secondly, those combinations, after they are placed on the same

side of the final equation, have different sigyis ij they have as many
factors alike as is indicated by the number which is less by one than

the number of unknown quantities: the rest have the same sign.

II

I have found a rule for eliminating the unknowns in any number

of equations of the first degree, provided that the number of

equations exceeds by one the number of unknowns. It is as

follows :

—

Make all possible combinations of the coefficients of the letters,

in such a way that more than one coefficient of the same unknown

and of the same equation never appear together.^ These com-

binations, which are to be given signs in accordance with the law

which will soon be stated, are placed together, and the result set

equal to zero will give an equation lacking all the unknowns.

^ [The notation here has been slightly changed. What is clearly meant is, as

Muir notes,

10.21.32-1-11.22.30+12.20.31 = 10. 22 . 31 -I- 11 . 20. 32 + 12.21.30.]

^ [I. e., in the same combination.]
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The law of signs is this:—To one of the combinations a sign will

be arbitrarily assigned, and the other combinations which differ

from this one with respect to two, four, six, etc. factors will take

the opposite sign : those which differ from it with respect to three,

five, seven, etc. factors will of course take its own sign. For

example, let

10 + llx + 12y = 0, 20 + 21x + 22y = 0, 30 + 31x + 32y = 0;

there will result

+ 10 . 21 . 32 - 10 . 22 . 31 - 11 . 20 . 32 ^ ^
+ 11 . 22 . 30 + 12 . 20 . 31 - 12 . 21 . 30

I consider also as coefficients those characters which do not belong

to any of the unknowns, as 10, 20, 30.



THE VERSES OF JACQUES BERNOULLI

On Infinite Series

(Translated from the Latin by Professor Helen M. Walker, Teachers

College, Columbia University, New York City.)

Jacques (Jakob, Jacobus, James) Bernoulli (1654-1705), the first of the

Bernoulli family of mathematicians, a native of Basel, wrote one of the earliest

treatises on probability,—the Ars Conjectandi. This was published post-

humously in 1713. At the close of a section entitled "Tractatus de Seriebus

Infinitis Earumque Summa Finita et Usu in Quadraturis Spatiorum &
Rectificationibus Curvarum," following Pars Quarta, these six verses appear.

Because they represent one of the clearest of the early statements relating

to the limit of an infinite series, they are given place in this symposium.

Their brevity permits of inserting both the Latin form and the translation.

Ut non-finitam Seriem finita coercet,

Summula, & in nullo limite limes adest:

Sic modico immensi vestigia Numinis haerent

Corpore, & angusto limite limes abest.

Cernere in immense parvum, die, quanta voluptas!

In parvo immensura cernere, quanta, Deum!

Even as the finite encloses an infinite series

And in the unlimited limits appear,

So the soul of immensity dwells in minutia

And in narrowest limits no limits inhere.

What joy to discern the minute in infinity!

The vast to perceive in the small, what divinity!
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On the Theory of Combinations

(Translated from the Latin by Mary M. Taylor, M. A., University of

Pittsburgh, Pittsburgh, Penn.)

The following translation is taken from Part 2 of Jacques (Jakob, James)

Bernoulli's Ars Conjectandi. Although Bernoulli (1654-1705) was also

interested and active in other branches of science, it is for his mathe-

matical works that he is particularly known. The Ars Conjectandi was

published eight years after his death, and contains, in addition to the work on

combinations, a treatise on Infinite Series. The first part of the book is

attributed to Huygens, but Part 2 is Bernoulli's own. This selection is part of

Chapter V and is from the first edition, pages 112 to 118, inclusive.

While this is by no means the earliest material published on the subject, it si

among the earliest scientific treatments and is so authoritative as to deserve

a place in a source book of this nature. The subject matter chosen presents

for solution a situation which occurs in various problems of higher mathe-

matics. The method of solution is typical of the rest of the work.

Chapter V. Part 2.

To find the number of combinations, when each of the objects

to be combined, whatever they are, is different from the others,

but may be used more than once in each combination.

In the combinations of the preceding chapters we have assumed

that an object could not be joined with itself, and could not even

be accepted more than once in the same combination; but now we

shall add this condition—that each object can be placed next to

itself, and further that it can occur repeatedly in the same

combination.

Thus let the letters to be combined by this plan be a, b, c, d, etc.

Let there be made as many series as there are letters, and let the

individual letters, just as so many units, occupy the first place in

each, as was done in chapter two.

In finding the combinations of two, or binary terms of each

series, the letter which heads that sequence is to be combined not

only with each of the letters preceding it, but also with itself.

Thus we shall have in the first series one binary aa, in the second

two binaries ab, 66, in the third three, ac, be, cc, in the fourth four,

ad, bd, cd, dd, etc.
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So also in forming the ternaries,—each letter must be joined not

only with the binaries of all the preceding series, but also with

those of its own series. In this way we shall have in the first

series one ternary, aaa; in the second series three, aab, abb, 666;

in the third series six, aac, abc, bbc, ace, bcc, ccc; and so on.

This same plan is to be followed in combinations of every other

degree, by which plan it is clear that none of the possible selections

among the given objects can be overlooked. In tabular form;

a. aa. aaa.

6. ab. bb. aab. abb. 666.

c. ac. be. cc. aae. abc. bbc. ace. bcc. cce.

d. ad. bd. cd. dd. aad. abd. bbd aed. bed. ccd. add bdd. edd. ddd.

From this, with no great difficulty, we infer that the single

terms of all the series form a group of ones; the binaries, a series

of positive integers (or natural numbers) ; the ternaries, a series of

three-sided figures; and the other combinations of higher degree

hkewise constitute series of other figures of higher order, just as

did the combinations of the preceding chapters, with this one

difference, that there the series began with zeros, and here they

start directly from the ones. Thence if the series are collected

into tabular form, they present this arrangement:

Tabula Combinatoria

Exponentes Combinationum

I
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From these properties it is easy to find the sum of the terms of

any series whatever, and so the number of combinations according

to the degree thereof. For if the number of terms, that is of

things to be combined, is called n, the sum of the ones, or terms of

the first series, will be the last term of the second series, likewise n.

We may sup{X)se the second series to have a zero prefixed, so

that the number of terms becomes n + 1; if the last term n is

multiplied by half of this n + 1, the product -^—^ will be

the sum of the twos or terms of the second series (according to

property 12,^ chapter 3), and the last term of the third, (by

property 2 of this chapter).

We may suppose two ciphers to be prefixed to the third series,

and the number of terms will become n + 2. If the last term just

W • 71 ~i~ 1
found, —^j

—

;:
—

} be multiplied by one-third of this, it will become

^—=—:= ) the sum oi the ternaries or terms oi the third

series, and at the same time, by the same properties, the last term

of the fourth series.

In the same way the sum of the terms of the fourth series

(quaternaries) is found to be — ^

—

'-^^—s

—

-^ > of the fifth

n.n4-1.^4-2.n + 3.n4-4 ,. ,, -

series j

—

7y—^

—

j—

?

; and in general the sum ot

the terms of the c series, or combinations of degree c, is found to be

n.n-4-l.n4-2.n-l-3.n + 4 ... (n + c— 1)

1.2.3 .4.5 ... c
•

Here it should be noted that if c > n the factors of the fraction can

be diminished by dividing numerator and denominator by n . n -j- 1

.

^T^ T c+l.c + 2.c-f-3.c + n-l J.
. . . c, so that we have ———z—^—^—-. ^

, and since
1 . 2 . 3 . 4. . .n — 1

this fraction, worked out according to the formula, should at the

1 [Property 12, Chapter 3. The sum of any number of terms of any vertical

column beginning with the proper number of ciphers has the same ratio to the

sum of as many terms equal to the last, as unity has to the number of that

series; that is, the sum of any number of the natural numbers, beginning the

series with one cipher, is to the sum of as many terms, each equal to the great-

est of these, or the last, as 1:2; of the third order series beginning with two

ciphers as 1:3, etc. This same is also true of the ratio which the sum of the

terms of any series beginning with unity has to the sum ofas many terms, equal

to the term following the last.]
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same time indicate the sum of c -f 1 terms in the series n — 1, it

follows that the sum of n terms in the series c is always equal to

the sum of c + 1 terms in the series n — 1, which is another by no
means negligible property of this table. Thence results the

following

Rule

for finding the number of combinations according to a given degree,

when the same objects can enter into the same combination more
than once.

Let two increasing arithmetic progressions be formed, the first

starting from the number of things to be combined, the other from

unity, of both of which the common difference is unity, and let

each have as many terms as the degree of the combination has

units. Then let the product of the terms of the first progression

be divided by the product of the terms of the second progression,

and the quotient will be the desired number of the combinations

according to the given degree. With this understanding, the

number of combinations by four among ten different things is

10.11.12.13 17160 »,,

1.2.3.4 " ~U- " ^^^-

Note.—If the degree of the combination is greater than the

number of objects, (as is clearly possible under the present hypo-

thesis) it will be shorter to begin the first progression with that

degree increased by one, and to make each series of one fewer

terms than there are objects. Thus the number of combinations

of degree 10 among four objects is

11 . 12 . 13 1716 -o,
-nT.ir " -6"

"
^^^'

But also we can find with no more difficulty the number of

combinations according to several degrees following each other

successively from unity up, that is, the sum of as many vertical

series. For since, for example, the first 10 terms of the first 4

vertical columns are the same as the first 4 terms of the first 10

transverse columns, and moreover the sums of these terms are

equal to eleven terms of the first vertical column, decreased by

the first or unity (of course the sums are equal one by one to these

terms, as is evident from the second property of the table), it is

clear, also, that the 10 first terms of the first four vertical columns,

i. e., the sum of all the ones, twos, threes, and fours selected from

ten things, is less by one than the eleven first terms of the fourth
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column, I. e., than the number of quaternaries formed of eleven

things, or than number of combinations formed from one more

than the given number of objects and of degree equal to the greatest

of the given degrees. This same fact may also be shown in this

way: Obviously, the eleventh object either does not occur in a

particular combination of four from the given eleven objects, or

it occurs once, twice, thrice, or four times; but it is evident that

those quaternaries in which the eleventh object does not appear

are just the ones which the ten remaining objects can form among
themselves. And it is no less evident that the number of those

into which the eleventh enters only once should equal the number

of ternaries to be formed from the remaining ten; so also the

number of those in which it occurs twice (should equal) the number

of binaries, and of those in which it occurs three times the number

of ones, since when joined once to the ternaries, twice to the

binaries, and three times to the units, it forms quaternaries;

besides it is known that there is one quaternion which is formed by

the eleventh object, repeated four times.

From this, we conclude that the number of combinations of

four included in eleven objects, that is in one more than the given

number of objects, exceeds by one all the combinations by one,

two, three, and four, of the given ten objects, unless we wish to

add to the latter the zero combination, in which case the two are

equal.

Wherefore, since, when the number of objects given is n, and

the greatest degree c, the number of combinations of that degree

in n + 1 things is found by Rule of chapter 4 to be

1 .2.3.4...C
'

the number of combinations of n things according to all degrees

from one to c becomes (as it is one less than this)

n + l.n + 2.n + 3.n + 4...n + c_ -

1 .2.3.4...C

But if c is greater than n itself, i. e., if the greatest of the degrees is

higher than the number of objects, the terms of the fraction can

in this case be divided byn + l.n + 2.n-}-3...c, and hence

the quantity can be expressed more briefly as

c + l.c + 2.c + 3...c + n

1.2.3.4...n
From this comes the

- 1.
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Rule

for finding the number of combinations according to several

degrees following successively from unity.

Let two increasing arithmetic progressions be formed, the first

starting from one more than the number of objects to be combined,

the other from unity, of which the common difference is one, and

let each have as many terms as the highest degree has units.

(But if the greatest of the degrees is larger than the number of

objects, it is easier to begin the first progression with that degree

increased by one, and to make each of as many terms as there are

given objects.) Then the product of the terms of the first pro-

gression is to be divided by the product of the terms of the second

progression; and the quotient will be the required number of

combinations if, of course, we wish the zero combination included;

but if not, the quotient diminished by one will indicate the desired

quantity. Thus the number of units, binaries, ternaries, and

quaternaries, together with the zero combination, in 10 objects is

11.12.13.14 24024 ,^^, , , ,. . 5.6.7—
:j
—r—^—J— XI x> 1001, among only three thmgs IS :j—^—

^

210
X. —^ 30 35; but if the zero is excluded the number of combina-

6

tions is 1000 in the first case, 34 in the second.

I



GALOIS

On Groups and Equations and Abelian Integrals

(Translated from the French by Dr. Louis Weisner, Hunter College of the

Gty of New York.)

Evariste Galois (1811-1832) was bom in Paris, was educated at the Lycee

Louis-Ie-Grand and the £coIe Normale, was a rabid republican, was twice

imprisoned for his political views, and lost his life in a stupid, boyish duel

before he had reached the age of twenty-one. His most important paper,

"Memoire sur les conditions de r6soIubiIit6 des Equations par radicaux" was

not published until 1846, when his works app)eared in Liouville's Journal de

Matbkmatiques.

The night before the duel in which Galois was killed he wrote a letter to his

friend Auguste Chevalier in which he set forth briefly his discovery of the

connection of the theory of groups with the solution of equations by radicals.

In this letter, written apparently under the impression that the result of the

duel would be fatal to himself, he asked that it be published in the Revue

cncycbpedique, a wish that was carried out the same year (1832, page 568).

His works were republished in 1897 under the auspices of La Society Mathe-

matique de France with an introduction by E. Picard. Further writings of

Galois were published by J. Tannery in the Bulletin des Sciences Matbematiques

(1906-1907) and reprinted the following year in txaok form. It being imF>ossi-

ble to include in a source book of this kind the memoire above mentioned, the

letter to M. Chevalier is here given in translation.

My dear friend,

I have made some new discoveries in analysis.

Some are concerned with the theory of equations; others with

integral functions.

In the theory of equations, I have sought to discover the condi-

tions under which equations are solvable by radicals, and this has

given me the opportunity to study the theory and to describe all

possible transformations on an equation even when it is not solv-

able by radicals.

It will be possible to make three memoirs of all this.

The first is written, and, despite what Poisson has said of it, I

am keeping it, with the corrections I have made.

The second contains some interesting applications of the theory

of equations. The following is a summary of the most important

of these:
278
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1°. From propositions II and III of the first memoir, we perceive

a great difference between adjoining to an equation one of the

roots of an auxiliary equation and adjoining all of them.

In both cases the group of the equation breaks up by the

adjunction in sets such that one passes from one to the other by
the same substitution, but the condition that these sets have the

same substitutions holds with certainty only in the second case.

This is called the proper decomposition.^

In other words, when a group G contains another H, the group

G can be divided into sets, each of which is obtained by multiplying

the permutations of H by the same substitution; so that

G = H + HS + HS' +...

And it can also be divided into sets which contain the same

substitutions, so that

G = H+TH+TH+...
These two methods of decomp>osition are usually not identical.

When they are identical, the decomposition is proper.

It is easy to see that when the group of an equation is not suscep-

tible of any proper decomposition, then, however, the equation be

transformed, the groups of the transformed equations will always

have the same number of permutations.

On the other hand, when the group of an equation admits a

proper decomposition, in which it has been separated into M
groups of N permutations, then we can solve the given equation

by means of two equations, one having a group ofM permutations,

the other N.

When therefore we have exhausted in the group of an equation

all the pyossible proper decompositions, we shall arrive at groups

which can be transformed, but whose permutations will always be

the same in number.

If each of these groups has a prime number of permutations,

the equation will be solvable by radicals; otherwise not.

The smallest number of permutations which an indecomposable

group can have, when this number is not a prime, is 5 . 4 . 3.

2**. The simplest decompwDsitions are those which occur in the

method of M. Gauss.

As these decompositions are obvious, even in the actual form of

the group of the equation, it is useless to spend time on this matter.

1 [A proper cIecomp>osition, in modem parlance, is an arrangement of the

permutations of a group into cosets with resp>ect to an invariant subgroup.)
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What decompositions are practicable in an equation which is

not simplified by the method of M. Gauss?

I have called those equations primitive which cannot be simplified

by M. Gauss's method; not that the equations are really indecom-

posable, as they can even be solved by radicals.

As a lemma in the theory of primitive equations solvable by

radicals, I made in June 1830, in the Bulletin de Fhrussac an

analysis of imaginaries in the theory of numbers.

There will be found herewith^ the proof of the following

theorems:

\°. In order that a primitive equation be solvable by radicals

its degree must be p", p being a prime.

2°. All the permutations of such an equation have the form

Xk.l.m,- • \Xak+bl+cm+- • •+h, a'k+b' l+c'm+- • •+h',a"k+- • •> K> h Vl, . . .

being v indices, which, taking p values each, denote all the roots.

The indices are taken with respect to a modulus p; that is to

say, the root will be the same if we add a multiple of p to one of

the indices.

The group which is obtained on applying all the substitutions

of this linear form contains in all

P-'Cp"- 1)0" -p)...(p" - p"-!)

permutations.

It happens that in general the equations to which they belong

are not solvable by radicals.

The condition which I have stated in the Bulletin de Ferussac

for the solvability of the equation by radicals is too restricted;

there are few exceptions, but they exist.

^

The last application of the theory of equations is relative to the

modular equations of elliptic functions.

We know that the group of the equation which has for its roots

the sines of the amplitude^ of the p^ — 1 divisions of a period is

the following:

Xk,h Xak+bl, ck+dl*

MLiouville remarks: "Galois speaks of manuscripts, hitherto unpublished,

which we shall publish."]

^ [Galois stated in the Bulletin des sciences matbematiques de M. Ferxissac

(1830), p. 271, that the elliptic modular equation of degree p + 1 could not be

reduced to one of degree p when p exceeds 5; but p = 7 and p = 11 are excep-

tions to this statement, as Galois shows in the next page of his letter.]

3 [Meaning the elliptic 5n-function.]
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consequently the corresponding modular equation has for its

group

Xk, Xak+bl
I ck + dl'

k
in which j may have the p + 1 values

00, 0, 1, 2,. . ., p - 1.

Thus, by agreeing that k may be infinite, we may write simply

Xk, Xak+b-
ck + d

By giving to a, 6, c, d all the values, we obtain

(p + l)p(p - 1)

permutations.

Now this group decomposes properly in two sets, whose sub-

stitutions are

Xk, Xak+b *

ck+ d

ad — be being a quadratic residue of p.

The group thus simplified has — ~^ permutations.

But it is easy to see that it is not further properly decomposable,

unless p = 2 or p = 3.

Thus, in whatever manner we transform the equation, its group

will always have the same number of substitutions.

But it is interesting to know whether the degree can be lowered.

First, it cannot be made less than p, as an equation of degree

less than p cannot have p as a factor of the number of permutations

of its group.

Let us see then whether the equation of degree p + 1, whose

roots are denoted by Xk on giving k all its values, including infinity,

and has for its group of substitutions

Xk, Xak+b
ck+ d

ad — be being a square, can be lowered to degree p.

Now this can happen only if the group decomposes (improperly,

of course) in p sets of — y^- permutations each.

Let and w be two conjoint letters of one of these groups.

The substitutions which do not change and oo are of the form

Xk, Xm k'
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Therefore ifM is the letter conjoint to 1, the letter conjoint to

m^ will be m^M. When M is a square, we shall have M^ = 1.

But this simplification can be eflPected only for p =» 5.

For p = 7 we find a group of — y^ permutations,

where
00, 1, 2, 4

have respectively the conjoints

0, 3, 6, 5.

The substitutions of this group are of the form

^*» ^ (k-b)
k — c

b being the letter conjoint to c, and a a letter which is a residue or

a non-residue simultaneously with c.

For p = 11, the same substitutions will occur with the same
notations,

«, 1,3,4,5,9,

having respectively for conjoints

0, 2, 6, 8, 10, 7.

Thus for the cases p = 5, 7, 11, the modular equation can be

reduced to degree p.

In all rigor, this equation is not possible in the higher cases.

The third memoir concerns integrals.

We know that a sum of terms of the same elliptic function^

always reduces to a single term, plus algebraic or logarithmic

quantities.

There are no other functions having this property.

But absolutely analogous properties are furnished by all integrals

of algebraic functions.

We treat at one time every integral whose differential is a

function of a variable and of the same irrational function of the

variable, whether this irrationality is or is not a radical, or whether

it is expressible or not expressible by means of radicals.

We find that the number of distinct periods of the most general

integral relative to a given irrationality is always an even number.

If 2n is this number, we have the following theorem:

Any sum of terms whatever reduces to n terms plus algebraic

and logarithmic quantities.

' [Galois presumably means a sum of elliptic integrals of the same species.)
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The functions of the first species are those for which the alge-

braic and logarithmic parts are zero.

There are n distinct functions of the first species.

The functions of the second species are those for which the

complementary part is purely algebraic.

There are n distinct functions of the second species.

'

We may suppose that the differentials of the other functions

are never infinite except once for x = a, and moreover, that their

complementary part reduces to a single logarithm, log P, P being

an algebraic quantity. Denoting these functions by 7r(x, a), we
have the theorem

7r(x, a) — 7r(a, x) = 2^a • ^x,

(p(a) and ^(x) being functions of the first and of the second species.

We infer, calling 7r(a) and yp the periods of 7r(x, a) and ypx

relative to the same variation of x,

x(a) = 2iA X <pa.

Thus the periods of the functions of the third species are always

expressible in termc of the first and second species.

We can also deduce theorems analogous to the theorem of

Legendre ^

FE' + EF' - FF' =
^.

The reduction of functions of the third species to definite

integrals, which is the most beautiful discovery of M. Jacobi, is not

practicable, except in the case of elliptic functions.

The multiplication of integral functions by a whole number is

always possible, as is the addition, by means of an equation of

degree n whose roots are the values to substitute in the integral to

obtain the reduced terms.^

The equation which gives the division of the periods in p equal

parts is of degree p-" — 1. Its group contains in all

(p2n _ l)(p2n _ p)
(jpin _ p2n-i) permutations.

^ [Picard comments: "We thus acquire the conviction that he (Galois) had

in his possession the most essential results concerning Abelian integrals which

Rieraann was to obtain twenty-five years later."]

2 [According to Tannery, who collated Galois's manuscripts with Liouville's

publication of Galois's Works, Galois wrote Legendre's theorem in the form:

E'F" — E"F' = x\/ — 1. Liouville made other alterations of a minor

character.]

3 [Obscure.]
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The equation which gives the division of a sum of n terms in p
equal parts is of degree p^". It is solvable by radicals.

Concerning the Transformation.—First, by reasoning analogous

to that which Abel has indicated in his last memoir, we can show
that if, in a given relation among integrals, we have the two

functions

J<l>(x, X)dx, f^iy, ^^dy,

the last integral having 2n periods, it will be permissible to suppose

that y and Y can be expressed by means of a single equation of

degree n in terms of x and X.

Then we may suppose that the transformations are constantly

made for two integrals only, since one has evidently, in taking any

rational function whatever of y and Y,

lijjiy, Y)dy = jF(x, X)dx -\- an algebraic and logarithmic

quantity.

There are in this equation obvious reductions in the case where

the integrals of the two members do not both have the same

number of periods.

Thus we have only to compare those integrals both of which

have the same number of periods.

We shall prove that the smallest degree of irrationality of two

like integrals cannot be greater for one than for the other.

We shall show subsequenty that one may always transform a

given integral into another in which one period of the first is

divided by the prime number p, and the other 2?! — 1 remain the

same.

It will only remain therefore to compare integrals which have

the same periods, and such consequently, for which n terms of the

one can be expressed without any other equation than a single

one of degree n, by means of two of the others, and reciprocally.

We know nothing about this.

You know, my dear Auguste, that these subjects are not the

only ones I have explored. My reflections, for some time, have

been directed principally to the application of the theory of

ambiguity to transcendental analysis.* It is desired to see a

priori in a relation among quantities or transcendental functions,

what transformations one may make, what quantities one may

1 [Picard comments: "We could almost guess what he means by this, and

in this field, which, as he says, is immense, there still to this day remain dis-

coveries to make."]
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substitute for the given quantities, without the relation ceasing

to be valid. This enables us to recognize at once the impossibility

of many expressions which we might seek. But I have no time,

and my ideas are not developed in this field, which is immense.

Print this letter in the Revue encyclopedique.

I have often in my life ventured to advance propositions of

which I was uncertain; but all that I have written here has been

in my head nearly a year, and it is too much to my interest not to

deceive myself that I have been suspected of announcing theorems

of which I had not the complete demonstration.

Ask Jacobi or Gauss publicly to give their opinion, not as to the

truth, but as to the importance of the theorems.

Subsequently there will be, I hope, some people who will find

it to their profit to decipher all this mess.

Je t'embrasse avec effusion.

E. Galois.

May 29, 1832.
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On the Continuity of Functions Defined by Power Series

(Translated from the German by Professor Albert A. Bennett, Brown
University, Providence, R. I.)

This article constitutes part of the opening portion of a paper originally

written in French entitled "Investigation of the series: 1 + yx + y -—^ x'

+ ^—=—

5

x^ +. • .and so forth." It first appeared, in a faithful

German translation, in the Journal Jiir die reine und angewandte Mathematik

(Crelle) Berlin 1826, pages 311 to 339, and the extract translated below covers

pages 312 to 315). It was reprinted with corrections and notes in Ostwald's

Klassiker der Exacten Wissenscbajt, No. 71, Leipzig, 1895. The article in

the original French is in Abel, CEuvres complkes, Vol. I, Christiania, 1881,

pages 219 to 250.

Niels Henrik Abel (Aug. 5, 1802 to April 6, 1829) was born in Findo, Norway.

As a youth, his mathematical achievement was phenomenal. He studied

some eighteen months in Germany and France under a grant from the Nor-

wegian government and collaborated in founding Crelle's Journal. He
returned to Christiania, 1827, and died suddenly at the age of 26 years. The
two volumes of the second edition of his collected works bear testimony to his

productivity. The classical terms "Abelian group" and "Abelian function"

indicate in widely different fields something of his originality, profundity, and

still increasing influence.

The theorem (which is fundamental in analytic function theory) may be

stated in modem notation as follows. // a real power series converges for some

positive value of the argument, the domain oj uniform convergence extends at least

up to and including this point, and the continuity of the sum-function extends at

least up to and including this point. The extension to complex values follows

readily by the method used previously by Cauchy (noted below) in the special

case of the infinite geometric progression, Cours d'Analyse, Paris, 1821, p. 275-

278.

This theorem is of special interest, in that it was included in the scope of

the investigation by Cauchy, referred to above. Cauchy correctly stated and

in substance proved the theorem for the trivial case of the infinite geometric

progression. Cauchy proceeded at once to state and claimed to prove a

much more general theorem of which this would have been a special case.

Cauchy's more general theorem is however false. Abel remarks indeed in this

p>aper in a footnote (p. 316):

In the above-mentioned work of Mr. Cauchy (page 131) one

finds the following theorem

:

286
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"If the different terms of the series

uo + wi + "2 + Us + . . . etc.

are functions of one and the same variable x, and indeed continuous

functions with respect to this variable in the neighborhood of a

particular value for which the series converges, then the sum s

of the series is also a continuous function of x in the neighborhood

of this particular value."

It appears to me that this theorem suffers exceptions. Thus for

example the series

sin — ;^ sin 2<^ + T sin 30 — . . . etc.

is discontinuous for each value (2m + l)r of 0, where m is a whole

number. It is well-known that there are many series with similar

properties.

Abel was the first to note that Cauchy's announced theorem is not in general

valid, and to prove the correct theorem for general power series.

This paper appeared "t a critical time in the theory of infinite series. (For

reference, see Enc. des Set. Math. I, 1, 2. (1907) p. 213 to 221.) Archimedes

used the infinite series 1 + M + (K)^ +• • -Prop. 22, 23, Quadrature of the

Parabola, Works of Archimedes, T. L. Heath, 1897. p. 249-251. N. Merca-
tor, and Lord Brouncker simultaneously in 1668 introduced the infinite log-

arithmic series. Sir Isaac Newton (De analysi per aequationes numero
terminorum infinitas, (1669; London, 1711), used infinite series systematically.

Leibniz 1673 remarked upon the divergence of the harmonic series in connec-

tion with his harmonic triangle. (J. M. Child, Early mathematical manu-
scripts oj Leibniz, Chicago, Open Court, 1920, Page 50.) Both Jacques and
Jean Bernoulli considered the same problem in 1689. Even Lagrange (1768)

was content to establish the fact that the successive terms of a convergent

series approach zero, apparently assuming the converse theorem in such use as

he made of series in his Tbeorie des Jonctions analytiques (Paris, year V, 1797,

p. 50; Oeuvres, vol. 9, Paris 1881, p. 85).

The outstanding general discussion of convergence of series prior to this

paper was the Cours d"Analyse de I'Ecole Royale Polytecbnique, (Paris, 1821)

of Augustin-Louis Cauchy (Part One is "Analyse Algebrique"). Chap. 6

(pages 123-172) deals with convergence of real series; Chap. 9 (pages 274-

328), with convergence of series with complex terms. Gauss (Commentationes

Soc. Gottingen. math., 1812, Mem. no. 1; Werke, Gottingen, Vol. Ill, 1876, see

pages 139-143) had considered rigorously a particular series (the hypergeo-

raetric series) but stated however no general theorem on convergence such as

given in the extract here translated. Cauchy's completed theorem on the

circle of convergence of a Taylor-series expansion for a holomorphic function

was not published until 1832, three years after Abel's death.

Abel's own preface suggests the state of the theory of infinite series at Abel's

time. Quoting page 312:



m(m — 1) 2 ,

^^(^ — 1)(^ — 2
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values of m, the sum Vm + v^+i + . . . -f Vm+n shall approach arbi-

trarily close to zero, no matter what be the value of n.

In any convergent series, therefore, the general term Vm

approaches arbitrarily close to zero.^

Theorem I.—If a series of positive quantities is denoted by po,

Pi, P2, • • • , and if for continually increasing values of m, the quotient

Pm+i/pm approaches a limit a, which is greater than 1, then the

series

COPO + ClPl + f2P2 + . . . + (mPm + • • • ,

where €„ is a quantity which for continually increasing values of

m does not approach arbitrarily close to zero, will necessarily diverge.

Theorem II.—If in a series of positive quantities such as po +
Pi + P2 + . . . + Pm + . . ., the quotient p^+i/pm, for continually

increasing values of m, approaches arbitrarily close to a limit^

which 15 smaller than 1,^ then the series

coPo + €lPl + e2P2 + . . . + e^pjn + . . .

,

where eo, ci, e2, .., are quantities which do not exceed 1, will

necessarily converge.

Indeed by hypothesis, m can always be taken sufficiently large so

that one shall have pm+l < apm, Pm+2 < apm+l. . ., Pm+n < apm+n-i-

Thence it follows that pm+k < a^Pm, and hence

Pm + Pm+l + . . . + Pm+n < Pm(l +«+...+ «"') < -p. ^^,
(1 - a)

and hence a fortiori

^mPm ~r ^Tn+lPm+l "T" • "T ^m+nPm+n *C
(1 - a)-

Since however pm+k < a^Pm and a < 1, it is clear that pm and conse-

quently also the sum

^mPm I ^m+lpm+l t • • • ~l~ ^m+npm+n

will have zero as limit.*

Hence the series given above is convergent.

' For brevity, in this article, by w will be meant a quantity which can be

smaller than any given quantity no matter how small.

"^ [The text reads "to a limit a which. . .
" This is somewhat inexact in view

of the use made of a.]

' [And hence smaller tlian some constant a itself smaller than 1.]

* [The context shows that this somewhat ambiguous statement is to be

understood in the required sense of Iim[Iim(€,^OT + «m+iPm+i + • • • +
m—Kxin—*^

tm+nPm+n)] = O.J
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Theorem III.—If by to, tu h, . .
. , tm, . . . is denoted a series of

arbitrary quantities, and if the quantity

Pm ^^ to + h + t2 + . . . + U
is always less than a definite quantity, 8, then one has

r = €ofo + Clfl + €2^2 + • . . + €m^» < SfOi

where to, €i, €2,- • are positive decreasing quantities.

In fact one has

to = PO, ti = Pi — Po, ti = P2 — Pu-
hence

r = toPo + ei(pi - Po) + €2(p2 — Pi) + . . . + e„,{pm — Pm-l),

or also

r — Po(cO — €1) + Pl(«l — €2) + • . . + Pm-\{im-l — Cm) + PmCm-

Since however to — ci, €1 — €2, . . ., are positive, the quantity r is

obviously smaller than 5 . co.

Definition.—A function J(x) is called a continuous function of x

between the limits x = a, and x = 6, if for an arbitrary value of

X between these limits, the quantity J(x — 0) approaches arbi-

trarily close to the limit /(x) for continually decreasing values of /3.

Theorem IV.—If the series

/(a) = Vo -\- Vioc + Via- + . • • + v„a« + . .

.

converges for a certain value of 5 of a, it will also converge for

every smaller value of a, and in such a way that /(a — /3), for con-

tinually decreasing values of /S, approaches arbitrarily close to the

limit /(a), it being understood that a is equal to or smaller than d.

Let
I'o + t'la -f . . . + t'm-ia'""^ = 0(a),

Vma"" -f r^+ia^+i + • • = ^(a);

then one has

^^"^ " (iT-
'''"^"' "^

(ff^' '

""''' ^""^^ "*"•••'

hence by means of Theorem III, yp(a) < {a/8)'"p, if p denotes the

largest of the quantities Vmd"", VmS"* + Vm+i5'"+*, VmS"" + rm+iS"*-^^

+ l'm+25'""^^. . . Then for each value of a which is equal to or

smaller than 5, one can take m sufficiently large so that one has

^(a) = w.

Now /(a) = <^(a) -f- ^(a) holds, and therefore

J(a) - J(a - ^) = 0(a) - 0(a - /3) -f w.
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Since further, 4>{a) is an entire function o. a, one can take /3 so

small that

0(a) — 0(a — 0) = u

holds, and therefore also

/(a)-/(a-^)=«,

proving the theorem.

The paper continues, giving an imperfect discussion of power series with

variable coefficients, Theorem V, and in Theorem VI disposes of the product

of two convergent series: Parts III and IV which form the main substance of

the paper deal strictly with the binomial series.

k



GAUSS

Second Proof of the Fundamental Theorem of Algebra

(Translated from the Latin by Professor C. Raymond Adams, Brown

University, Providence, R. I.)

Carl Friedrich Gauss was born in Braunschweig, Germany, on April 30,

1777. At an early age he displayed marked abilities which brought him to the

notice of the Duke of Braunschweig and secured for him an education. While

a student at Gottingen from 1795 to 1798 he made numerous important dis-

coveries in several fields of mathematics. From 1807 until his death in 1855

he held the post of professor of astronomy at Gottingen, which allowed him to

devote all his time to scientific investigation. He made contributions of

fundamental significance not only in almost every leading field of pure mathe-

matics, but also in astronomy, geodesy, electricity, and magnetism. No other

mathematician of the nineteenth century exerted so profound an influence on

the development of the science as did Gauss.

Gauss gave four proofs^ of the fundamental theorem of algebra, which

may be stated in the form: every algebraic equation oj degree m has exactly m
roots.^ The significance of his first proof in the development of mathematics is

> The first was discovered in the autumn of 1797 and constituted his Dissertation; it was

published at Helmstadt in 1799 under the title "Demonstratio nova theorematis omnem
functionem algebraicam rationalem integram unius variabilis in factores reales primi vel

secondi gradus resolvi posse;" Werke, vol. 3 (1876), pp. 3-30. The second and third proofs,

"Demonstratio nova altera theorematis..." and "Theorematis de resolubilitate. . .

demonstratio tertia" appeared in 1816 in Commentationes Societatis regiae scientiarum

Gottingensis recentiores vol. 3, (class, math.) pp. 107-134 and pp. 135-142 respectively;

Werke, vol. 3 (1876), pp. 33-56, 59-64. The fourth proof was published in 1850 as

"Beitrage zur Theorie der algebraichen Gleichungen" (erste Abtheilung), Abbandlungen

der K6nilgiden Gesellsbajt der Wissenscbajten zu Cdtlingen. vol. 4, (math Klasse) pp. 3-15;

Werke, vol. 3 (1876), pp. 73-85.

2 It is not quite certain to whom the credit belongs for first stating this theorem. That an

algebraic equation of the mth degree may have m roots was recognized by Peter Rothe

(Aritbmetica Pbilosopbica, Nurnberg, 1608). Albert Girard (Invention Nouvclle en PAlgebre,

Amsterdam, 1629) asserted that "every algebraic equation has as many solutions as the

exponent of the highest term indicates;" unfortunately he added the qualification "unless

the equation is incomplete" \i. e., does not contain all powers of x from m down to zero], but

he pointed out that if an equation admits fewer roots than its degree indicates, it is useful

to introduce as many impossible \i. e., complcxl solutions as will make the total number of

roots and impossible solutions equal the degree of the equation. The clear-cut statement

of the theorem used by Gauss seems to be due to Euler in a letter dated December 15, 1742

(Correspondence Matbemalique et Pbysique, ed. by Fuss, St. Petersburg, 1845, vol. 1, p. 171).

Before Gauss several attempts to prove the theorem had been made, notably by d'AIembert

(1746), whose proof was so widely accepted that the theorem came to be known, at least in

France, as d'Alembert's theorem; by Eulcr (1749); by Foncenex (1759); by Lagrange (1772);

and by Laplace (lectures given at the Ecole Polytechnique in 1795 but published in its

Journal only in 1812). The term Jundamental theorem oJ algebra appears to have been

introduced by Gauss.

292
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made clear by his own words in the introduction to the fourth proof: "[the

first proof] . . . had a double purpose, first to show that all the proofs previously

attempted of this most important theorem of the theory of algebraic equations

are unsatisfactory and illusory, and secondly to give a newly constructed

rigorous proof." In the first three proofs (but not in the fourth) the restriction

is made that the coefficients in the equation be real; this, however, is not a

serious defect since it is readily shown^ that the case in which the coefficients

are complex can be reduced to that in which they are real. While the first

proof is based in part on geometrical considerations, the second is entirely

algebraic and has been described^ as "the most ingenious in conception and the

most far-reaching in method" of the four. It is appropriate, therefore, to give

here the second proof.

Because of the limitations of space we shall not present the entire paper, but

shall pass over the introduction (§1) and give a brief resum6 of §§2-6, which

contain the proofs of certain theorems, now well known, on the primality of

rational integral functions and on symmetric functions. From this point on

the translation will be given in full except for one section.

In §2 it is proved that if Y and Y' are any two integral functions^ of x, a

necessary and sufficient condition that they have no common factor other than

a constant is that there exist two other integral functions of x, Z and Z', satis-

fying the identity

ZY + Z'Y' ^ 1.

In §3 it is pointed out that if a, b, c,. . .is any set of m constants and if we
define

V = (x - a){x - 6)(x - c). . . = x™ - X'a;"-! + \"x'^-^ - . • .,

each X, or any function of the X's is a symmetric function of a, 6, c, . .

.

§4 is devoted to proving that any integral symmetric function of a, 6, c, . . .

is an integral function of the X's; the uniqueness of this function of the X's is

established in §5.

In §6 the product

T = (a - b)(a - c){a - d) . . . X (b - a)(6 - c)(6 - d)... X
(c -a)ic - b){c -d)...X...

is introduced. By §§4, 5 this is a certain integral function of X', X",. . . ; the

same function of /', /", ... is denoted by p and is defined as the discriminant* of

the function

y = x" - /'x™-i + /"x"-2 — . .

.

This is regarded as any integral function of x of the m"* degree with the leading

coefficient 1, without regard to the question of factorability, and the I's are to

be thought of as variables. On the other hand the function

y = x"* - L'x™-! + L"x'"-2 - . .

.

is regarded as a particular, though arbitrary, function of the same type, with

no restrictions on the coefficients, which are to be thought of as arbitrary

' Cf. Netto, "Rationale Funktionen einer Veranderlichen; ihre NuUstellen," Encyklo-

padie der Matbematiscben Wissenscbajten., vol. I, p. 233.

* Netto, Die vier Gauss'scben Beweise. , ., Leipzig, 1913, p. 81.

' [Throughout the paper Gauss uses the term integral Junction in the sense of rational

integral Junction.]

* \Determinant is the term used by Gauss in common with other writers of the time.]
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constants. The value of p for /' => L', /" = L",. . .is denoted by P. It is

with the factorability of Y that this paper is concerned. On the assumption

that Y can be broken up into linear factors,

Y = (x- A)(x - B){x -Q...,

the following theorems are proved
dY

I. UP, the discriminant of Y, is zero, Y and Y' = ^~ have a common

factor.

II. If P, the discriminant of Y, is not zero, Y and Y' bate no common factor.

7.

It is well to observe, however, that the entire strength of this

very simple proof rests on the assumption that the function Y
can be reduced to linear factors; but this amounts, at least in the

present connection, where we are concerned with the general

proof of this reducibility, to no less than assuming what is to be

proved. Yet not all of those who have attempted analytic proofs

of our principal theorem have been on their guard against this

sort of deduction. The source of such an obvious error can be

perceived in the very title of their investigations, since all have

studied only the/orm of the roots of the equation while the existence

of the roots, rashly taken for granted, should have been the object

of the demonstration. But about this sort of procedure which is

entirely at odds with rigor and clarity, enough has already been

said in the paper referred to above. ^ Therefore we will now estab-

lish on a more sure foundation the theorems of the preceding

section, of which at least a part is essential to our purpose; with

the second, and simpler, we begin.

8.

We will denote by p the function

ir(x — b)(x — c)(x — d). . . t{x — a){x — c)(xj- d) . .^

(a - by{a - cy{a - d)\ . .
' (6 - ay{b - cYQ) - dy. .

.

7r(x - a){x - b){x - d) . . .

"^(c- ay{c - by(c- dy...
^•••'

which, since v is divisible by the individual denominators, is an

integral function of the unknowns x, a, 6, c, . . . Furthermore we
set dv/dx = v', obtaining

v' == (x - b)(x - c)(x - d)...-^ (x - a)ix - c){x - d)...

+(x-a)(x-6)(x-tf)... + ...

' [Gauss's first proof, to which reference is made in the introduction, §1.]
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For X = a we clearly have p . v' = tt, from which we conclude that

the function rr — pv' is exactly divisible' by x — a, likewise by

X — b, X — c, ...and consequently also by the product v. If

then we set

T — pv'

c is an integral function of the unknowns x, a, 6, c, . . .and indeed,

like p, symmetric in the unknowns a, b, c,. . . Accordingly there

can be found two integral functions r and s of the unknowns x,

/', /", . . .which by the substitutions /' = X', /" = X",. . .go over

respectively into p and <t. If analogously we denote the function

mx"*-! - (m - l)/'x'»-2 + (m - 2)/"x"'-3 - . . .,

i. e., the derivative dy/dx, by y', so that y' also goes over by
those substitutions into v'y then clearly by those same substitutions

p — sy — ry' goes over into ir — <rv — pv\ i. e., into zero, and

must therefore vanish identically (§5). Hence we have the identity

p ^ sy -\- ry'

If we assume that by the substitutions /' = U, I" = L",. . .r and

s become respectively R and S, we have also the identity

P = SY + RY'\

and since S and R are integral functions of x, and P is a definite

quantity or number, it follows at once that Y and Y' can have no

common factor ifP is not zero. This is exactly the second theorem

of §6.

9.

The proof of the first theorem we will construct by showing

that if Y and Y' have no common factor, P can certainly not be

zero. To this end we determine by the method of §2 two integral

functions of the unknown x, say/(x) and (p{x), such that the identity

/(x) . Y + ^{x) . y = 1

holds; this we can also write as

/(x) . V 4- vW . r' = 1 +/(x) .{v-Y) + ^(x) .^^'
or, since we have

r' = (x- 6)(x~ c)(x - d)...

d[(x-6)(x-c)(x-(f)...]
+ (X - a) -^ ,

^ [An integral function will be said to be exactly divisible by a second integral

function of the same variables if the quotient of the first by the second is a

third integral function of these variables.]
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in the form

<p{x).(x-b){x-c){x-d)...

",;^^^-'^---^
+/(-v).(.v

d(v - Y)

+ <p{x) . (x - a)
2^^^

h/Cv) . (.V -a)(x-6)

dx
(x-c)...= i+/(x).(i.- y) + (x)

For brevity we will denote the expression

/(x) .{y-Y) + <p{x) .^^'
which is an integral function of the unknowns x, /', /", . . . , by

F(x, /',/"....);

hence we have identically

1 +/W •(v-Y)-^ <p{x) .^^ = 1 + F(x. y, X",. . .).

and therefore the identities

(1) <p(a) . (a - b){a - c)ia -d)...= l-\- F(a, V, X",. . .),

^(6) . (6 - a)(6 - c)(6 - cf). . . = 1 + F(6, X', X",. . .),

If then we assume that the product of all the functions

1 +F(a, /',/"....). 1 +F(6. /'./",...). ....

which is an integral function of the unknowns a, b, c,. . ., I', I", . . .

and indeed a symmetric function of a, 6, c, ... , is denoted by

H\',\",...,l',l",...),

there follows from the multiplication of all the equations (1)

the new identity

(2) TTipa .<pb.<pc...= iA(V, X",. . ., X', X",. • .).

It is furthermore clear that since the product <pa . (pb . (pc . . .

involves the unknowns a, b, c, . . . symmetrically, an integral

function of the unknowns /', /", . . . can be found which by the

substitutions /' = X', /" = X",. . . goes over into (pa. <pb. <pc. . .If

/ is this function we have identically

(3) pt = ^{l\l",...,l',l",...),

for by the substitution /' = X', /" = X", . . . this equation becomes

the identity (2).

From the definition of the function F follows immediately the

identity

F(x,L',L",...) = 0.



GAUSS 297

Hence we have successively the following identities.

l+F(a,LM",...) = 1. 1+F(6,L',L"....) = 1,....

^(X', X".....L',L",...) = 1.

and

(4) ,A(/'. r....,L',L",...) = 1.

From equations (3) and (4) jointly, if we set /' = L', I" = L", . . .

,

follows the relation

(5) PT = 1,

where T denotes the value of the function t that corresponds to

those substitutions. Since this value must be finite, P can

certainly not be zero.

10.

From the foregoing it is apparent that every integral function Y
of an unknown x whose discriminant is zero can be broken up into

factors of which none has a vanishing discriminant. In fact if we

find the greatest common divisor of the functions Y and -j->

Y is thereby broken into two factors. If one of these factors^

again has the discriminant zero, it may in the same way be broken

into two factors, and so we shall proceed until Y is finally reduced

to factors no one of which has the discriminant zero.

Moreover one easily perceives that of those factors into which

Y has been broken, at least one has the property that among the

factors of its degree index the factor 2 is present no more frequently

than it occurs among the factors of m, the degree index of Y;

accordingly if we set m = fe . 2**, where k is odd, there will be among
the factors of Y at least one whose degree is k' .2", k' being odd and

Y = /i or V < jti. The validity of this assertion follows immediately

from the fact that m is the sum of the numbers which indicate the

degree of the individual factors of Y.

11.

Before proceeding further we will explain an expression whose

introduction is of the greatest use in all investigations of symmetric

functions and which will be exceedingly convenient also for our

* [As a matter of fact only that factor which is the greatest common divisor

can have a vanishing discriminant. But the proof of this statement would

lead us into various digressions; moreover it is not necessary here, since we
should be able to treat the other factor, in case its discriminant should vanish,

in the same way and reduce it to factors.)
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purposes. We assume that M is a function of some of the

unknowns a, b, c, . .
.

; let n be the number of those which enter

into the expression M, without reference to other unknowns which

perhaps are present in M. If these ii unknowns are permuted in

all possible ways, not only among themselves but also with the

m — n remaining unknowns of the set a, b, c,. . ., there arise from

M other expressions similar to M, so that we have in all

m{m - l)(m - 2). . .(m - m + 1)

expressions, including M itself; the set of these we call simply the

set of all M. From this it is clear what is to be understood by the

sum of all M, the product of all M, . . . Thus, for example, x can

be called the product of all a — h, v the product of all x — a, v'

the sum of all , etc.
X — a

If perchance M should be a symmetric function of some of the

/i unknowns which it contains, the permutations of these among
themselves will not alter the function M\ hence in the set of all M
every term is multiple and in fact is present 1 . 2 . . . j' times if v

stands for the number of unknowns in which M is symmetric.

But if M is symmetric not only in v unknowns but also in /
others, and in v" still different unknowns, etc., thenM is unchanged

if any two of the first v unknowns are permuted among themselves,

or any two of the following v' among themselves, or any two of the

next v" among themselves, etc., so that identical terms always

correspond to
\.l...vA.2...v' A.1...V"...

permutations. If then from these identical terms we retain only

one of each, we have in all

m{m — l)(m — 2) . . . (m — )« + 1)

\.2...v.\.2...v' A.1...V"...

terms, the set of which we call the set of all M without repetitions

to distinguish it from the set of all M with repetitions. Unless

otherwise expressly stated we shall always admit the repetitions.

One further sees easily that the sum of all M, or the product of

all M, or more generally any symmetric function whatever of all

M is always a symmetric function of the unknowns o, 6, c, . .
.

,

whether repetitions are admitted or excluded.

12.

We will now consider the product of all u — (a -\- b)x + ab

without repetitions, where u and x indicate unknowns, and denote
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the same byf. Then f will be the product of the following

^m(m— 1) factors:

u ~ (a + 6)x + ab, u — (a -{ c)x + ac, u -- (a + d)x + ad,. . .;

u - {b -h c)x + be, u- (b -{- d)x + bd,. . .;

u- {c + d)x -\- cd,...; ...

Since this function involves the unknowns a, b, c, . . . sym-
metrically, it determines an integral function of the unknowns
u, X, I', I", . .

. , which shall be denoted by z, with the property that

ft goes over into f if the unknowns /', /", . . . are replaced by X',

X", . . . Finally we will denote by Z the function of the unknowns
u and X alone to which z reduces if we assign to the unknowns /',

/", . , . the particular values L', L", . .

.

These three functions f, z, and Z can be regarded as integral

functions of degree 3'^m(m — 1) of the unknown u with undeter-

mined coefficients; these coefficients are

for f . functions of the unknowns x, a, b, c,. .

.

for z, functions of the unknowns x, I', l'\ . .

.

for Z, functions of the single unknown x.

The individual coefficients of z will go over into the coefficients of

f by the substitutions I' = X', /" = X", . . . and likewise into the

coefficients of Z by the substitutions /' = U, I" — L", . . . The
statements made here for the coefficients hold also for the dis-

criminants of the functions f, z, and Z. These we will examine

more closely for the purpose of obtaining a proof of the

Theorem.—Wbenever P is not zero, the discriminant of the

Junction Z certainly cannot vanish identically.

14.1

The discriminant of the function f is the product of all differ-

ences between pairs of quantities (a -|- b)x — ab, the total number
of which is

^m{m - l)[|m(m - 1) - 1] = Km + l)m(m - l)(m - 2).

This number also expresses the degree in x of the discriminant of

the function f . The discriminant of the function z will be of the

same degree, while the discriminant of the function Z can be of

lower degree if some of the coefficients of the highest power of x

^ [We omit §13 which, containing a proof of the above theorem for the

restricted case in which Y is reducible to linear factors, is not essential to the

further developments of the paF>er.)
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vanish. Our problem is to prove that in the discriminant of the

function Z certainly not all the coefficients can be zero.

If we examine more closely the differences whose product is the

discriminant of the function f , we notice that a part of them (that

is, those differences between two quantities (a + b)x — ab which

have a common element) provides the product oj all (a — 6) (x — c)

;

from the others (that is, those differences between two quantities

(a + b)x — ab which have no common element) arises the product

of all

(a + 6 — c — d)x — ab -\- cd

without repetitions. The first product contains each factor

a — 6 clearly m — 2 times, whereas each factor x — c is contained

(m — l)(m — 2) times; from this it is easily seen that the value

of this product is
^m-2j,(m-l)(m-2)_

If we denote the second product by p, the discriminant of the func-

tion f becomes equal to

^m-2j,(m-l)(m-2)-_

If further we indicate by r that function of the unknowns x, /',

/", . . . which by the substitutions /' = X', /" = X", . . . goes over

into p, and by K that function of x alone into which r goes over by

the substitutions /' = L', /" = L", . . . , the discriminant of the

function z manifestly will be equal to

pm—2y(m— 1) (m—2)^

while the discriminant of the function Z will be

pm-2y(m-l)(m-2)^_

Since by hypothesis P is not zero, it now remains to be shown that

R cannot vanish identically.

15.

To this end we introduce another unknown w and will consider

the product of all

(a + 6 - c - d)u; + (a - c){a- d)

without repetitions; since this involves the a, 6, c, . . . symmetrically,

it can be expressed as an integral function of the unknowns w,

X', X",... We denote this function by J{w, X', X",...). The

number of the factors (a + 6 — c — d)w -\- (a — c){a — d) will be

|7n(m — l)(m — 2)(m — 3),
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from which easily follow in succession the equalities

/(O, X', X",...) = 7r('^-2)(m-3)

/(O, r, /",...) =p(«-2)(™-3)

and

The function J{w, L', L", . .
.
) must in general be of degree

\m{m — l)(m — 2)(m — 3);

only in particular cases can it well reduce to lower degree, if per-

chance some coefficients of the highest power of w vanish; it is

however impossible for it to be identically zero, since as the above

equation shows, at least the last term of the function does not

vanish. We will assume that the highest term of the function

j{w, L\ L",...) to have a non-vanishing coefficient is Nw". If

we make the substitution w = x — a, it is clear that j{x — a,

L', L", . . .) is an integral function of the unknowns x and a, or

what is the same thing, an integral function of x whose coefficients

depend upon the unknown a; its highest term is Nx" and it there-

fore has a coefficient that is independent of a and different from

zero. In the same way/(x — 6, L', L",. . .), J{x — c, U, L",. . .),

. . , are integral functions of the unknown x which individually

have Nx" as highest term, while the coefficients of the remaining

terms depend upon a, 6, c, . . . Hence the product of the m factors

f:x - a, L',L", ...)J{x- b, L', L", .

.

.), J{x - c, L, L", ...),...

will be an integral function of x whose highest term is iV'^x'"",

whereas the coefficients of the subsequent terms depend upon

a, 6, c, . .

.

We now consider the product of the m factors

/(x - a, V, r,.. .), Kx - b, v, I",. . .), Kx - c, r. r,. . .),.••.

which as a function of the unknowns x, a, b, c,. . ., /', /", . . . , sym-

metric in the a, b, c,. . ., can be expressed in terms of the unknowns

X, X', X", ...,/', /", . . . and denoted by

<p(x, X', X",. ..,/', /",
. . .)•

Thus
<p{x, X', X",. . ., X', X",. . .)

becomes the product of the factors

Six - a, X', X",. . .). Kx - 6, X', X",. . .). Kx - c, X', V',. . .),••.

and is exactly divisible by p, since as is easily seen each factor of p

is contained in one of these factors. We will therefore set

<p(x, X', X",. . .. X', X",. . .) = pHx, X', X",. . .),

k
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yj/ indicating an integral function. From this follows at once the

identity

<p{x, L', L", ...,L', L", . .
.
) = R^'ix, U, L", ...).

We have proved above, however, that the product of the factors

/(x - a, L'. L". ...),Kx- h, U, L", . . .)J{x - c,L', L", ...)....

which is «p(x, X', X",. . ., L', L", . . .) has N'^x'"" as its highest term;

hence the function ^(x, L', L", . . ., L', L", . . .) will have the same

highest term and accordingly will not be identically zero. There-

fore R, and likewise the discriminant of the function Z, cannot be

identically zero. Q. E. D.

16.

Theorem.— IJ^ <p{u, x) denotes the product of an arbitrary number

of factors which are linear in u and x and so of the form

a + /3u + yx, a' + fi'u + y'x, a" + 0"u + Y'x,. . .,

and if w is another unknown, the function^

( . d^(u, x) dip{u, x)\

will be exactly divisible by <p(u, x).

ProoJ.— If we set

<p{u, x) = (a + /3u + yx)Q = (a' + /3'u + y'x)Q' = . . .,

then Q, Q', . . . will be integral functions of the unknowns u, x, a,

/3, 7, a', /3', y',. .

.

and we shall have

d<p(u, x) n \ / t o I \^0.

dx
- '^ 1 V- 1 H- . ,^J^^
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If we introduce these values into the factors of the product fi.

that is, into

a + /3u + 7X + /3u>—T - 7U^

—

du*
a + ^u+y'x+ /3'u;—^^ ~ ^ ^—du *' * **

we obtain the expressions

(a + /3u + 7x)(l + ^uf^ - yw^y

{a' + ^'u + 7'x)(l + ^'u;^' - t'u;^'),. • -,

so that U becomes the product of <p{u, x) and the factors

1 ,
. dQ dQ . , _, dQ' , dQ'

dx du d.x du

i. e., of ¥5(w, x) and an integral function of the unknowns u, x, w;,

a, ^, 7, a', /3', 7',...Q. E. D.

17.

The theorem of the foregoing paragraph is clearly applicable to

the function f, which from now on we will denote by

/(u,x, V, V',...),

so that

y(„ + ^.,_„d_rx',x"....)

is exactly divisible by f ; the quotient, which is an integral function

of the unknowns u, x, w, a, b, c,. . .and is symmetric in a, 6, c, . . .,

we will denote by
\p(u, X, w, X', X",...).

From this follow the identities

•^(" + "'^' '"" ~ "'^' ''' '"'•
• •) " "^^"' ""' ""' ^'' '"'•

•
•^'

jlu + li^j— , X - w^, L', L",. • • ) = Z^(w. X, w, L', L",. . .).

If then we indicate the function Z simply by F{u^ x), i. e., set

/(u.x,L',L",...)=F(u,x),

we shall have the identity

Ff u + i^j— , X — li^j— j
= Z^(u, X, u', U, L", . . .).
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18.

Assuming that particular values of u and x, say u = U and

X = X, give

dZ y, dZ _ jr,

J— = A.
, J— — U ,

ax Qu
we have identically

FiU + wX\ X - ivU') = F{U, X)4^{U, X, w, L', L",. . .).

Whenever U' does not vanish we can set

X - X
^ = -[jr-

and obtain

F(u-h^- ^, x^ = F(U, X)Ju, X, ^j^, L', L".. . .y
XX' X'x

If we set u = U -\—
jj, Yjr> ^he function Z therefore

becomes

F{U, X)4.{u, X, ^^, U, L",.. .y

19.

Since in case P is not zero the discriminant of the function Z
is a function of the unknown x that is not identically zero, the

number of particular values of x for which this discriminant can

vanish is finite; accordingly an infinite number of values of the

unknown x can be assigned which give this discriminant a value

different from zero. Let X be such a value of x (which moreover

we may assume real). Then the discriminant of the function

F{u, X) will not be zero and it follows by Theorem II, §6 that the

functions

Fin. X) and^"^
du

can have no common divisor. We will further assume that there

is a particular value U of u, which may be real or imaginary, i. e.,

of the form g + h\/ —1, and which makes F(u, X) = 0, so that

F(U, X) = 0. Then u — U will be an undetermined factor of

the function F{u, X) and hence the function —M

—

- is certainly

not divisible hy u — U. If then we assume that this function

—^-—- takes on the value U' for u = U, surely U' cannot be
du

zero. Clearly, however, U' is the value of the partial derivative
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J— for u = (7, X = X; if then we denote by X' the value of the
du -^

A7
partial derivative 7— for the same values of u and x, it is clear from

dx

the proof in the foregoing section that by the substitution

,, ,
XX' X'x

the function Z vanishes identically and so is exactly divisible by

the factor

,X' (jj,XX'\

If we set XL = X-, clearly F(x^ x) is divisible by

and thus takes on the value zero if for x we take a root of the

equation

x' + ^;.-(c/ + ^) = 0,

1. 6.

^ -^' ^ Vi'^UU'U' + ^XX'U' + X'X')
"^

2U'

These values are manifestly either real or of the form g + b\/— \.

Now it can be easily shown that for these same values of x the

function Y also must vanish. For it is clear that/(xx, x, X', X", . . .

)

is the product of all (x — a)(x — b) without repetitions and so

equals v^~^. From this follow immediately

/(xx.x, /',/",...) =y--\
/(xx.x,L'.L",...) = Y-\

or F(xx, x) = Y'l-i. accordingly a particular value of this function

F cannot be zero unless at the same time the value of Y is zero.

20.

By the above investigations the solution of the equation Y = 0,

that is the determination of a particular value of x which satisfies

the equation and is either real or of the form g -\- b\/—\, is

made to depend upon the solution of the equation F{u, X) = 0,

provided the discriminant of the function Y is not zero. It may

be remarked that if all the coefficients in Y, i. e., the numbers
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U, L'\ . . . , are real, and if as is permissible we take a real value for

X, all the coefficients in F(u, X) are also real. The degree of the

auxiliary equation F{u, X) = is expressed by the number

^^mim — 1); if then m is an even number of the form l^'k, k

designating an odd number, the degree of the second equation is

expressed by a number of the form 2""^^.

In case the discriminant of the function Y is zero, it will be

possible by §10 to find another function §) which is a divisor of }',

whose discriminant is not zero, and whose degree is expressed by

a number 2''k with y < n. Every solution of the equation §) =
will also satisfy the equation Y = 0; the solution of the equation

g) = is again made to depend upon the solution of another

equation whose degree is expressed by a number of the form
2"-!^

From this we conclude that in general the solution of every

equation whose degree is expressed by an even number of the form

2"^ can be made to depend upon the solution of another equation

whose degree is expressed by a number of the form 2^''k with

n' < /i. In case this number also is even,

—

i. e., if /x' is not zero,

—

this method can be applied again, and so we proceed until we come

to an equation whose degree is expressed by an odd number; the

coefficients of this equation are all real if all the coefficients of the

original equation are real. It is known, however, that such an

equation of odd degree is surely solvable and indeed has a real

root. Hence each of the preceding equations is solvable, having

either real roots or roots of the form g -\- 6\/— 1.

Thus it has been proved that every function Y of the form

x"* — L'x""-^ + L"x"'~2 — . . ., in which L', L",, . .are particular

real numbers, has a factor x — A where A is real or of the form

g -f hy/—!. In the second case it is easily seen that Y is also zero

for X = g — hy/—l and therefore divisible by x — (g — hy/—\)

and so by the product xx — 2gx -\- gg + hh. Consequently

every function Y certainly has a real factor of the first or

second degree. Since the same is true of the quotient [of Y by

this factor], it is clear that Y can be reduced to real factors of the

first or second degree. To prove this fact was the object of this

paper.



III. FIELD OF GEOMETRY

Desargues on Perspective Triangles

(Translated from the French by Professor Lao G. Simons, Hunter College,

New York City.)

Gerard Desargues was born at Lyons in 1593 and died there inl662. Little

is known of his life. For a time, he was an engineer but later he devoted him-

self to geometry and its applications to art, architecture, and perspective.

His abilities were recognized by Descartes, between whom and Desargues

there existed an unusual friendship, and by Pascal. Desargues was a geome-

ter in a period when geometry was being discarded for the methods of analytic

geometry. The work by which he is known today is Brouillon projet d'une

atteinte aux euenemens des rencontres d'un cone avec un plan, Paris, 1639. In

this he laid the foundation of Projective Geometry.

A statement made by Chasles^ may well be used as the reason for including

this proposition in any list of contributions to the progress of mathematics.

He says in effect that we owe to Desargues a property of triangles which has

become fundamental and, in its applications, invaluable in recent geometry,

that M. Poncelet made it the basis of his beautiful theory of homologic figures,

giving the name bomologiques to the two triangles in question, centre d'bomologie

to the point of concurrency of the three lines joining the corresponding vertices,

and axe d'bomologie to the line on which the corresponding sides intersect.

The theorem is a basic one in the present day theory of projective geometry.

The source ot this article is the Oeuvres de Desargues, reunies et analy-

sees par M. Poudra, Tome I, Paris, 1864, pp. 413-415. On page 399,

Poudra gives the original source of this particular proposition as follows:

"Note:—Extrait de la Perspective de Bosse 1648, et faisant suite a la Per-

spective de Desargues de 1636." And so this important truth is found with

two others, one of which is its reciprocal, at the end of a work written by one of

the pupils and followers of Desargues.

Geometric Proposition

When the lines HDa, HEb, cED, Iga, IJb, HIK, DgK, EJK,^

in different planes or the same plane, having any order or direction

Apercu bistorique sur Forigine et developpement des mitbodes en geomitrie, Paris, 1837, 2d

ed., Paris, 1875, 3d ed., Paris, i889. Notes taken from 2d ed., pp. 82-83.

2 [Desargues omits mention of the line ahc which is necessary in the deter-

mination of c. In the figure as given by Poudra, the a appears as o but

for greater clarity the accompanying figure has been lettered to conform

with the proof as given by Desargues.]
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whatsoever meet In like points^ the points c, /, g lie in one line cfg.

For whatever form the figure takes, and in all possible cases, the

Hnes being in different planes, a6c, Iga, IJb are in one plane; DEc,

DgK, KJE in another; and the points c, /, g are in each of the two

planes; hence they are in one straight line cjg, and the lines in the

same plane are:

gD-gK

JK-JE

aD - aH
IH - IK
IK - IH

bH - bE

icD — cE
\bE - bH

bH - bE
cD - cE
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and cbagj still another, and HIK, bjl, agl are the intersections of

these three planes; hence they must meet at the same point /.

And if the lines are in a single plane, producing the given line agl

from a to meet the line HK, and then drawing lb, it can be proved

that it meets EK at a point such as / which is in a line with c and

g, that is to say that it goes to /, and hence that the two lines ag,

bj intersect at a point /, in HK. And taking the same lines in

different planes once more, if through the points H, D, E, K other

hnes Hb, Dd, Ee, Kk are passed tending to an infinitely distant

goal, otherwise parallel to one another, and intersecting one of the

planes cbagjl in the points h, d, e, k respectively; then b, I, k are

in one straight line; b, d, a in one; b, e, b in one; k, g, d in one;

k, /, e in one; and c, e, d in one, because by construction the lines

Hh, Kk, HIK are in one plane; abc, bjl, klb in another; and the

points b, I, k are in each of the planes; hence they are in one

straight line; and so with each of the other sets of three: and all of

these Hnes In the same plane cbagjl are divided by means of the

parallels through the points H, D, E, K, each in the same manner

as its corresponding one in the figure of the several planes. Thus

the figure which the parallels are used to determine in a single

plane bdabcedgjkl corresponds line to line, point to point, and

proof to proof to that of abcEHlkgJ in diff"erent planes, and the

properties of the figures can be reasoned about from either one or

the other, and by this means there may be substituted for a figure

in relief one in a single plane.

The following note is given by Poudra, tlie editor of Desargues's works,

vol. I, pp. 430-433-

ANALYSIS

OF THE FIRST GEOMETRICAL PROPORTION
OF DESARGUES

Note: The small letters a, b, c of the figure denote points

situated in the plane of the paper while the capitals E, D, H, K
denote points which may be outside the paper.

The proposition contains three distinct parts:

L If two triangles abl, DH(sic)K, in space or in the same plane,

are such that the three straight lines aD, bE, IK which connect

the corresponding vertices of the two triangles meet at a point H,

it follows; that the sides of the two triangles meet in three points

c, J, g which are in one straight line.
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2. If the corresponding sides of two triangles meet in three

coIHnear points c, /, g it follows conversely, not only that the three

straight lines aDy bE, IK which connect the corresponding vertices

are concurrent at the point H; but also that the three lines ag, bj,

HK pass through the point / because c may be regarded as the

apex of a pyramid passing through the vertices of the triangles

bjE, agD, from which, etc.

Likewise, considering / as the apex of another pyramid passing

through the vertices of the two triangles bcE, IgK, it can be demon-

strated that the corresponding sides give the collinear points

A (sic), D, H.

And again, taking g for the apex, the two triangles acD, IJK

have their corresponding sides meeting in collinear points 6, E, H.

3. If from the three vertices D, E, K of the triangle DEK and

from the vertex H, the vertical lines Dd, Ee, Kk, Hh are drawn,

these lines intersect the plane of the paper in the points d, e, k, b

which are such that the line hd passes through the point a of the

line HD, likewise hk passes through /, de through c, he through 6,

dk through g. Thus there is determined in the plane of the paper

a figure which corresponds point to point, line to line and proof to

proof to that in different planes and then the properties of the

figures may be reasoned about from either one or the other, and

by this means there may be substituted for a figure in relief one

in a single plane.

An important remark which reveals the end which Desargues

had in view in this proposition.
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On the 4-Rayed Pencil

(Translated from the French by Professor Vera Sanford, Western Reserve

University, Cleveland, Ohio.)

The first work to deal with the harmonic properties of points and of pencils of

lines was written by Gerard Desargues (1593-1662) with the title Brouillon

proiect d'une atteinte aux euenemens des rencontres d'un cone auec un plan (1639),

referred to in the preceding article. This title might be translated " Proposed

draft of an investigation into the results of the intersection of a cone and a

plane."

This work makes use of many terms of fanciful origin, and the definition of

involution differs from the ordinary definition of today. SLx points on a line

are said to be in involution when the product of the segments cut off" from a

given point by one pair of the points is equal to the corresponding products for

each of the other two pairs. The line on which these points are situated is

called a tree (arbre). The common intersection of several lines is called a

knot (noeud), each of the intersecting lines is a bough (rameau), but in this

translation, the terms point and ray will be used since their connotation is

clearer. Any of the segments between two of the points that are in involution

is a branch (brancbe). Desargues uses many other terms whose meaning is

not obvious from the context and which necessitate constant reference to the

discussion of these terms which begins his book. His proofs, as will appear in

the translation which follows were given without the use of algebraic symbolism

and in consequence they seem prolix and involved.

4 Points in Involution.'^—We may imagine the words four points

in involution as expressing two cases of the same sort, since one

or the other of these two cases results: the first where four points

on a line each at a finite distance yield three consecutive segments

of which either end segment is to the middle segment as the sum
of the three segments is to the other end segment, and the second

in which three points are at finite distances on a line with a fourth

point at an infinite distance and in which case, the points likewise

yield three segments of which one end segment is to the middle

segment as the sum of the three is to the other end segment.

This is incomprehensible and seems at first to imply that the three

points at a finite distance yield two segments that are equal to

^ [(Euvres de Desargues, edited by M. Poudra, Paris, 1864, Vol. I, p. 135-136.]
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each other, with the midpoint as both origin' and as the endpoint

coupled with an infinite distance.

Thus we should take careful note that a hne which is bisected

and then produced to infinity is one of the cases of the involution

of four points.
2

Mutually Corresponding Rays.—In the case of but four points

B, D, G, F in involution on a line through which there pass four

rays BK, DK, GK, FK radiating in a pencil from the point K,

the pairs of rays DK, FK or GK, BK that pass through the corres-

ponding points D, F or B, G are here called corresponding rays.

In this case, when the two corresponding rays BK, GK are per-

pendicular to each other, they bisect each of the angles between the

other two corresponding rays DK, FK.

Since the hne DJ was drawn parallel to any one of the rays BK
which is perpendicular to its corresponding ray GK, the line DJ is

also perpendicular to the ray GK.^

Furthermore, because of the paralleHsm of BK and DJ, the ray

GK bisects DJ at the point 3.

^The term soucbe, here translated "origin," is the one used for the point

from which the line segments of the points in involution are measured.]

* [Here follow many theorems expressed, as has been noted before, in verbose

terms. The author follows these theorems with the observation that "For

this draft, it is sufficient to note the particular properties with which this case

abounds, and if this method of procedure is not satisfactory- in geometry, it is

easier to suppress it than to develop it clearly and to give it complete form."]

MP. 153, Ordonnance.]

* [The previous work to which this refers is summarized by Poudra in his

commentary as: "Whenever four lines of a pencil are in involution, every

parallel to one of the rays of the pencil cuts the three others in three points, and

the ray which is conjugate to this parallel bisects the segment formed by the

two others. Conversely, if one of the rays bisects a segment taken on a line,

this line is parallel to the fourth ray of the involution."]
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Thus the two triangles K3D, K3J each have a right angle at the

point 3, and they have the sides 3/v, 3D, and 3K, 3/ which include

the equal angles K3d, K3J equal to each other.

Since the two triangles K3D, K3J are equal and similar, then

the ray GK bisects one of the angles DKF between the correspond-

ing rays DK, FK, and the ray BK clearly bisects the other of the

angles made by the same corresponding rays DK, FK,
When anyone of the rays GK bisects one of the angles DKF

between the two other mutually corresponding rays DK, FK,
this ray GK is perpendicular to its corresponding rayBK which also

bisects the other angle included by the corresponding rays DK, FK.
[This is true] since when the line Df was drawn perpendicular

to any ray GK, the two triangles K3D and K3f each have a right

angle at the point 3 and furthermore each has an equal angle at

the point K and also a common side K3, consequently they are

similar and equal and the ray GK bisects DJ at the point 3.

Therefore, the ray BK is parallel to the Hne DJ and it also is

perpendicular to the corresponding ray GK.
When in a plane, there is a pencil of four lines BK, DK, GK,

FK from the vertex K, and when two of these lines as BK and GK
are mutually perpendicular and bisect each of the angles which the

two others FK, DK make, it follows that these four lines cut any

other Hne BDGF lying in their plane in four points B, D, G, F
which are arranged in involution.

When a line FK in a plane bisects one of the sides Gb of the

triangle BGb at /, and when through the point K which is thus

determined on one of the other two sides Bb there passes another

line KD parallel to the bisected side Gb, the four points B, D, G, F
determined by this construction on the third side BG of the triangle

are in involution.

When from the angle B which subtends the bisected side Gb

there passes another line Bp parallel to the bisected side Gb, the

four points F, J, K, p determined on the line FK by the three sides

BG, Gb, Bb of the triangle BGb and the line Bp are themselves in

involution.

And in the second case, by drawing the line BJ in a way similar

to the line GH, the three points G, J, b aX a. finite distance and the

(point at a) infinite distance are in involution (since) to these

pass four branches of a pencil whose vertex is at B and which

consequently determines on the line FK four points F, /, K, p

which are in involution.
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Then as the line FGB cuts on the line bj a segment GJ equal to

the segment bf, the side of a triangle such as bJK, this is equivalent

to saying that this line FGH is double the side bJ of the triangle

bJK.

When in a plane a line FGB is double one of the sides bf of a

triangle bJK, and when from the point B which it determines on

either side bK of the two other sides of the same triangle, there

passes a line Bp parallel to the double side bf, then this construc-

tion yields on the third side Kf of the triangle bfK, four points

F, f, K, p which are in involution.

This is evident when the line BF is drawn.

When from the angle K subtended by the double side bf there

passes a line KD parallel to the double side bf, this construction

gives on a line the double of FB, four points F, B, D, B which are

in involution as is evident when the line KG is drawn.

This theory swarms with similar means of developing theorems

when four or even three points are in involution on a line, but these

are sufficient to open the mine of that which follows.



PONCELET

On Projective Geometry

(Translated from the French by Professor Vera Sanford, Western Reserve

University, Cleveland, Ohio.)

The contribution of Jean-Victor Poncelet (1788-1867) to the field of geome-

try was his theory of projections. The idea of projections had been used by

Desargues, Pascal, Newton, and Lambert, but Poncelet's formulation of the

principle of continuity added greatly to the usefulness of the method. This

work was developed under adverse circumstances as Poncelet himself states

in the preface to his Traitk des proprieth projectives des figures:

This work is the result of researches which I began as early

as the spring of 1813 in the prisons of Russia.^ Deprived of books

and comforts of all sorts, distressed above all by the misfortunes

of my country and of my own lot, I was not able to bring these

studies to a proper perfection, I discovered the fundamental

theorems, however, that is to say, the principles of the central

projection of figures in general and of conic sections in particular,

the properties of secants and of common tangents to curves, the

properties of polygons that are inscribed or circumscribed in them

etc. 2

Introduction'

Let us consider any figure whatever, in a general position and

undetermined in some way among all those (positions) which it

1 [Poncelet held a commission in the French army and was taken prisoner by

the Russians during Napoleon's retreat from Moscow.]
* [Traite des proprietes projectives des figures, preface to the first edition (1822)

quoted in the second edition, Paris 1865, Vol. I. The author states that the

first volume of the second edition is identical with the first except for notes

inserted at its end. The second volume is largely made up of material that

had not been printed earlier.]

3 [The introduction begins with a statement of the work of Monge in geome-

try, saying,
—"The same works of Monge and of his pupils. . .have proved

that descriptive geometry 'the language of the artist and of the man of genius,'

is sufficient in itself and attains all the height of the concepts of algebraic

analysis." He says, however, that there are still lacunae to be filled in spite of

the many discoveries in regard to the proF>erties of lines and surfaces of the

second order that have been discovered by the principles of rational

geometry. He then passes to a statement of his concept of continuity.)
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may assume without violating the laws, conditions, or relations

which exist between the divers parts of the system (of figures).

Let us suppose that after these are given, we have found one or

more relations or properties whether they be metric or descriptive

belonging to the figure which depend on ordinary explicit reasoning,

that is to say, on steps which in a particular case we regard as

purely rigorous. Is it not evident that if in keeping the same given

properties, we begin to vary the original figure by insensible

degrees, or if we subject certain parts of this figure to a continuous

motion of any sort, is it not evident that the properties and rela-

tions found for the first system remain applicable to successive

stages of this system, provided always that we have regard for the

particular modifications which may occur as when certain magni-

tudes vanish or change in direction or sign, etc., modifications

which will be easy to recognize a priori and by trustworthy rules?

This is at least what one may conclude without the trouble of

implicit reasoning, and it is a thing which in our day is generally

admitted as a sort of axiom whose truth is manifest, incontestable,

and which need not be proved. Witness the principle of the

correlation of figures assumed by M. Carnot in his Geometry oj

Position to establish the rule of signs. Witness also the principle

o^ Junctions used by our greatest geometers to establish the bases

of geometry and mechanics. Witness finally the infijiitesimal

calculus, the theory oj limits, the general theory oj equations, and all

the writings of our days in which a degree of generality is attached

to the concepts.

This principle, regarded as an axiom by the most learned

geometers, is the one which we may call the principle or the law

oj continuity of the mathematical relations of abstract and figura-

tive size [grandeur abstraite et figuree].

CHAPTER I

Preliminary Concepts of Central Projection

1. In the work that follows, we will use the word projection in

the same sense as the word perspective, with almost no exception.

Thus projection will be conical or central.

In this type of projection, the surface on which the given figure

is projected may be any surface and the figure itself may be

arbitrarily placed in space; but this great generalization is useless

for the particular purpose of the researches that follow, and we
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will assume In general that the given figure and the surface of

projection are both planes. Whenever it happens that we are

obliged to use the word projection in a sense that is more extended,

or, on the other hand, when its meaning is still more restricted, we
will take pains to state this expressly in advance or else we will

use terms that are convenient and precisely defined.

Now let us imagine that from a given point which is taken as a

center of projection, there radiates a pencil of straight Hues

directed toward all of the points of the figure which is traced on a

plane. Then if one should cut this pencil of lines [droites pro-

jetantes] by a plane located arbitrarily in space, a new figure will

appear on this plane which will be the projection of the first.

2. It is evident that this projection does not change the relation-

ships [correlation] nor the degree nor order of the lines of the

original figure, nor in general, any type of graphical dependence

between the parts of the figure that are concerned only with the

undetermined direction of lines, their mutual intersection, their

contact, etc. It can only change the form or the particular types

of lines, and in general all the dependencies that concern absolute

and determined quantities such as the opening of angles, constant

parameters, etc. Thus, for example, if one line is perpendicular

to another in the original figure, we cannot conclude that it will

be so in the projection of the figure on a new plane.

3. All these properties of central projection result in a purely

geometric manner from its very nature and from concepts that

are most commonly admitted, and there is no need to have recourse

to algebraic analysis to discover and to prove them. Thus to

prove that a line of degree m remains of the same degree in its

projection, it is sufficient to notice that the first line cannot be

cut in more than m points by a line drawn at will in the plane.

This must necessarily be the same in the other plane since the

projection of a straight line is always a straight line which must

pass through all the points which correspond to those of the

original.

4. According to the definition of Apollonius which is generally

accepted in geometry, a conic section or simply a conic is a line

along which an arbitrary plane meets any cone that has a circular

base. A conic thus is nothing else than the projection of a circle,

and according to what precedes, it is also a line of second order

since the circumference of a circle cannot be cut In more than two

points by a straight line arbitrarily drawn in a plane.
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5. A figure whose parts are only graphically dependent in the

way that has been stated above, that is to say, whose dependence

is not changed as a result of projection, will be called a projective

figure in the work that follows.

These relations themselves and in general all the relations or

properties that subsist at the same time, in the given figure and

in its projections are called projective relations or projective properties.

6. After what we shall say of the projective properties of the

position of a figure or its graphic properties, it will always be easy

to tell whether the properties are of this sort by their simple

statement or from an inspection of the figure. This results at

once from their particular nature so that it will suffice to establish

and prove these [results] for any projection whatever of the figure

to which they belong because they are applicable in general to that

figure itself and to all its possible projections.

7. It is certain that nothing can be indicated a priori as to the

projective properties that concern the relations of size which we
call metric, and whether they will persist in all the projections of

the figure to which they belong. For example, the known relation

between the segments of the secants of a circle which concerns

only undetermined quantities is not for that reason a projective

relation, for we know well that it does not persist for any conic

section, the projection of this circle. The reason for this is that

this relation depends implicitly on the parameter or radius.

On the other hand, in the case where the given figure includes

lines of a particular kind as for example the circumference of a

circle, it is not necessary to conclude in consequence that all the

relations that belong to it cease to exist as before in the general

projections of the figure for if these relations are not dependent on

any determined and constant quantity, and if they are all of a

type, the contrary will evidently take place.

If then a figure of a particular type enjoys certain metric

properties, we cannot state a priori and without a preliminary

examination either that the properties persist or cease to persist

in the diverse projections of the original figure. We constantly

realize, however, the importance of recognizing in advance whether

such or such relations are or are not projective in nature for it

follows that having shown this relation for a particular figure, we

can at once extend it to all possible projections of the figure.

8. It does not seem easy to establish a simple rule for all cases.

Trigonometric methods and the analysis by coordinates only lead
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to results that are forbidding because of their prolix calculations.

In view of its importance, however, the question is worthy of

attracting the attention of geometers. While waiting for them to

solve this in a convenient way for projective relations in general,

let us busy ourselves with a particular class of relations less

extensive, whose character is remarkable for its simplicity which

facilitates the verification and recognition of the relations with

which it deals.

^

CHAPTER III

Principles Relating to the Projection of One Plane Figure

INTO Another

99. From the very nature of the properties of a projection as

they were defined (5), it follows that when we wish to establish a

certain property regarding a given figure, it is sufficient to prove

that the property exists in the case of any one of its projections.

Among all the possible projections of a figure, some one may exist

that may be reduced to the simplest conditions and from which

the proof or the investigations which we have proposed may be

made with the greatest ease. It may require but a brief glance or

at most the knowledge of certain elementary properties of geometry

to perceive it or to know it. For example, to take a particular case,

suppose the figure contains a conic section, this may be considered

the projection of another [figure] in which the conic section is

replaced by the circumference of a circle and this single statement

is sufficient to shift the most general questions regarding conic

sections to others that are purely elementary.

100. From this, we realize the importance of the theory of

projections in all research in geometry and [we see] how much the

considerations which it presents abridge and facilitate these

researches.

With any given figure, all this amounts to as one sees, is to

discover that projection which offers conditions that are the most

elementary and that are the best suited by their simplicity to

^ [Poncelet here passes to a discussion of the harmonic division of lines, the

properties of a harmonic f>encil, the similarity of conies, and the projective

relations of the areas of plane figures. His second chapter deals with the

secants and ideal chords of conic sections, and their properties, including the

concept of poles and polars. An ideal chord is a line whose points of intersec-

tion with a curve are imaginary.]
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disclose the particular relations which we have in mind. The

theory of projections has already furnished several methods of

attaining this/ but it lacks much which it could furnish, and our

actual aim is to discover these other methods and to make them

known in a purely geometric manner by the aid of ideas established

in the foregoing work.

101. Let us first recall the principles that are generally known,

the proof of which is the simplest possible.

Any plane figure which comprises a system of lines or of curves

which have a common point oj intersection may be regarded as the

projection of another of the same kind or order in which the point of

intersection has passed to infinity and in which the corresponding

lines have become parallel.

Clearly it is sufficient in order that this take place that the

planes of projection be taken parallel to the line that joins the

point of intersection of the first system to the center of projection

which is arbitrarily chosen in other respects.

102. Conversely, a plane figure which comprises a system of

straight /mes or curves which are parallel or concurrent at infinity,

has in general for its projection on aiiy plane a figure of the same

order m which the corresponding lines are concurrent at a point at a

finite distance, the projection of that of the first system.

When the plane of projection is parallel to the line that joins

the point of intersection to the center of projection, it is evident

that the lines of the system are parallel or concurrent at infinity

and if we assume, furthermore, that it is parallel to the plane of the

first figure, the projection becomes similar to this figure and it is

similarly placed.^

103. These theorems, giving a geometric interpretation to this

concept, generally adopt the idea that parallel lines meet in a

single point at infinity. We shall see as a consequence that the

points of intersection at an infinite distance and at a finite distance

are reciprocally interchangeable as a result of projection.

^ [Poncelet is here probably referring to the work of previous writers who
used the method of projections to some extent. Among these are Desargues,

Pascal, and Newton.]
^ [Poncelet here refers to an article of his second chapter in which he shows

that when a conic surface is cut by two planes, the resulting sections in general

have two points in common thus determining their common secant, and certain

metrical relations obtain. When the planes are parallel, and consequently

similar, the common chord becomes an "ideal chord" and the same relations

hold true.]
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104. If the point of intersection which we are considering were

at the same time a point of contact for certain lines of the original

figure, it will, according to the nature of central projection, be

equally a point of contact of the same lines. Consequently, when
this point passes to infinity, the lines in question become tangents

at infinity instead of having their corresponding branches merely

parallel, a thing which we ordinarily express by saying that they

are asymptotic.

Furthermore, they may be asymptotes of the first, second. . .

order, if the osculation of the original curves was of that order.

Thus asymptotic lines and lines whose course is parallel in

certain regions or which have asymptotes that are parallel, enjoy

the same properties as lines of the same order which intersect or

which touch at a given point so that they differ from these lines

only in the fact that their point of intersection or of contact lies

at infinity.

105. Any plane figure whatever, which involves a given straight

line, may be considered as the projection of another in which the

corresponding line has passed to infinity. Consequently, every

system of lines or curves meeting in a poi7it on the first li7ie in the

original figure becomes a system of lines that are parallel or concurrent

at infinity in the projection derived from it.

It evidently is sufficient that this may take place that the plane

of projection be taken parallel to the plane which encloses the

straight line of the original figure and the center of projection

which is otherwise arbitrary.

106. Conversely, any figure which includes an arbitrary number

of systems of lines whether straight or curved, that are respectively

parallel or asymptotic, that is to say, lines meeting at infinity in

each system, has iii general for its projection 07i a7iy plane, a7xother

figure in which the points of concurrence at infinity in the first are

arranged on one a7xd the same line at a distance which is given andfinite.

107. These last considerations, deduced wholly from the

elementary principles of central projection, give an interpretation

of the concept of metaphysics that we have already mentioned:

All points situated at infinity on a plane, may be considered ideally

as distributed 07i a single straight line, itself located at infinity on

this plane.

We see by what preceeds that all these points are represented

in projection by the points of a single straight line situated in

general at a given finite distance.
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This paradoxical concept thus receives a definite and natural

meaning when it is applied to a given figure in a plane and when we

suppose that this figure is put in projection on any other plane.

The lack of determination involved in the direction of the line at

infinity becomes precisely the lack of determination that exists

in the case of the plane which projects this line at the moment when

it becomes parallel to the plane of the given figure. But we also

see that this lack of determination has no place except because we

persist in giving mentally a real existence to the line of their

common intersection when they [the planes] have become parallel.

Besides the lack of determination does not really exist except in the

law or in the original construction which gives this line when it is at

a finite distance, and not in the same direction, when it ceases to

exist in an absolute and geometric manner.

108. In all the preceding theorems, nothing has determined the

position of the center of projection in space. This is wholly

arbitrary, and for any given point, one can always fulfil one or

another of the prescribed conditions. This is not the case in the

theorems which follow. They cannot take place except for a series

of particular positions of the center of projection and as the proof

of this is difficult, and as it is not known to geometers as yet, it Is

timely that we pause here and devote ourselves to it.

109. Any plane figure which involves a given line and a conic

section may in general he regarded as the projection of another

(figure) in which the line has wholly passed to infinity and in which

the conic section has become the circumference of a circle.

To prove this principle in a way which leaves absolutely nothing

to be desired from the point of view of geometry, let us suppose

that we are required to solve the following question:

110. Having given a conic section (C) and a straight line MN
situated at will in a plane, to find a center and a plane of projection

such that the given lineMN shall be projected to infinity on this plane and

that at the same time, the conic section shall be represented by a circle.

Let 5 be the unknown center of projection. According to the

conditions of the problem, the plane which passes through this

point and through the line MN should be parallel to the plane of

projection and this last line should cut the conical surface of which

(Q is the base and 5 the vertex in the circumference of a circle.

In the first place, it follows from this that the line MN should be

entirely exterior to the conic section (Q, that is to say, [It should

be] the ideal secant of the curve.
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In the second place, If one determines the ideal chord MN
which corresponds to this line and to the conic (C) when we join

its midpoint to the center of projection S by the line SO, this

line should become equal to half the ideal chord OM and it should

make with it an angle MOS which should be a right angle. That
is to say:

The auxiliary center of projection should be located on the circum-

ference of a circle described on the midpoint of the ideal chord which

corresponds to the given line as center, with a radius equal to half oj

this chord,^ and in a plane which is perpendicular to it.

As this is no other condition to be fulfilled, we may conclude that

there exists an infinity of centers and planes of projection which

satisfy the conditions of the question. But for this [to be true]

it is necessary that the line MN shall not meet the curve for

otherwise the distance OS or OM will become imaginary.

140. It seems actually useless to develop these ideas further,

the more so because the course of this work which has as its object

the application of the preceeding concepts to the study of the

projective properties of conic sections, will serve as a natural

elucidation of everything which these concepts may have retained

which is obscure or difficult. Besides, one will then see the

simplicity with which these concepts lead to properties already

known and to an infinity of others which ordinary geometry does

not seem to touch easily. And this [is true] without the use of

any auxiliary construction and by the use of the simplest theorems,

that is those that concern only the direction and the size of the lines

of elementary figures, and which require for the most part only

a quick glance to make them seen and recognized. Also, I content

myself very often by citing the theorems without obliging myself

to prove them since they are self-evident or else the simple conse-

quences of theorems already known.

^ [Algebraically, this reduces to saying that the square of the radius is equal

to the square of half the chord intercepted in the conic by the corresponding

line, but taken with the contrary sign. Consequently, this radius may be

either real or imaginary.]

^ [Here follow many theorems showing how the various types of figures may
be regarded as the projections of figures in which the conies are circumferences

of circles etc.]



PEAUCELLIER'S CELL

(Translated from the French by Professor Jekuthlel Ginsburg, Yeshiva College,

New York City.)

It is possible to draw a circle without having another circle around which to

trace it, because a pair of compasses permits of this being done. Until com-

paratively recent times, however, it has not been possible to draw a theoreti-

cally straight line without having another straight line (ruler, straight-edge)

along which to trace it. The instrument commonly known as the Peaucellier

Cell permits of the drawing of such a line by means of a linkage illustrated

in the following article. It was first described in a communication to the

Soci6t6 Philomathique of Paris in 1867. It was later discovered independently

by a Russian mathematician, Lipkin and a description of his instrument is

given in the Fortscbritte der Pbysik for 1871, p. 40.

Peaucellier's matured description is given in the Journal de Physique, vol.

II (1873), and is translated below.

It is known that in practical mechanics it is often necessary to

transform circular motion into continuous rectilinear motion.

Watt realized this with a high degree of perfection. The trans-

mission invented by him offers many advantages in that it gives

very continuous motion without considerable shocks or friction.

On account of certain circumstances Watt's invention has serious

faults. 1

The solution that we offer is derived directly from a geometrical

principle to which we were led while searching for a solution of the

problem which Watt put to himself when he created his parallelo-

gram. This principle gives a rigorous solution of the problem.

It was communicated in the year 1867 to the Philomathic Society

of Paris. The Russian mathematician Lipkin discovered it

1 [A paragraph containing a criticism of Watt's invention is omitted here.]

324
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independently but at a later period. ^ Here is how the problem is

solved.

Conceive of a balancer composed of six movable bars AC = CB
= BD = AD, OC = OD, of which the center of rotation is fixed.

If the extremity A be made to describe a circle passing through C
(which can be easily obtained by linking it to the bar OA) of which

the radius is 00',—then the opposite extremity B will describe a

line perpendicular to the direction 00' and will guide therefore

the bar of the piston.

It may be seen among other things that if on the links BC, BD,
equal lengths BC, BD' be taken, and if one links the points C,
D' with the pieces CB, DB, also linked in B', this point B' will

describe a straight line parallel with that described by B, because

of the proportion BC : B'C = BC : OC.

'[Lippman Lipkin, born at Salaty, Russia, in 1846; died at St. Petfersburg

(Leningrad), Feb. 21, 1876.]
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"Essay pour les Coniques"

(Translated from the French by Dr. Frances Marguerite Qarke, Bryn Mawr
College, Bryn Mawr, Penna.)

When Pascal (see page 67) was only sixteen years old, he wrote a brief

statement which was doubtless intended by him as the first step in an extended

study of conies to be undertaken at some future time. In the following year

it was printed in the form of a broadside and bore the simple title, " Essay povr

les coniqves. Par B. P." Of this single page only two copies are known, one

at Hannover among the papers of Leibniz, and the other in the Bibliotheque

nationale at Paris. The illustrations here given appeared at the top of the

original broadside. The third lemma involves essentially the "Mystic

Hexagram" of Pascal. This translation first appeared in Isis, X, 33, with a

facsimile of the entire essay, and is reproduced in revised form with the consent

of the editors.

Essay on Conics

First Definition

When several straight lines meet at the same point, or are

parallel to each other, all these lines are said to be of the same

order or of the same ordonnance, and the totality of these lines

is termed an order of lines, or an ordonnance of lines. ^

Definition II

By the expression "conic section," we mean the circle, elHpse,

hyperbola, parabola, and an angle; since a cone cut parallel to its

base, or through its vertex, or in the three other directions which

produce respectively an ellipse, a hyperbola, and a parabola,

produces in the conic surface, either the circumference of a circle,

or an angle, or an ellipse, a hyperbola, or a parabola.

^ [This definition is taken almost word for word from Desargues. See the

notes to the Brunschvicg and Boutroux edition, t. I., Paris, 1908. This

translation is made from the facsimile of the original as given in this edition,

and acknowledgment is hereby made of the assistance rendered by these notes

in determining the meaning of several passages. It should also be said that

the text of this edition is in marked contrast to the imperfect one given in the

Paris edition of 1819.]
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Definition III

By the word "droite" (straight) used alone, we mean

droite" (straight line).^

327

' ligne

Lemma I

If in the plane M, S, Q, two straight lines MK, MV, are drawn

from point M and two lines SK, SV from point S; and if K be

the point of intersection of the lines MK, SK; V, the point of

intersection of the lines MV, SV; A, the point of intersection

of the lines MA, SA; and yu, the point of intersection of the lines

MV, SK; and if through two of the four points A, K, n, V, which

can not lie in the same line with points M, S, and also through

points K, V, a circle passes cutting the lines MV, MP, SV, SK
at points 0, P, Q, N, then I say that the lines MS, NO, PQ, are

of the same order.

Lemma II

If through the same line several planes are passed, and are cut

by another plane, all lines of intersection of these planes are of

the same order as the line through which these planes pass.

On the basis of these two lemmas and several easy deductions

from them, we can demonstrate that if the same things are granted

as for the first lemma, that is, through p>oints K, V, any conic

section whatever passes cutting the lines MK, MV, SK, SV in

1 [In this translation, the word "line," meaning a straight line-segment, will

be used for "droite."]
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points P, 0, N, Q, then the lines MS, NO, PQ will be of the same

order. This constitutes a third lemma. ^

By means of these three lemmas and certain deductions, there-

from, we propose to derive a complete ordered sequence of conies,^

that is to say, all the properties of diameters and other straight

lines,^ of tangents, &c., the construction of the cone from sub-

stantially these data, the description of conic sections by points, etc.

Having done this, we shall state the properties which follow,

doing this in a more general manner than usual. Take for example,

the following: If in the plane MSQ, in the conic PKV, there are

draw^n the lines AK, AV, cutting the conic in points P, K, Q, V;

and if from two of these four points, which do not lie in the same

line with point A,—say the points K, V, and through two points

N, 0, taken on the conic, there are produced four lines KN, KO,
VN, VO, cutting the Hnes A V, AP at points L, M, T, S,—then I

maintain that the proportion composed of the ratios of the line

PM to the line A/A, and of the line AS to the line SQ, is the same

as the proportion composed of the ratio of the line PL to the line

LA, and of the line AT to the line TQ.

We can also demonstrate that if there are three hnes DE, DC,

DH that are cut by the Hnes AP, AR at points F, G, H, C, y, B,

and if the point E be fixed in the line DC, the proportion composed

of the ratios of the rectangle EF.FG to the rectangle EC.Cy,

and of the line Ay to the line AG, is the same as the ratio of the

rectangle EF.FH to the rectangle EC.CB, and of the hne AB
to the line AH. The same is also true with respect to the ratio

of the rectangle FE.FD to the rectangle CE.CD. Consequently,

if a conic section passes through the points E, D, cutting the lines

AH, AB in points P, K, R, ^, the proportion composed of the

ratio of the rectangle of these lines EF, EC, to the rectangle of

the lines EC, Cy, and of the hne yA to the hne AG, will be the

same as the ratio of the rectangle of the lines FK, FP, to the rec-

tangle of the lines CR, C\f/, and of the rectangle of the hnes AR,

A\l/, to the rectangle of the hnes AK, AP.
We can also show that if four lines AC, AF, EH, EL intersect

in points N, P, M, 0, and if a conic section cuts these hnes in

^ [This Involves the so-called "Mystic Hexagram," the dual of Brianchon's

Theorem given on page 331. Pascal did not state the hexagram theorem in

the form commonly seen in textbooks.]

^
. . . des Elements coniques complets.

'
. . . et cotes droits.
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points C, B, F, D, H, C L, Ky the proportion consisting of the

ratios of rectangle MC.MB to rectangle PF.PD, and of rec-

tangle AD.AF to rectangle AB.AC, is the same as the proportion

composed of the ratios of rectangle ML.MK to the rectangle

PH.PG, and of rectangle EH.EG to rectangle EK.EL.
We can also demonstrate a property stated below, due to M.

Desargues of Lyons, one of the great geniuses of this time and
well versed in mathematics, particularly in conies, whose writings

on this subject although few in number give abundant proof of

his knowledge to those who seek for information. I should like

to say that I owe the little that I have found on this subject to

his writings, and that I have tried to imitate his method, as far

as possible, in which he has treated the subject without making
use of the triangle through the axis.

Giving a general treatment of conic sections, the following is

the remarkable property under discussion: If in the plane M5Q
there is a conic section PQN, on which are taken four points

K, N, 0, V from which are drawn the lines KN, KO, VN, VO, in

such a way that through the same four points only two hnes may
pass, and if another hne cuts the conic at points R, \p, and the lines

KN, KO, VN, VO, in points X, Y, Z, 8, then as the rectangle

ZR.Zyp is to the rectangle yR.yyp, so the rectangle 8R.8\l/ is to

the rectangle XR.X\p.

We can also prove that, if in the plane of the hyperbola, the

ellipse, or the circle AGE of which the center is C, the hne AB
is drawn touching the section at A, and if having drawn the dia-

meter we take line AB such that its square shall be equal to the

square of the figure,^ and if CB is drawn, then any line such as

DE, parallel to line AB and cutting the section in E, and the lines

AC, CB in points D, F, then if the section AGE is an ellipse or a

circle, the sum of the squares of the lines DE, DF will be equal

to the square of the hne AB; and in the hyperbola, the difference

between the same squares of the lines DE, DF will be equal to the

square of the line AB.

' [In order that the square of segment AB, which is equal to DE + DF,

shall be equal to one fourth of the circumscribed rectangle, the conic must be

a circle. If the conic is an ellipse, AB will be taken equal to the axis which is

perpendicular to CA.
Desargues treated analogous questions in his Brouillon Projet (CEuvres de

Desargues, I, p. 202 et p. 284).]

Attention should be called to the fact that the statements of both Desar-
gues and Pascal immediately lead up to the equation of conies.
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We can also deduce [from this] several problems; for example:

From a given point to draw a tangent to a given conic section.

To find two diameters that meet in a given angle.

To find two diameters cutting at a given angle and having a

given ratio.

There are many other problems and theorems, and many
deductions which can be made from what has been stated above,

but the distrust which I have, due to my little experience and

capacity, does not allow me to go further into the subject until

it has passed the examination of able men who may be willing

to take this trouble. After that if someone thinks the subject

worth continuing, I shall endeavor to extend it as far as God
gives me the strength.

At Paris, M.DC.XL.



BRIANCHON'S THEOREM

(Translated from the French by Professor Nathan Altshiller-Court, University

of Oklahoma, Norman, Okla.)

Charles Julien Brianchon was born in Sevres (France) in 1785. In 1804 he

entered the £coIe Polytechnique wliere he studied under Gaspard Monge.
In 1808 he was appointed lieutenant of artillery and in this capacity took part

in the campaigns in Spain and Portugal. Later he became professor of applied

sciences in the artillery school of the Royal Guard. He died at Versailles in

1864.

His paper on curved surfaces of the second degree was published in the

Journal de I'kcole Polytechnique, cahier 13, 1806. Only the first part, pp. 297-

302, of it is given here in translation.

This paper contains the famous theorem, known under the author's name,

which, together with Pascal's theorem (see page 326), is at the very foundation

of the projective theory of conic sections. This theorem is one of the earliest

and most remarkable examples of the principle of duality and it played an

important role in the establishing of this far-reaching principle. The paper

is also one of the earliest to make use of the theory of poles and polars to

obtain new geometrical results. It is interesting to note that this article,

which made the author's name familiar to every student of geometry, was

written by him at the age of 21, while he was still in school.

Lemma

Given a line AA' (Fig. A.) of known length, if on this line or on

the line produced a point is taken arbitrarily, dividing the line

into two segments OA, OA', it is always possible to determine on

this line or on the line produced a point P which forms two new
segments PA, PA' proportional to the first two.

It is evident that of the two points and P, one will be situated

on the line AA' itself, and the other on this line produced.

I

(Fig. 1). Consider in space three arbitrary lines AA\ BB\ CO,
which, produced if necessary, meet in the same point P.^

1 As an example take the three edges AA', BB', CC, of a truncated tri-

angular pyramid.
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Thus, according to the preceding theorem, any one of these

three diagonals, say AA', is cut by the other two, LI and BB', into

proportional segments OA, OA', PA, PA'; that is to say, these

four segments satisfy the relation

OA :0A' =PA :PA\

Let us imagine that we project,^ upon any plane whatever, the

system of three lines AA', BB', CO, and all the construction lines,

and let us denote the projection of a point by the inverted letter

denoting the point itself. According to this convention, 7
represents the projection of the point L, and the same for the

others.

This granted, those of the six points L, M, N, I, m, n, which lie

on the same line, will have their projections also in a straight line,

so that the six points 7, ^, p^I, h ^> "» '^^^^ t)e arranged on four

straight lines, in the same way in which are arranged, in space, the

points of which they are the projections.

Ill

It follows from the above that when the three lines AA', BB',

CC are drawn in the same plane, the six points L, M, N, I, m, n

are still arranged on this plane in such a way that when taken by

threes in the indicated order (1), each of these groups of three

points belongs to the same line.

IV

Should it happen that three of the six points 7, j/^, ^, /, m, u,

(for example /, lu, u), which, in general, do not lie on a straight

line, were to do so, as this would indicate that the plane of pro-

jection is perpendicular to the plane XY, one would conclude that

all the six points lie on the same straight line, and then (II) this

latter line would cut each of the three lines AA', BB', CC, pro-

duced if need be, into two segments proportional to those formed

by the point P on the same lines.

V
One can, with the aid of the preceding considerations, demon-

strate several remarkable properties belonging to the curves of the

second degree. In order to succeed, let us recall the following

proposition

:

' [It is understood "orthogonally."!
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(Figs. 3.) "In any hexagon (ABCDEF) inscribed in a conic

section, the three points of intersection {H, /, K) of the opposite

sides always he on a straight line,"

Or more generally:

"If on the perimeter of any conic section six points A, B, C, D,

E, F are taken at random, and if the lines AB, AF are produced, if

necessary, until they meet the lines DE, DC, in /, K respectively,

the three lines IK, BC, FE cross each other in the same point."

(Geometrie de position, p. 452.)

VI

(Figs. 4 and 5). Again having three lines AD, BE, CF, inscribed

in a curve of the second degree in such a way that they concur or

cut each other in the same point P, if we carry out the construc-

tions indicated in the figure, we see, according to the last theorem,

that the points H, I, K are situated in a straight line; now this

does not take place when the three lines AD, BE, CF, being subject

to crossing each other in the same point P, have no other relation

to each other: hence (IV) the six points H, I, K, h, i, k are all

situated on the same line which divides each of the three chords

AD, BE, CF, produced if need be, into two segments proportional

to those which the point P forms on the same chords.

VII

Suppose now that one of the three chords, for example CF,

changes in length, but in such a way as to retain the point P on its

direction; the two points /, i will remain fixed, and the four remain-

ing points H, h, K, k will still be situated on the indefinite line li.

Hence when this variable chord CF coincides with one, say BE, of

those which remain fixed, the lines BE, CE will become tangent to

the curve and will have their point of intersection b' situated on

li.

VIII

When the point P is outside the area of the conic section, there

is an instant when the two extremities of the moving chord unite

in a single point T, situated on the perimeter of the curve and on

the line li.

IX

(Fig. 3). Let ahcdej be an arbitrary hexagon circumscribed

about a conic section, and B, C, D, E,F, A, the respective points

of contact of the sides ah, be, cd, de, ej, Ja:
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V. The points of intersection H, I, K of the opposite sides of

the inscribed hexagon ABCDEF^ are three points situated on the

same straight line (V)

;

2°. If we draw the diagonal which meets the curve in the two
points t, t', the lines KT, Kt', will be tangent at t, t' respectively

(VIII) and the same holds for the other diagonals.

3°. If from any point K of the line HIK the two tangents Kt,

Kt' are drawn to the conic section, the chord «', which joins the

two points of contact, passes constantly through the same point

P. (VIII).

Hence the three diagonals /c, he, ad cut each other in the same

point P, that is to say:

"In any hexagon circumscribed about a conic section, the three

diagonals cross each other in the same point."

This last theorem is pregnant with curious consequences; here

is an example.

X
(Fig. 6.) Suppose that two of the six points of contact, say A

and B, become united in a single point B, the vertex a will also

coincide with B, and the figure will be reduced to a circumscribed

pentagon bcdej; then applying the preceding theorem to this

special case, we see that the three lines /c, be, db must cut each other

in the same point P, that is to say,

"If in an arbitrary pentagon {bcdej), circumscribed about a

curve of the second degree, the diagonals {he, cj) are drawn, which

do not issue from the same angle, they meet in a point (P) situated

on the line {dB) which joins the fifth angle {d) to the point of

contact (B) of the opposite side."

This proposition gives at once the solution of the following

problem . . . Determine the points where five known lines are

touched by a curve of the second degree. . .These points once

found, we can obtain all the other points of the curve by a very

simple construction, which requires, just as the first, no instrument

other than the ruler (VI).

The conic section having been constructed, we may propose to

ourselves to draw to it a tangent through a point taken outside

of or on the perimeter of the curve. The construction is carried

out, the same as the two preceding ones, without the intervention

of the compasses and, moreover, without its being necessary to

know anything but the trace of the curve (VII), (VIII).



BRIANCHON AND PONCELET

On the Nine-point Circle Theorem

(Translated from the French by Dr. Morris Miller Slotnick, Harvard

University, Cambridge, Mass.)

The nine-point circle was discovered by Brianchon and Poncelet, who
published the proof of the fact that the circle passes through the nine points in

a joint paper: "Recherches sur la determination d'une hyperbole equilat^re, au

moyen de quatre conditions donnees," appearing in Georgonne's Annales de

Matbematiques, vol. 11 (1820-1821), pp. 205-220. The theorem, of which the

translation appears below, occurs as Tbeorhne IX, (p. 215) in a sequence of

theorems, and is there used merely as a lemma.

The theorem is known as Feuerbach's theorem, although the latter published

his Eigenscbajten einiger merkwiirdigen Punkte des geradlinigen Dreiecks, in

which the theorem occurs, in Niirnberg in 1822. However, Feuerbach proved

the remarkable fact that the nine-point circle is tangent to the inscribed and

the three escribed circles of the triangle. This booklet has been reprinted in

1908 (Berlin, Mayer und Miiller), and there the theorems in question are found

on pages 38-46. The proofs of Feuerbach are all of a quantitative nature,

based as they are on the numerical relations existing between the radii of the

various circles associated with a triangle and the distances between the centers

of pairs of these circles.

Tbe circle which passes through the Jeet of the perpendiculars

dropped from the vertices of any triangle on the sides opposite them,

passes also through the midpoints of these sides as well as through the

ynidpoints oj the segments which join tbe vertices to the point oj inter-

section of the perpendiculars.

Proof.—Let P, Q, R be the feet of the perpendiculars dropped

from the vertices of the triangle ABC on the opposite sides; and

let K, I, L be the midpoints of these sides. ^

The right triangles CBQ and ABR being similar,

BC-.BQ = AB :BR;

from which, since K and L are the midpoints of BC and AB,

BKBR = BLBQ;

that is to say, the four points K, R, L, Q lie on one circle.

-

* [The figure which appears here is similar to that which is published with

the manuscript.]

2 [The text here reads: "appartiennent k une m^me circonference."]
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It may similarly be shown that the four points K, R, I, P lie on

a circle, as well as the four points P, I, Q, L.

This done, if it were possible that the three circles in question

not be one and the same circle, it would follow that the common
chords of the circles taken two at a time would pass through a

p>oint; now, these chords are precisely the sides of the triangle

ABC, whoch do not pass through a common point; it is equally

impossible to suppose that the three circles are different from one

another; thus they must coincide in one and the same circle.

Now, let C\ A', B' be the midpoints of the segments DC, DA,
DB which join the point of intersection D of the three altitudes of

the triangle ABC with each of the respective vertices. The right

triangles CDR and CQB being similar, we have

CD:CR = CB: CQ;

from which, since C and K are the midpoints of the segments CD
and CB,

CCCQ = CRCK;

that is to say, the circle which passes through K, R, Q passes also

through C.
It may be shown in the same manner that the circle passes

through the other two points A', B'; thus it passes through the

nine points P, Q, R, I, K, L, A', B', C; which was to he proven.



FEUERBACH

On the Theorem Which Bears His Name

(Translated from the German by Professor Roger A. Johnson, Hunter College

New York City.)

Karl Wilhelm Feuerbach (1800-1834) was a professor of mathematics in the

Gymnasium at Eriangen, Germany. He is known chiefly for the theorem

which bears his name and which is reproduced in this article. The preceding

article calls attention to the theorem and to tiie earlier work upon the subject

by Brianchon and Poncelet. The present translation is made from the Eigen-

scbajten einiger merkivurdigen Punkte des geradlingen Drdecks, und mebrerer

durcb Sie bestimmten Linien und Figuren, published by Feuerbach in 1822 (2d

ed., 1908). It includes certain passages which lead up to the theorem, but it

omits such parts of the work as are not used in the proof. As is the case with

the preceding article, this furnishes a source of some of the interesting work on

the modern geometry of the triangle.

CHAPTER I

On the Centers of the Circles, Which Touch the Three
Sides of a Triangle

§1. [It is stated to be known, that there are four circles which

are tangent to the sides of a triangle ABC, one internal to the

triangle and the others external. Their centers 5, 5', S", S'",

are the points of intersection of the bisectors of the angles of the

triangle.]

§2. Let the radii of the circles about the centers S, S', S", S'"

be denoted by r, r', r", r'" respectively; then we know that their

values are

r - 2A
, _ 2A „ _ 2A ,„ _ 2A

r = ;—}
; ; r = ;—}

; > T ^ j ; ' T =
a -\- b -\- c —a -\- b -{• c a — b -\- c a -\- b — c

where, as usual, a, 6, c denote the sides BC, CA, AB, and A the

area of the triangle ABC.
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CHAPTER II

On the Point of Intersection of the Perpendiculars
Dropped from the Vertices of a Triangle on the

Opposite Sides

§19. If from the vertices of the angles of a triangle ABC,
perpendiculars AM, BN, CP are dropped on the opposite sides,

intersecting, as is well known, in a point 0, the feet of these per-

pendiculars determine a triangle MNP, which is notable as having

the least perimeter of all triangles inscribed in triangle ABC. . .

[Denoting the angles of the triangle by a, /3, y respectively],

we have AP = b cos a, AN = c cos a, hence

NP"^ = (6^ + c^ — 26c cos a)cos^ a;

but 6^ + c- — 26c cos a = a^ whence NP^ = a^ cos^ a and

NP = a cos a; similarly MP = 6 cos 0, and MN = c cos y; or,

if the cosines are expressed in terms of the sides,

MN = ^"''+'';-^'>
2a6

[and similarly for MP and NP]. If we add these three values, then

since

a2(_a2 -I-
62 4. <,2)4. 62(^2 _ 62 + c2)+ c'-{a^ + 62 - c2) = 16A2 1

MN + MP + NP == ^, and since ^ = R,^ where R, as
abc 4A

previously, represents the radius of the circle circumscribed about

triangle ABC, the desired result is obtained

:

MN + NP-{-MP = ^.

* [This is the familiar formula A" = (a -\- b + c)i—a -^- b + c)ia — b -\- c)

(a -{ b — c) in a modified form.)

- [Easily established, since ab sin y = 2A, and 2R sin y = c]
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If the triangle has an obtuse angle, say at A, then the corre-

sponding term NP has the negative sign in this relation:

MN -\- MP - NP = 2A/R.

The theorems which follow are subject to similar modification.

§23. Since AN = c cos a, AP = b cos a, and j^^ic sin a = A,

it follows that AANP = A.cos^ a; likewise ABMP = A.cos^ /3

and ACMN = A.cos- X; hence

AMNP = A(l - cos2 a - cos2 /3 - cos^ 7);

but since cos^ 7 = (cos a cos |3 — sin a sin /3)^ and sin^ a sin^ /3 =
1 — cos^ a — cos^ /3 -|- cos^ a cos^ |9, then

cos- a -{• cos^ /3 + cos^ 7 = 1 — 2 cos a: cos /3 cos 7,

and accordingly

AMNP = 2A cos a cos /3 cos 7 =
(-g'' + 6^ + OCa'^ - 6^ + c^)(a^ -{-b^- c^)

4a262c2

§24. If p designates the radius of the inscribed circle of triangle

MNP and p^^\ p^^', p^^^ those of the escribed circles, then, by virtue

of §2 and §23, we have for the acute triangle ABC:

4A cos a cos /3 cos 7
P =

a cos a + 6 cos /? + c cos 7

,,, 4A cos a cos /3 cos 7
— a cos a + 6 cos ^ -{- c cos 7

[and if angle a is obtuse, these equations are modified by changing

the sign of each term containing cos a.]

Now since in general, by §19, a cos a -\- b cos ^ -\- c cos 7 =
2A/K, we have for the acute triangle ABC:

p = 2R cos a cos /3 cos 7

and on the other hand, if A is obtuse,

p^^^ = —2R cos a cos /3 cos 7.

26. The radius of the circle circumscribed about the triangle

MNP is equal to

MN.MP.NP abc cos a cos /3 cos 7 _ ^p
4 A MNP "^ 8A cos a cos /3 cos 7 ~ ^

that is, to half the radius of the circle circumscribed about the

triangle.
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AP
§32. Since angle AOP equals ABC, then AO = -.—;:, and

sm p

since AP = b cos a, and sin /3 = ^, therefore:

AO = 2R cos a; similarly BO = IR cos /3 and CO = IR cos 7;

hence
AO + BO + CO = 2/^(cos a 4- cos /3 + cos 7)

[and by substitution of the formulas for the cosines and algebraic

reduction, we find for any acute triangle]

cos a + cos ^ + cos 7 = ^-^^. AO + BO + CO = 2(r + R)

[If the triangle has an obtuse angle, e. g., at C, then]

A0 + BO - CO = 2(r + R).

§35. We have OM = BO cos 7, and since by §32 BO = 2R cos /3,

therefore

OM = 2K cos /3 cos 7;

similarly ON = 2R cos a cos 7, and OP = 2R cos a cos /3. If one

multiplies these expressions respectively by those of AO, BO, CO

(§32), then, since cos a cos jS cos 7 = ^d (§24)

AO.OM = BO.ON = CO.OP = 2pR

That is, ffee point oj intersection oj the three perpendiculars of

triangle ABC divides each into two parts, whose rectangle equals

double the rectangle oj the radius oJ the circle inscribed in triangle

MNP and that oj the circle circumscribed about triangle ABC.

CHAPTER III

On the Center of the Circle, Which Is Circumscribed about
A Triangle

§45. If /C is the center of the circle circumscribed about a

triangle ABC, and if perpendiculars Ka, Kb, Kc are dropped from

this point on the sides, BC, CA, AB; then if we draw AK,
Kc = AK cos AKc; and because AK = R and angle AKc equals

ACB, therefore

Kc — R cos 7;

and similarly Kb = R cos ^ and Ka = R cos a. If we compare

these expressions with those found in §32 for AO, BO, CO,...

we have at once

AO = 2Ka, BO = 2Kb, CO = 2Kc,
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In any triangle the distance from the center of the circumscribed

circle to any side is half the distance from the common point oj the

altitudes to the opposite vertex.

CHAPTER IV

Determination of the Relative Positions of the Points

Previously Discussed. [Bestimmung der Gegenseitigen Lage

der Vornehmsten bisher betrachteten Punkte.]

§49. If /C and 5 are the centers of the circles circumscribed and

inscribed to the triangle ABC, and perpendiculars Kc and SF are

dropped from these to the side AB, then

KS^ = {Ac - AF)' + {SF - Key

Now we have Ac = \'^c and AF = }i{— a + b + c), whence:

Ac- AF= li{a- 6);

further, because (§2)

5F= 2A

a-\- b + c'

and (§45)

^ _ c{a' + 6^ - c')^ ~
8A

therefore

SF- Kc =

{-a -\-b + c){a - 6 + c){a + b - c)- c{a^ + b^ - Q
8A

If now we substitute in the above expression for KS^, after the

necessary reductions we have

j^^ _ a^b\^ - abc{-a + 6 + c){a - 6 + c){a -\- b - c)

^^ ~ 16A2

whence by means of the known values of the radii r and R we arrive

at the result:

KS' = R' - IrR

In any triangle the square oj the distance between the centers of the

iu" and circumscribed circles equals the square of the radius oj the

circumscribed circle, diminished by twice the rectangle oj this radium

and the radius oj the inscribed circle.
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(By similar methods we find that if 5' is the center and r' the

radius of an escribed circle,

KS'^ = i?2 ^ 2r'Ri

§51, 53. [By exactly the same methods, we derive the relations]

052 = 2r2 - 2pR

KO2 = R2 _ ^pR

§54. If L is the center of the circle circumscribed about the

circle MNP, whose radius (§26) has been found to be J^K, and if

OL is drawn, then since is also the center of the inscribed circle

of triangle MNP, then (§49) OL^ = }iR^ — pR, and since we have

just seen that KO'' = R^ - 4pR, it follows that KO^ = WL\ or

KO = 20L.

[If the triangle is obtuse, a slight modification of the proof leads

to the same result, viz:]

In any triangle the common point of the altitudes is twice as Jar

from the center oj the circumscribed circle as from the center of the

circle through the Jeet of the altitudes.

§55. If perpendiculars LJ, LH are dropped from the center L
on the lines AB, CP, LJ = PH, and since H is a right angle, it is— 2 — 2 —

2

known that in triangle OPL,PH = ~^^
\oP ^ ^^

' ^"^^
= i^K, and (§54)01' = Va^'' - p/^; further (§35, 45) OP.ATc = pR,

whence LP — OL = OP.Kc. If this expression is substituted

in PH = LJ, the result is

U = yiiOP + Kc).

From this property it follows at once that the points 0, L, K are on

one and the same line, and the theorem shines out (erhellet)

:

In any triangle the center of the circumscribed circle, the cojnmon

point oj the altitudes, and the center oJ the circle through feet of the

altitudes lie on one and the same straight line, whose mid-point is the

last named point.

§56. Because the point L, then, lies at the center of the line

KO, therefore the point J is also the center of the line Pc, whence

Un a historical note, the theorem is attributed to Euler. The history

of this theorem has been investigated in detail by Mackay, Proceedings oJ

the Edinburgh Math. Society, V. 1886-7, p. 62.
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it follows that Lc '= LP = y^R; and similarly on each of the other

sides AC, BC. Thus we have the theorem:

In any triangle the circle which passes through the Jeet of the

altitudes also cuts the sides at their mid-points.

§57. If the line LS is drawn, we know that in triangle KOS,

since L is the mid-point of KO, 2sV + 20L^ = KS^ + 05^ If

we substitute in this equation the values of the squares of OL
KS, OS, as found in 54, 49, 51, thus there comes

IS' = HR' -rR + r'=^ i^AR - rY,

or:

LS = AR - r.

Similarly, setting a, b, c in turn negative,

LS' = ^R 4- r', LS" = AR + r", LS"' = >^/^ + r'".

Since now (^26)AR is the radius of the circle circumscribed about

triangle MNP, we deduce from a known property of circles which

are tangent, the following theorem

:

The circle which passes through the Jeet of the altitudes oj a triangle

touches all Jour oJ the circles which are tangent to the three sides oJ

the triangle and specifically, it touches the inscribed circle internally

and the escribed circles externally.



WILLIAM JONES

The First Use of tt for the Circle Ratio

(Selections Made by David Eugene Smith from the Original Work.)

William Jones (1675-1749) was largely a self-made mathematician. He
had considerable genius and wrote on navigation and general mathematics.

He edited some of Newton's tracts. The two passages given below are taken

from the Synopsis Palmariorum Matbeseos: or, a New Introduction to the

Mathematics, London, 1706. The work was intended "for the Vse of some

Friends, who had neither Leisure, Conveniency, nor, perhaps, Patience, to

search into so many different Authors, and turn over so many tedious volumes,

as is unavoidably required to make but a tolerable Progress in the Mathema-
tics." It was a very ingenious compendium of mathematics as then known.

The symbol t first appears on page 243, and again on p. 263. The transcend-

ence of rr was proved by Lindemann in 1882. For the transcendence of e,

which proved earlier (1873), see page 99.

Taking a as an arc of 30°, aud t as a tangent in a figure given, he states

(p. 243):

Let

Then

or

6a,
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tate the Practice; as for Instance, In the Circle, the Diameter is to

Circumjerence as 1 to

16 4 1 16 4 . 1 16 4 _ _

3.14159, &c. = TT.

4 , 1 16

3 239 3 53 2393 ' 5 5* 239^

Whence in the Circle, any one of these three, a, c, d, being given,

the other two are found, as, d = c-T-ir = a-r--iir
4

i

= a X 47r|^% a = ird^ = c^ -f- 47r.
4

M
% c = cf X TT
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On the Division of a Circle into n Equal Parts

(Translated from the Latin by Professor J. S. Turner, University of Iowa,

Ames, Iowa.)

Carl Friedrich Gauss (1777-1855) was a student at GSttingen from 1795 to

1798, and during this period he conceived the idea of least squares, began his

great work on the theory of numbers {Disqvisitiones aritbmeticae, Leipzig,

1801), and embodied in the latter his celebrated proposition that a circle can

be divided into n equal parts for various values of n not theretofore known.

This proposition is considered in the Disqvisitiones, pages 662-665. From this

edition the following translation has been made, the portion selected appearing

in sections 365 and 366.

For further notes upon Gauss and his works see pages 107 and 292.

(365.) We have therefore, by the preceding investigations,

reduced the division of the circle into n parts, if n is a prime

number, to the solution of as many equations as there are factors

into which n — 1 can be resolved, the degrees of these equations

being determined by the magnitude of the factors. As often

therefore as n — 1 is a power of the number 2, which happens for

these values of n: 3, 5, 17, 257, 65537 etc., the division of the circle

is reduced to quadratic equations alone, and the trigonometric

P IP
functions of the angles -, — etc. can be expressed by square roots

more or less complicated (according to the magnitude of n);

hence in these cases the division of the circle into n parts, or the

description of a regular polygon of n sides, can evidently be

effected by geometrical constructions. Thus for example for

n = 17, by arts. 354, 361, the following^ expression is easily derived

for the cosine of the angle H7P:

- V(34 - 2Vl7) - 2\/(34 + 2Vr7));

^ [An elegant presentation of Gauss's method will be found on p. 220 of

Casey's Plane Trigonometry (Dublin, 1888), where, however, the last terms of

equations (550), (551), (552) should be c\, C2, 62 resp>ectively.]

348
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the cosines of the multiples of this angle have a similar form, but

the sines have one more radical sign. Truly it is greatly to be

wondered at, that, although the geometric divisibility of the circle

into three and five parts was already known in the times of Euclid,

nothing has been added to these discoveries in the interval of

2000 years, and all geometers have pronounced it as certain, that

beyond the divisions referred to and those which readily follow,

namely divisions into 15, 3. 2'', SJ**, IS.l'' and also into 2** parts,

no others can be effected by geometrical constructions. Moreover
it is easily proved, if the prime number n is equal to 2"* + 1, that

the exponent m cannot involve other prime factors than 2, and so

must be either equal to 1 or 2 or a higher power of 2; for if m were

divisible by any odd number f (greater than unity), and m = ^tj,

2" -f- 1 would be divisible by 2i + 1, and therefore necessarily

composite. Consequently all values of n by which we are led to

none but quadratic equations are contained in the form 2^" + 1

;

thus the 5 numbers 3, 5, 17, 257, 65,537 result by setting j^ = 0,

1, 2, 3, 4 or m = 1, 2, 4, 8, 16. By no means for all numbers

contained in that form, however, can the division of the circle be

performed geometrically, but only for those which are prime

numbers. Fermat indeed, misled by induction, had affirmed that

all numbers contained in that form are necessarily primes; but the

celebrated Euler first remarked that this rule is erroneous even for

V = S, or m = 32, the number 2^^ _|_ j = 4294967297 involving

the factor 641.

But as often as n — 1 involves other prime factors than 2, we
are led to higher equations; namely to one or more cubics when 3 is

found once or more frequently among the factors of n — 1; to

equations of the 5"" degree when n — 1 is divisible by 5 etc.,

AND WE CAN DEMONSTRATE WITH ALL RIGOR THAT
THESE HIGHER EQUATIONS CAN IN NO WAY BE
EITHER AVOIDED OR REDUCED TO LOWER, although

the limits of this work do not permit this demonstration to be given,

which nevertheless we eff"ected since a warning must be given lest

anyone may still hope to reduce to geometrical constructions other

divisions beyond those which our theory furnishes, for example

divisions into 7, 11, 13, 19 etc. parts, and waste his time uselessly.

(366.) If the circle is to be divided into a" parts, where a

denotes a prime number, this can clearly be effected geometrically

when a = 2, but for no other value of a, provided a > 1 ; for then

besides those equations which are required for the division into a
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parts it is also necessary to solve a — I others of the a"" degree;

moreover these can in no way be either avoided or depressed.

Consequently the degrees of the necessary equations can be as cer-

tained generally (evidently also for the case where a = \) from

the prime factors of the number (a — l)a°~^

Finally, if the circle is to be divided into N = a^^b^c^. . .parts,

a, 6, c etc. denoting unequal prime numbers, it suffices to effect

the divisions into a", 6^, c**" etc. parts (art. 336); and therefore, to

ascertain the degrees of the equations required for this purpose,

it is necessary to examine the prime factors of the numbers

(a — l)a«~S (6 — 1)6^S (c — \)c'^^ etc., or which amounts to the

same thing, of the product of these numbers. It may be observed

that this product expresses the number of numbers prime to N
and less than N (art. 38). Therefore the division is effected

geometrically only when this number is a power of two; indeed

when it involves prime factors other than 2, for instance p, p' etc.,

equations of degree p, p' etc. can in no way be avoided. Hence

it is deduced generally that, in order that a circle may be geome-

trically divisible into N parts, N must be either 2 or a higher power

of 2, or a prime number of the form 2"^ + 1, or the product of

several such prime numbers, or the product of one or more such

prime numbers into 2 or a higher power of 2 ; or briefly, it is neces-

sary that N should involve neither any odd prime factor which is

not of the form 2"" + 1, nor even any prime factor of the form

2"* + 1 more than once. The following 38 such values of N are

found below 300: 2, 3, 4, S, 6, 8, 10, 12, 15, 16, 17, 20, 24, 30, 32,

34, 40, 48, 51, 60, 64, 68, 80, 85, 96, 102, 120, 128, 136, 160, 170,

192, 204, 240, 255, 256, 257, 272.



SACCHERI

On Non-Euclidean Geometry^

(Translated from the Latin by Professor Henry P. Manning, Brown University,

Providence, R. I.)

Geronimo Saccheri was born in 1667 and died in 1733. He was a Jesuit

and taught in two or three of the Jesuit colleges in Italy. His chief work,

published about the time of his death, is an attempt to prove Euclid's parallel

postulate as a theorem by showing that the supposition that it is not true leads

to a contradiction. The path to his "contradiction" consists of a series of

propositions which actually constitute the main part of the elementary non-

Euclidean geometry, published in this way about a hundred years before it

was published as such.

The final discovery of the non-Euclidean geometry was not based on the

work of Saccheri. Neither Lobachevsky nor Bolyai seems to have ever heard

of him. But Saccheri is the most important figure in the preparation for this

discovery in the period that precedes it, and after his relation to it was pointed

out in 1889 his work took its place as standing at the head of the literature of

the subject,

Euclid Freed from Every Flaw^

Book I

in which is demonstrated : Any two straight lines lying in the same

plane, on which a straight Hne makes the two interior angles on

the same side less than two right angles, will at length meet each

other on the same side if they are produced to infinity.

1 On the general subject of non-Euclidean geometry, including biographical notes, see

Engel and Stackel, Die Tbeorie der PaTallellinien (Leipzig, 1895); Urkunden zur Cescbicble

der Nicbteuklidiscben Geometrie (Leipzig, 1898, 1913).

[^ This book was written in Latin and the Latin text has been published along

with the translation by Professor Halsted (Chicago, 1920). We have checked

this with the German translation given in Die Tbeorie der Parallellinien by

Engel and Stackel, Leipzig, 1895, pages 41-135. The text itself of which we

are translating a part is preceded by a " Preface to the Reader" and a summary

of the contents "added in place of an index."]

351
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Part I

Proposition I.—// two equal straight lines, AC and BD, make equal

^ angles on the same side with a line AB, I say that

the angles with the joining line CD will also be

equal.

Proofs—Let A and D be joined, and C and

B. Then let the triangles CAB and DBA be

considered. It follows (1, 4) ^ that the bases CB
and AD will be equal. Then consider the triangles ACD and BDC.
It follows (I, 8) that the angles ACD and BDC will be equal.

Q. E. D.3

Proposition II.—In the same quadrilateral ABCD* let the sides

AB and CD be bisected at the points M and

H. I say that the angles with the joining

line MH will then be right angles.

Proof.—Let the joining lines AH and BH
be drawn, also CM and DM. Since in this

quadrilateral the angles A and B are given

equal, and also (from the preceding) C and D, it follows from I, 4

(since also the equality of the sides is Icnown) that in the triangles

CAM and DBM the bases CM and DM will be equal; also in the

triangles ACH and BDH the bases AH and BH. Therefore, from

a comparison of the triangles CHM and DHM, and again of the

triangles AMH and BMH, it will follow (I, 8) that the angles in

these at the points M and H will be equal to each other, and so

right angles. Q. E. D.

Proposition III.—// two equal straight lines AC and BD stand

perpeyidicularly to a straight line AB, I

say that the joining line CD will be equal

to, or less than, or greater than AB, ac-

cording as the angles with the same CD
are right or obtuse or acute.

Proof of the first part. Each angle

C and D being a right angle, if possible

let one of those, say CD, be greater than the other, AB. On DC
' ["Demonstratur," It is proved.]

^ [. . . "ex quarta primi." This is a reference to Euclid. For such references

we shall give only the numbers of the book and proposition.]

' ["Quod erat demonstrandum," written out in full in the original as published

with Halsted's translation.]

• [Literally, "The uniform quadrilateral remaining."]
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let a portion DK be taken equal to BA, and let A and K be

joined. Since therefore on BD stand two equal perpendicular

lines BA and DK the angles BAK and DKA will be equal (1).'

But this is absurd, since the angle BAK is by construction less

than the assumed right angle BAC, and the angle DKA is an

exterior angle by construction, and therefore (I, 16) greater than

the interior opposite angle DCA, which is supposed to be a right

angle. Therefore neither of the given lines DC and BA is greater

than the other if the angles with the joining line CD are right

angles, and therefore they are equal to each other. Q. E. D. for

the first part.

Proof oj the second part. But if the angles with the joining

line CD are obtuse, let AB and CD be bisected at the points M
and H, and letM and H be joined. Since therefore on the straight

line MH stand two perpendicular lines AM and CH (from what
precedes) and we have with the joining line AC the right angle at

A, CH will not be equal to AM (1) since the angle at C is not a

right angle. But neither will it be greater: otherwise, taking on

HC a portion KH equal to AM, we shall have equal angles with

the joining line AK (1). But this is absurd as above. For the

angle MAK is less than a right angle and the angle HKA is greater

than the obtuse angle HCA which is interior and opposite (I, 16).

It results therefore that CH, while the angles with the joining line

CD are obtuse, is less than AM, and therefore the double of the

former, CD, is less than the double of the latter, AB. Q. E. D.

for the second part.

Proof of the third part. But, finally, if the angles with the joining

line CD were acute, the perpendicular MH being drawn as before,

we proceed thus: Since on the line MH stand perpendicularly two

straight lines AM and CH, and with the joining line AC there is a

right angle at A, the line CH will not be equal to AM, since there

is lacking a right angle at C. But neither will it be less: otherwise,

if on HC produced we take HL = AM, the angles formed with

the joining line AL will be equal (as above). But this is absurd.

For the angle MAL is by construction greater than the angle MAC
supposed a right angle, and the angle HLA is by construction

interior and opposite, and so less than the exterior angle HCA
(I, 16), which is supposed acute. It remains, therefore, that CH,
while the angles with the joining line CD are acute, is greater

^ [. . ."ex prima hujus." These are references to previous theorems, which

we will indicate simply by putting the number in the parentheses.)
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than AM, and so CD, the double of the former, is greater than

AB, the double of the latter. Q. E. D. for the third part.

Thus it follows that the joining line CD will be equal to, or less

than, or greater than AB, according as the angles with the same
CD are right or obtuse or acute. Q. E. D.

Corollary 1.

—

Hence in every quadrilateral containing three right

a7igles and one obtuse or acute, the sides adjacent to the angle which

is not a right angle are less, respectively, than the opposite sides ij the

angle is obtuse, but greater if it is acute. For it has already been

demonstrated of the side CH with respect to the opposite side AM,
and in a similar way it is shown of the side AC with respect to the

opposite side MH. For as the lines AC and MH are perpendicular

to AM, they cannot be equal to each other (1), because of the

unequal angles with the joining line CH. But neither (in the

hypothesis of the obtuse angle at C) can a certain portion AN
of AC be equal to MH, than which certainly AC is greater; other-

wise (1) the angles with the joining line HN would be equal

which is absurd as above. But again (in the hypothesis of the

acute angle at C) if we wish that a certain AX, taken on AC
produced, shall be equal to MH, than which certainly AC is

smaller, the angles with the joining line HX will be equal for the

same reason, which is absurd in the same way as above. It

remains therefore that in the hypothesis indeed of the obtuse angle

at the point C the side AC will be less than the opposite side MH,
but in the hypothesis of the acute angle it will be greater. Q. E. I.^

Corollary 2.—By much more will CH be greater than any portion

of AM, as say PM, since the joining line CP makes a more acute

angle with CH on the side towards the point H, and an obtuse angle

(I, 16) with PM towards the point M.
Corollary 3.

—

Again it follows that all these statements are true

if the perpendiculars AC and BD are oj a certain finite length fixed by

us, or are supposed to he infinitely small. This indeed ought to be

noted in the rest of the propositions that follow.

Proposition IV.—But conversely {in the figure of the preceding

proposition), the angles with the joining line CD will be right or

obtuse or acute according as CD is equal to, or less tbaUy or greater

than, the opposite AB.

Proof.—For if the Hne CD is equal to the opposite AB, and never-

theless the angles with the same are obtuse or acute, already such

angles will prove it (from the preceding) not equal to, but less

^ ["Quod erat intentum," What was asserted.]
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than, or greater than the opposite AB, which is absurd, contrary

to hypothesis. The same holds in the other cases. It stands

therefore that the angles with the joining line CD are right or

obtuse or acute according as the line CD is equal to, or less than,

or greater than, the opposite AB. Q. E. D.

Definitions.—Since (from 1) a straight line joining the extremities

of equal lines standing perpendicularly to the same line (which

we shall call base) makes equal angles with

them, therefore there are three hypotheses to
"^

be distinguished in regard to the nature of-^

these angles. And the first indeed I will call

the hypothesis of the right angle, but the second

and third I will call the hypothesis of the obtuse

angle and the hypothesis oj the acute angle.

Proposition V.—The hypothesis of the right

angle, if true in a single case, is always in every ^
case the only true hypothesis.

Proof.—Let the joining line CD make right angles with any two

equal lines, AC and BD, standing perpendicularly to any AB.
CD will be equal to AB (3). Take on AC and BD produced the

two CR and DX, equal to AC and BD, and join R and X. We
shall easily show that the joining line RX will be equal to AB and

the angles with it right angles; and first indeed by superposition

of the quadrilateral ABDC upon the quadrilateral CDXR, with

the common base CD. But then we can proceed more elegantly

thus: join A and D and R and D. It follows (I, 4) that the

triangles ACD and RCD will be equal, the bases AD and RD, and

also the angles CDA and CDR and, because they are equal remain-

ders to a right angle, ADB and RDX. Wherefore again (from the

same I, 4) will be equal in the triangles ADB and RDX the base AB
to the base RX. Therefore (from the preceding) the angles with

the joining line RX will be right angles, and therefore we shall

persist in the same hypothesis of the right angle.

And since the length of the perpendiculars can be increased to

infinity on the same base, with the hypothesis of the right angle

always holding, it must be proved that the same hypothesis will

remain in the case of any diminution of the same perpendiculars,

which is proved as follows.

Take in AR and BX any two equal perpendiculars AL and BK,
and join L and K. Even if the angles with the joining line are

not right angles, yet they will be equal to each other (1). They
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will therefore be obtuse on one side, say towards AB, and towards

RX acute, as the angles at each of these points are equal to two

right angles (I, 13). But it follows also that LR and KX are

perpendiculars equal to each other standing on RX. Therefore

(3) LK will be greater than the opposite RX and less than the

opposite AB.
But this is absurd, since AB and RX have been shown equal.

Therefore the hypothesis of the right angle will not be changed

under any diminution of the perpendiculars while the given AB
remains the base.

But neither will the hypothesis of the right angle be changed

under any diminution or greater amplitude of the base, since it is

evident that any perpendicular BK or BX can be considered as

base, and so in turn AB and the equal opposite line KL or XR can

be considered as the perpendicular.

It follows therefore that the hypothesis of the right angle, if

true in any case, is always in every case the only true hypothesis.

Q. E. D.

Proposition VI.—The hypothesis oj the obtuse angle, if it is true

in one case, is always in every case the only true hypothesis.

Proof.—Let the joining hne CD make obtuse angles with any

two equal perpendiculars AC and BD standing on any straight

line AB. CD will be less than AB (3). Take
/?i |X on AC and BD produced any two portions CR

r and DX, equal to each other, and join R and

X. Now I seek in regard to the angles with the

joining line RX, which will be equal to each

other (1). If they are obtuse we have the

theorem as asserted. But they are not right,

because we should then have a case of the

ff hypothesis of the right angle, which (from the

preceding) would leave no place for the hy-

pothesis of the obtuse angle. But neither are they acute. For

in that case RX would be greater than AB (3), and therefore still

greater than CD. But that this cannot be true is shown as

follows. If the quadrilateral CDXR is known to be filled with

straight hues cutting off portions from CR and DX equal to each

other, this imphes a passing from the straight line CD which is

less than AB, to RX greater than the same, and so a passing

through a certain ST equal to AB. But that this is absurd in

our present hypothesis follows from it, because then there would
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be one case of the hypothesis of the right angle (4), which would

leave no place for the hypothesis of the obtuse angle (from the

preceding). Therefore the angles with the joining line RX ought

to be obtuse.

Then taking on AC and BD equal portions AL and BK, we shall

show in a similar manner that the angles with the joining line LK
cannot be acute towards AB, because then It would be greater than

AB, and therefore still greater than CD. But from this there ought

to be found as above a certain intermediate line between CD which

Is smaller, and LK which is larger than AB, Intermediate I say,

and equal to AB, which certainly, from what has just been noted,

would take away all place for the hypothesis of the obtuse angle.

Finally, for this same reason, the angles with the joining line LK
cannot be right angles. Therefore they will be obtuse. Therefore

on the same base AB, the perpendiculars being Increased or dimi-

nished at will, there will always remain the hypothesis of the

obtuse angle.

But the same ought to be demonstrated on the assumption of

any base. Let there be chosen for base one of the above mentioned

perpendiculars, say BX. Bisect AB and

RX at the points M and H and join M
and H. MH will be perpendicular to AB
and RX (2). But the angle at J5 is a right

angle by hypothesis, and the angle at X is

obtuse as just proved. Therefore make the

right angle BXP on the side of MH, XP
will cut MH at a certain point P situated

between the points M and H, since, on

the one hand, the angle BXH is obtuse,

and, on the other hand, if we join X and

M, the angle BXM is acute (I, 17). Then indeed since the quadri-

lateral XBMP contains three right angles from what is already

known and one obtuse at the point P, because It Is exterior with

respect to the interior opposite right angle at the point H of the

triangle PHX (I, 16), the side XP will be less than the opposite

side BM (3, Cor. 1). Therefore, taking in BM the portion BF
equal to XP, the angles with the joining line PF will be equal to

each other, and even obtuse, since the angle BFP is obtuse on

account of the interior opposite angle FMP (I, 16). Therefore

under any base BX the hypothesis of the obtuse angle holds true.

R If

¥
M F
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Moreover there stands as above the same hypothesis on the

same base BX, however the equal perpendiculars are increased at

will or diminished. And so it follows that the hypothesis of the

obtuse angle, if it is true in one case, is always in every case the

only true hypothesis. Q. E. D.

Proposition VII.—Tbe hypothesis oj the acute angle, if it is true

in one case, is always in every case the only true hypothesis.

It is proved most easily. For if the hypothesis of the acute

angle should permit any case of either the hypothesis of the right

angle or of the obtuse angle, already (from the two preceding

propositions) no place will be left for the hypothesis of the acute

angle, which is absurd. Therefore the hypothesis of the acute

angle, if it is true in one case, is always in every case the only true

hypothesis.

The following propositions, given here without the proofs, show in part

the course pursued by Saccheri.

Proposition XI.—Let the straight line AP (as long as you please)

cut two straight lines PL and AD, the first in a right angle at P, but

the second at A in an angle that is acute towards the side of PL. I

say that the straight lines AD and PL {in the hypothesis oJ the right

angle) will at length meet in some point, and indeed at a finite or

terminated distance, if produced towards those parts on which they

make with the base line AP the two angles less than two right angles.

Proposition XII.—Again I say that the straight line AD will

meet the line PL somewhere towards these parts {and indeed at a

finite or terminated distance) even in the hypothesis of the obtuse angle.

Proposition XIII.—// tbe straight line XA {of any designated

length) intersecting two straight lines AD and XL, makes with them

on the same side interior angles XAD and AXL less than two right

angles, I say that those two {even if neither of those angles is a right

angle) will meet each other at length in some point 07i the side of
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those angles, and indeed at a finite or terminated distance, if holds

true the hypothesis oj the right angle or of the obtuse angle.

D

Proposition XIV.—The hypothesis oJ the obtuse angle is abso-

lutely false, because it destroys itself.^

Proposition XXI1 1.—// two lines AX and BX lie in the same
plane, either they have one common per- ^ ^'

pendicular {even in the hypothesis of the

acute angle), or prolonged, both towards

one side or towards the other, unless some- /ff

where one meets the other at a finite

distance, they will always more and more

nearly approach each other.

Proposition XXXIII.—The hypo-

thesis of the acute angle is absolutely false,

because repugnant to the nature of a

straight line.^

^[Propositions XII and XIII lead to Euclid's postulate, and so to the

hypothesis of the right angle, "even in the hypothesis of the obtuse angle."]

2 [Up to this point his proofs are clear and logical. But he fails to find his

contradiction and falls back on vague illogical reasoning. In the proof of

Proposition XXXIII he says, "For then we have two lines which produced

must run together into the same hne and have at one and the same infinitely

distant point a common perpendicular." Then he says he will go into first

principles most carefully in order not to omit any objection. Finally in Part II

he comes to

Proposition XXXVIII. The hypothesis of the acute angle is absolutely false,

because it destroys itself.

In the summary at the beginning he says that after the falsity of the hypo-

thesis of the obtuse angle is shown "begins a long battle against the hypothesis

of the acute angle," which alone denies the truth of that axiom.]



LOBACHEVSKY

On Non-Euclidean Geometry

(Translated from the French by Professor Henry P. Manning, Brown
University, Providence, R. I.)

Nicholas Ivanovich Lobachevsky was born in 1793 and died in 1856. For

almost his entire life he was connected with the University of Kasan where he

was professor of mathematics and finally rector. He wrote several memoirs

and books on the theory of parallels, of which three may be mentioned as the

most important: (1) New Foundations of Geometry, published first in Russian

in 1835-1838. A German translation is given by Engel and Stackel Urkunden,

vol. I, pages 67-236. There was an English translation made by Halsted in

1897, and a French translation made in 1901. (2) Geometrical Investigations

on the Theory of Parallels, written in German and published as a book in Berlin

in 1840. This was translated into French by Houel in 1866, and into English

in 1891 by Halsted (Chicago, 1914). (3) Pangeometry, published simulta-

neously in Russian and French in 1855, translated into German in 1858 and
again in 1902, and into Italian in 1867. This is more condensed, many proofs

being omitted with references to Geometrical Investigations, and as it was
written near the end of Lobachevsky's life it may be regarded as representing

the final development of his ideas. When this was written he had become
blind and had to dictate whatever he wrote to his pupils.

Pangeometry

or a Summary of Geometry Founded upon a General and Rigorous

Theory of Parallels.^

The notions upon which the elementary geometry is founded

are not sufficient for a deduction from them of a demonstration

of the theorem that the sum of the three angles of a rectilinear

triangle is always equal to two right angles, a theorem the truth

' [Collection compile des aeuvres geometriques de N. I. Lobatcbeffsky, volume

II, Kasan, 1886, pages 617-680. This translation has been compared with

the Russian edition by Mrs. D. H. Lehmer of Brown University. There are

a few differences. Some superfluous words are omitted in the French and

obscure passages in the Russian are explained more fully and so made clearer.

Apparently the Russian edition was printed first and the French shows some
slight revision. Some of these differences will be pointed out below.]

360
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of which no one has doubted to the present time because we meet

no contradiction in the consequences which we have deduced from

it, and because direct measures of angles of rectihnear triangles

agree with this theorem within the limits of error of the most

perfect measures.

The insufficiency of the fundamental notions for the demonstra-

tion of this theorem has forced geometers to adopt exphcitly or

impHcitly auxihary suppositions, which, however simple they

appear, are no less arbitrary and therefore inadmissible. Thus,

for example, one assumes that a circle of infinite radius becomes

a straight fine, and a sphere of infinite radius a plane, that the

angles of a rectihnear triangle always depend only on the ratios

of the sides and not on the sides themselves, or, finally, as it is

ordinarily done in the elements of geometry, that through a given

point of a plane we can draw only a single fine parallel to another

given fine in the plane, while all other fines drawn through the

same point and in the same plane ought necessarily to cut the

given fine if sufficiently prolonged. We understand by the term

"fine parallel to a given fine" a fine which, however far it is pro-

longed in both directions, never cuts the one to which it is parallel.

This definition is of itself insufficient, because it does not suffici-

ently characterize a single straight fine. We may say the same
thing of most of the definitions given ordinarily in the elements of

geometry, for these definitions not only do not indicate the genera-

tion of the magnitudes which they define, but they do not even

show that these magnitudes can exist. Thus we define the straight

fine and the plane by one of their properties. We say that

straight fines are those which always coincide when they have

two points in common, and that a plane is a surface in which a

fine fies entirely when the fine has two points in common with it.

Instead of commencing geometry with the plane and the

straight fine as we do ordinarily, I have preferred to commence it

with the sphere and the circle, whose definitions are not subject

to the reproach of being incomplete, since they contain the genera-

tion of the magnitudes which they define.

Then I define the plane as the geometrical locus of the intersec-

tions of equal spheres described around two fixed points as centers.

Finafiy I define the straight fine as the geometrical locus of the

intersections of equal circles, afi situated in a single plane and

described around two fixed points of this plane as centers. If

these definitions of the plane and straight line are accepted afi the
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theory of perpendicular planes and lines can be explained and
demonstrated with much simplicity and brevity.^

Being given a straight line and a point in a plane, I define as

parallel through the given point to the given line, the limiting line

between those drawn in the same plane through the same point and

prolonged on one side of the perpendicular from the point to the

given line, which cut it, and those which do not cut it.^

I have published a complete theory of parallels under the title

Geometrical Investigations on the Theory of Parallels, Berlin, 1840,

in the Finck publishing house. In this work I have stated first

all the theorems which can be demonstrated without the aid of the

theory of parallels. Among these theorems the theorem which

gives the ratio of the area of a spherical triangle to the entire area

of the sphere upon which it is traced, is particularly remarkable

{Geometrical Investigations, §27.)' If A, B, and C are the angles

of a spherical triangle and t represents 2 right angles,the ratio

of the area of the triangle to the area of the sphere to which it

belongs will be equal to the ratio of

y2 (A + B + C - tt)

to four right angles.

Then I demonstrate that the sum of the three angles of a recti-

linear triangle can never surpass two right angles (§19), and that,

if the sum is equal to two right angles in any triangle, it will be so

in all (§20). Thus there are only two suppositions possible: Either

the sum of the three angles of a rectilinear triangle is always equal to

two right angles, the supposition which gives the known geometry, or

in every rectilinear triangle this sum is less than two right angles,

and this supposition serves as the basis of another geometry, to

which I had given the name of imaginary geometry, but which it is

perhaps more fitting to call pangeometry because this name indi-

cates a general geometrical theory which includes the ordinary

geometry as a particular case. It follows from the principles

adopted in the pangeometry that a perpendicular p let fall from a

' [He seems to refer to work elsewhere, or perhaps to his teaching. These

ideas are not developed further in this book.]

2 [The Russian adds: That side on which the intersection occurs I call tbe

side of parallelism.]

^ [The Geometrical Investigations is the work translated by Halsted. Sec

page 360. In further references to this work only the section number will be

given.]
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point of a straight line upon one of the parallels makes with the

first line two angles of which one is acute. I call this angle the

angle oj parallelism and the side of the first line where it is found/

side which is the same for all the points of this hne, the side oj

parallelism. I denote this angle by n(p), since it depends upon the

length of the perpendicular. In the ordinary geometry we have

always n(p) = a right angle for every length of p. In the pangeo-

metry the angle n(p) passes through all values from zero, which

corresponds to p = oo, to n(p) = a right angle for p = (§23).

In order to give the function 11 (p) a more general analytical value

I assume that the value of this function for p negative, case which

the original definition does not cover, is fixed by the equation

n(p) + n(-p) = T.

Thus for every angle A > and < r we can find a line p such that

n(p) = A, where the line p will be positive if A < 7r/2. Recipro-

cally there exists for every line p an angle A such that A = n(p).

I call limit circle"^ the circle whose radius is infinite. It can be

traced approximately by constructing in the following manner as

many points as we wish. Take a point on an indefinite straight

line, call this point vertex and the line axis of the limit circle, and

construct an angle A > and < t/2 with vertex at the vertex

of the limit circle and the axis of the limit circle as one of its sides.

Then let a be the line which gives 11 (a) = A and lay off on the

second side of the angle from the vertex a length equal to 2a.

The extremity of this length will be found on the limit circle.

To continue the tracing of the limit circle on the other side of the

axis it will be necessary to repeat the construction on that side.

It follows that all the lines parallel to the axis of the limit circle

can be taken as axes.

The rotation of the limit circle around one of its axes produces a

surface which I call limit 5p/)ere,^ surface which is, therefore, the limit

which the sphere approaches if the radius increases to infinity. We
shall call the axis of rotation, and therefore all the lines parallel

to the axis of rotation, axes of the limit sphere, and we shall call

diametral plane every plane which contains one or several axes of

the limit sphere. The intersections of the limit sphere by its

* [Russian: Where the acute angle is found.]

^ [This is the oricycle or boundry-curve.]

^ [Orispbere or boundaiy-surface.]
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diametral planes are limit circles. A part of the surface of the Hmit

sphere bounded by three hmit circle arcs will be called a limit sphere

triangle. The limit circle arcs will be called the sides, and the dihe-

dral angles between the planes of these arcs the angles of the limit

sphere triangle.

Two lines parallel to a third are parallel to each other (§25).

It follows that all the axes of a limit circle and of a Hmit sphere are

parallel to one another. I fthree planes two by two intersect in three

parallel hnes and if we limit each plane to the part which is between

these parallels, the sum of the three dihedral angles which these

planes form will be equal to two right angles (§28). It follows from

this theorem that the sum of the angles of a limit sphere triangle is

always equal to two right angles, and everything that is demon-

strated in the ordinary geometry of the proportionahty of the

sides of rectihnear triangles can therefore be demonstrated in the

same manner in the pangeometry of the limit sphere triangles if

only we will replace the Hnes parallel to the sides of the rectihnear

triangle by hmit circle arcs drawn through the points of one of the

sides of the hmit sphere triangle and all making the same angle with

this side.^ Thus, for example, if p, q, and r are the sides of a Hmit

sphere right triangle and P, Q, and 7r/2 the angles opposite these

sides, it is necessary to assume, as for right angled rectihnear right

triangles of the ordinary geometry, the equations

p = r sin P = r cos Q,

q = r cos P = r sin Q,

P + Q-l-

In the ordinary geometry we demonstrate that the distance

between two parallel lines is constant. In pangeometry, on the

contrary, the distance p from a point of a line to the parallel hne

diminishes on the side of parallehsm, that is to say, on the side

towards which is turned the angle of parallehsm n(p).

Now let s, s', s"y ... be a series of hmit circle arcs lying between

two parallel hnes which serve as axes to all these hmit circles,

and suppose that the parts of these parallel hnes between

1 [Apparently he would say that two limit circle arcs cutting a third so that

corresponding angles are equal would be like the parallels of ordinary geometry.

Thus a limit circle arc cutting one side of a limit sphere triangle may be

"parallel" to one of the other sides.]
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two consecutive arcs are all equal to one another and equal to x.

Denote by E the ratio of 5 to 5'/

s' ^'

where £" is a number greater than unity.^

A a' a"

Suppose^ first that E = n/m, m and n being two integer numbers,

and divide the arc 5 into m equal parts. Through the points of

division draw lines parallel to the axes of the limit circles. These

parallels will divide each of the arcs 5', s", etc., into m parts equal to

one another. Let* AB be the first part of s, A'B' the first part of

s', A"B" the first part of s" etc., A, A', A",. . .the points situated

upon one of the given parallels, and put A'B' upon AB so that A
and A' will coincide and A'B' fall along AB. Repeat this super-

position n times. Since by supposition s/s' = n/m, it will be neces-

sary that nA'B' = mAB, and therefore that the second extremity

of A'B' will coincide after the nth superposition with the second

extremity of s, which will be divided into n equal parts. 5', 5", . . .

will also be divided into m equal parts each by the lines parallel

to the two given parallels. But if we consider that in making the

superposition indicated above, A'B' carries the part of the plane

limited by this arc and the two parallels drawn through its extremi-

^[The Russian adds: when x is equal to 1.]

2 [Russian: positive and greater tlian unity.]

^ [There are no figures for the pangeometry in the (Euvres from which this

translation is made. The figures that we are using are taken from the German
translation made by Heinrich Liebmann, Leipzig, 1902.]

* [Instead of the rest of this paragraph the Russian says: We superimpose

the area between the arcs s' and s" over the area between s and s', and the

arc s' on the arc s, and hence s" on s'. We repeat the arc s'/m. It has to

go n times in the arc s. Parallelism of lines makes the arc s"/m go n times

in s'. Hence

s/s' = s'/s".

And a few lines below: This implies that for every line x, s' = sE~', etc.]
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ties, it is clear that at the same time while n times A'B' covers all

of the arc s, nA"B" will cover all of the arc s', and so on, because

in this case the parallels ought to coincide in all their extent, so

that we have

nA"B" = mA'B',

or, what is the same thing,

s' _ n _ J-.
s' _ r;

which is what we had to demonstrate.

To demonstrate the same thing in the case where E is an incom-

mensurable number we can employ one of the methods used for

similar cases in ordinary geometry. For the salce of brevity I

will omit these details. Thus

i = il = i" = = F
s' s" s'" "

After this it is not difficult to conclude that

s' = sE-'^,

where E is the value of s/s' for x, the distance between the arcs

5 and s', equal to unity.

It is necessary to remark that this ratio E does not depend on the

length of the arc s, and remains the same if the two given parallel

Hnes are moved away from each other or approach each other.

The number E, which is necesarily greater than unity, depends

only on the unit of length, which is the distance between two suc-

cessive arcs, and which is entirely arbitrary. The property which

we have just demonstrated with respect to the arcs s, s', s" . . .

subsists for the areas P, P\ P", . . . , limited by two successive arcs

and the two parallels. We have then

P' = PE-'.

If we unite n such areas P, P', P", . . .P^"~^\ the sum will be

I - E-''

For n = 00 this expression gives the area of the part of the plane

between two parallel lines, limited on one side by the arc s, and

unHmited on the side of the parallelism, and the value of this will be

P^_
1 - £-^'
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If we choose for unit of area the area P which corresponds to an

arc s also a unit, and to x = 1, we shall have in general for any
arc 5

Es
E - V

In the ordinary geometry the ratio designated by E is constant

and equal to unity. It follows that in the ordinary geometry

two parallel lines are everywhere equidistant and that the area

of the part of the plane situated between two parallel lines and

limited on one side only by a perpendicular common to them is

infinite.

Consider for the present a right angled rectilinear triangle in

which a, b, and c are the sides, and A, B, and 7r/2 the angles oppo-

site these sides. For the angles A and B can be taken the angles

of parallelism 11(a) and n(/3) corresponding to lines of positive

length a and /3. Let us agree also to denote hereafter by a letter

with an accent a line whose length corresponds to an angle of

parallelism which is the complement to a right angle of the angle

of parallelism corresponding to the line whose length is denoted by
the same letter without accent, so that we have always

n(a) + n(a') =
^,

n(6) + n(6')=^.

Denote^ by /(a) the part of a parallel to an axis of a limit circle

intercepted between the perpendicular to the

axis through the vertex of the limit circle /V&y

and the limit circle itself, if this parallel

passes through a point of the perpendicular

whose distance from the vertex is a, and let

L{a) be the length of the arc from the vertex

to this parallel.

In the ordinary geometry we have

/(a) = 0, L{a) = a,

for every length a.

i[The Russian says: Erect a perpendicular a to an axis of a limit circle

at the vertex. Through the apex of the perpendicular draw a line parallel

to the axis on the side of parallelism. Designate by /(a) the part of the

parallel between the perpendicular and the limit circle itself and by L(a) the

length of the arc from the vertex to this parallel.]
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Draw a perpendicular AA' to the plane of the right angled

triangle whose sides have been denoted by a, 6, and c, perpendicular

through the vertex A of the angle n(a).

Pass through this perpendicular two planes,

of which one, which we will call the first

plane, passes also through the side b, and

^ the other, the second plane, through the

side c. Construct in the second plane the

line BB' parallel to AA' which passes

through the vertex B of the angle n(/3), and
pass a third plane through BB' and the side a of the triangle.

This third plane will cut the first in a line CC parallel to

AA'. Conceive now a sphere described from the point B as

center with a radius arbitrary, but smaller than a, a sphere

which will therefore cut the two sides a and c of the triangle and
the line BB' in three points which we will call, the first n, the

second m, and the third k. The arcs of great circles, intersections

of this sphere by the three planes passing through B, which unite

two by two the points n, m, and k, will form a spherical triangle

right angled at m, whose sides will bemn = n(/3), km = U{c), and

kn = n(a). The spherical angle knm will be equal to 11(6) and

the angle kmn will be a right angle. The three lines being parallel

to one another, the sum of the three dihedral angles which the

parts of the planes AA'BB', AA'CC, and BB'CC situated between

the lines AA', BB', and CC form with one another will be equal

to two right angles.^ It follows that the third angle of the spherical

triangle will be mk7i = II (a'). We see then that to every right

angled rectilinear triangle whose sides are a, b, and c, and the

opposite angles n(a), n(/3), and ir/l corresponds a right angled

spherical triangle whose sides are 7r(i3), n(c), and n(a), and the

opposite angles n(a'), 11(6), and7r/2. Con-

struct another right angled rectilinear tri- ^ ^^
angle whose sides perpendicular to each other ^^-"'^a;

are^ a' and a, w^hose hypotenuse is g, and in
*'

which n(X) is the angle opposite the side a, and 11 ()u) the angle oppo-

site the side a'. Pass from this triangle to the spherical triangle

which corresponds in the same manner as the spherical triangle

^ [The Russian says: The three lines AA', BB', and CC, being parallel to

one another, give a sum of dihedral angles equal to ir.J

^ [It would be better to put a before a'.]
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kmn corresponds to the triangle ABC. The sides of this spherical

triangle will then be

n(M),n(g).n(a),

and the opposite angles

n(x'),n(a'),^,

and it will have its parts equal to the corresponding parts of the

spherical triangle kmn, for the sides of the latter were

n(c), n(^), n(a),

and the opposite angles

n(6).n(a').^.

which shows that these spherical triangles have the hypotenuse

and an adjacent angle the same.

It follows that

M = c, g = /3, 6 = X',

and thus the existence of the right angled rectilinear triangle with

the sides

a, 6, c,

and the opposite angles

n(a),n(^),^,

supposes the existence of a right angled rectilinear triangle with the

sides

a, a', ^,

and the opposite angles

n(6'),n(c),|.

We can express the same thing by saying that if

a, b, c, a, fi

are the parts of a right angled rectilinear triangle,

a, a', /3, h', c

will be the parts of another right angled rectilinear triangle.^

^ [There seems to be no simple geometrical relation between the two recti-

linear triangles nor anything more than an empirical law for deriving the parts

of the spherical triangle from those of the rectilinear triangle. There are two

ways in which the parts of two right triangles may correspond and there is
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If we construct the limit sphere of which the perpendicularAA' to

the plane of the given right angled rectilinear triangle is an axis and

the point A the vertex, we shall have

a triangle situated upon the limit sphere

and produced by its intersections with

the planes drawn through the three

sides of the given triangle. Denote the

three sides of this hmit sphere triangle

by p, q, and r, p the intersection of the

limit sphere by the plane which passes

through a, q the intersection by the

plane which passes through 6, and r

the intersection by the plane which

passes through c. The angles opposite

these sides will be IT (a) opposite p, 11(0:') opposite g, and a right angle

opposite r. From the conventions adopted above q = L(6) and

r = L(c). The hmit sphere will cut the line CC at a point whose

distance from C will be, from the same conventions, /(6). In

the same manner we shall have /(c) for the distance from the point

of intersection of the limit sphere with the line BB' to the point B.

It is easy to see that we shall have

m+M-Kc).
some confusion here because the correspondence of the two spherical triangles

as derived from corresponding rectihnear triangles is not the correspondence in

which the parts of one are equal to the corresponding parts of the other.

If we indicate the parts of the first rectilinear triangle by writing

a, 6, c, a, 0,

and the corresponding parts ot the spherical triangle by writing

0, c, a, a', b,

we can write for the second rectihnear triangle

a, a', g, X, fx,

or, substituting for g, X, and n their values,

a, a,' 0,b,'c,

and then for the second spherical triangle

c, /3, a, b, a',

and we find that the parts of the two spherical triangles are not arranged

according to the way in which they are equal.

When he writes the parts of the first spherical triangle for the purpose of

comparing the two he changes the order so that the parts of the two are

arranged in this way.]
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In the triangle whose sides are the limit circle arcs p, q, and r we
shall have

p = r sin n(a), q = r cos U{a).

Multiplying the first of these two equations by jE-^'^^^we have

p£/(b) = ^ sin n(a)£:^(*>.

But

and therefore

In the same way

1(6) = rsinn(^)E^(<'\

At the same time q = r cos n(a), or, what is the same thing, L(b) =
r cos n(a). A comparison of the two values of L(6) gives the

equation

cosn(a) = sin n(/3)£^(''). (1)

Substituting 6' for a and c for jS without changing a, which is

permitted from what we have demonstrated above, we shall have

cos n(6') = sin U{c)E^^-\

or, since

n(6) + n(6') =
^,

sin n(6) = sin U{c)E^^''K

In the same way we ought to have

sin n(a) = sin U{c)E^^^\

Multiply the last equation by E^'-"^ and substitute /(c) for /(a) +
/(6). This will give

sin n(a)£:^(«) = sin n(c)E^(=>.

But as in a right angled rectilinear triangle the perpendicular

sides can vary while the hypotenuse remains constant, we can put

in this equation a = without changing c. This will give, since

/(O) = and n(0) = 7r/2,

1 = sin n(c)£'^(=>,

or

1£/(c) =
sin n(c)

for every line c.
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Now take equation (1)

cos n(a) = sin n(^)E^(°^

and substitute 1/sin U{a) for E^^'^K It will take the following form

cos n(a) sin U{a) = sin n(/3). (2)

Changing a and /3 to b' and c without changing a we find

sin n(6) sin U(a) = sin U{c).

Equation (2) with a change of letters gives

cos n03) sin n(6) = sin 11 (a).

If in this equation we change j8, b, and a to c, a', and b' we shall get

cos n(c) cos n(a) = cos n(6). (3)

In the same way we shall have

cos n(c) cos n(i3) = cos n(a) (4)

It follows^ from what precedes that spherical trigonometry

remains the same, whether we adopt the supposition that the sum
of the three angles of a rectilinear triangle is always equal to two

right angles, or adopt the supposition that this sum is always less

than two right angles, which is very remarkable and does not hold

for rectilinear trigonometry.

Before demonstrating the equations which express in pangeometry

the relations between the sides and angles of any rectilinear triangle

we shall seek for every line x the form of the function which we have

denoted hitherto by 11 (x).

Consider^ for this purpose a right angled rectilinear triangle

whose sides are a, 6, c, and the opposite angles U{a), 11 (jS), ir/2.

Prolong c beyond the vertex of the angle n(/3) and make the

1 [In the part omitted the ordinary equations of spherical trigonometry

are derived from the preceding equations.]

* [We have combined and changed a little the figures given here by

Liebmann.l
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prolongation equal to /3. The perpendicular to /3 erected at

the extremity of this line and on the side opposite to that of the

angle n(i8) will be parallel to a and its prolongation beyond the

vertex of n(/3). Draw also through the vertex ofn(a) a line parallel

to this same prolongation of a. The angle which this line will

make with c will be 11 (c + /3) and the angle which it will make
with b will be 11(6), and we shall have the equation

n(6) = n(c + /3) + n(a). (n)

If we take the length /3 from the vertex of the angle 11 (/3) on the

side c itself and erect at its extremity a perpendicular to )3 on the

side of the angle 11 (/3), this line will be parallel to the prolongation

of a beyond the vertex of the right angle. Draw through the

vertex of the angle 11(0:) a line parallel to this last perpendicular,

which will therefore also be parallel to the second prolongation

of a. The angle of this parallel with c will be in all cases n(c — |S)

and the angle which it makes with 6 will be 11(6). Therefore

n(6) = n(c - ^) - n(a). (n')

It is easy to convince ourselves that this equation is true not

only if c > /3, but also if c = /3 and if c < /3. In fact, if c = /3 we

have, on the one hand, n(c — j3) = 11(0) = 7r/2, and, on the other

hand, the perpendicular to c drawn through the vertex of the angle

n(a) becomes parallel to a, whence it follows that 11(6) = x — n(a),

which agrees with our equation.

If c < /3 the extremity of the line i3 will fall beyond the vertex

of the angle U(a) at a distance equal to /3 - c. The perpendicular

to /3 at this extremity of /3 will be parallel to a and to the line
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through the vertex of the angle 11 (a) parallel to a, whence it follows

that the two adjacent angles which this parallel makes with c will

be, the acute equal to n(/3 — c), the obtuse equal to 11(0:) + 11(6).

But the sum of two adjacent angles is always equal to two right

angles. Thus
n(/3 - c) + n(a) + n(6) = t,

or

n(6) = TT - n(i3 - c) - n(a).

But from the definition of the function n(x)

TT - n(/3 - c) = n(c - 13),

which gives

n(fe) = n(c - /3) - n(a),

that is to say, the equation found above, which is thus demon-

strated for all cases.

The two equations (H) and (IT') can be replaced by the following

two
n(6) = H^{c + /3) + Hn(c - /3)

n(a) = Hn(c - ^) - Hu{c + /3).

But equation (3) gives us

cos n(c) = cos n(6)/cos 11(0:),

and in substituting in this equation in place of 11(6) and n(a) their

values we get

^ cos[Mn(c + ^) + Kn(c-/3)]
''^'^

cos [>in(c - ^) - y2U{c +m
From this equation we deduce the following

tan2 Kn(c) = tan >^n(c - /?) tan Mn(c + /3).

As the lines c and /3 can vary independently of each other in a

right angled rectilinear triangle, we can put successively in the last

equation c = (3, c = 2/3, . . . c = n/S, and we conclude from the

equations thus deduced that in general for every hne c and for

every positive integer n

tan" Mn(c) = tan >^n(nc).

It is easy to demonstrate the truth of this equation for n negative

or fractional, whence it follows that in choosing the unit of length

so that we have tan 3^^11(1) = e~S where e is the base of Naperian

logarithms, we shall have for every line x

tan Hn(x) = e-'.

This expression gives 11 (x) = ir/2 for x = 0, n(x) = for x = 00

,

and n(x) = TT for X = — "», agreeing with what we have adopted

and demonstrated above.
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On Non-Euclidean Geometry

(Translated from the Latin by Professor Henry P. Manning, Brown University,

Providence, R. I.)

Janos Bolyai (1802-1860) was the son of Farkas Bolyai, a fellow student of

Gauss's at Gottingen, Farkas wrote to Gauss in 1816 that his son, then a boy
of fourteen, had already a good knowledge of the calculus and its applications

to mechanics. J4nos went to the engineering school at Vienna at the age of

sixteen and entered the army at the age of twenty-one. About 1825 or 1826

he worked out his theory of parallels and published it in 1832 as an appendix
to the first part of a work by his father, the book having the imprimatur of

1829. It was in Latin, but was later translated into French (1867), Italian

(1868), German (1872), and English (by Halsted, 1891). The title of the

father's work is Tentamen Juventutem Studiosam in Elementa Matbeseos
Purae. . .introducendi. It appeared in two parts at Maros-Vasarhely, in

1832, 1833, It is the appendix to the first part that is here translated,

APPENDIXi
exhibiting the absolutely true science of space, ^ independent of

Axiom XP of Euclid (not to be decided a priori), with the geometri-

cal quadrature of a circle in the case of its falsity.

Explanation of signs^

XB^ denotes the complex of all the points on a line with the

points A and B.

' [loannis Bolyai de Bolya, Appendix, editio nova, published by the Hun-
garian Academy of Science, Budapest, 1902, in honor of the centennial ani-

versary of the author's birth. This was published, as originally, along with

the Tentamen of his father, and also separately.]

2 [We may remark that "absolutely true science of space" is a different

thing from "absolute science of space," or "absolute geometry," which are

the terms often used and seem to have been used sometimes by Bolyai himself.]

' [Euclid's axiom of parallels which the best authorities now call " Postulate

V."]

* [In the edition of the Hungarian Academy points are denoted by small

letters in German type. We shall use capital italic letters as is customary

in modern textbooks in geometry. Also in that edition parentheses are used

much more frequently than with us, often a clause that is an essential part of a

sentence is inclosed in parentheses. We shall omit most of these parentheses.]

^ [Two or more letters without any mark over them denote a limited figure,

while a figure is unlimited in a part denoted by a letter with a mark over it.

375
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AB denotes that half of the line AB cut at A which contains the

point B.

ABC denotes the complex of all the points which are in the same
plane with the points A, B, and C (these not lying in the same
straight line).

ABC denotes the half of the plane ABC cut apart by AB that

contains the point C.

ABC denotes the smaller of the portions into which ABC is

divided by the complex of BA and BC, or the angle whose

sides ^ are BA and BC.

ABCD^ denotes (if D is in ABC and BA and CD do not cut each

other) the portion of ABC enclosed by BA, BC, and CD.
But BACD is the portion of the plane ABC between AB and

CD.

R denotes right angle.

AB^ CD^ denotes CAB = ACD.

AB (not given in the list) denotes the segment from A to B of the line AB; and
so, in the definition of ABCD below, BC denotes a segment. But we may
note that ABC denotes an angle and not a triangle. When the author wishes

to name a triangle he says "triangle ABC" or inserts the sign "A" (see, for

example, §13). We may note also that an angle with him is a portion of a

plane, and that two angles having a side in common but lying in different

planes will form a dihedral angle. See, for example, §7.]

' [He calls them legs.]

^ [If two lines in a plane are cut by a third, we can say that the half-lines on

one side of this third line lie in one direction along the

two given lines, and the half-lines on the other side lie

in the other direction. Now in the first of the two defini-

tions given here we read the two pairs of points taken

on the two lines in opposite directions, and in the second

definition we read them in the same direction. We have

an illustration of the first definition in MACN at the

beginning of §2, and an illustration of the second in BNCP
at the beginning of §7.]

^ In the relation represented by this sign AB and CD
are two lines in a plane cut by a third at A and C, with

the points A and B taken on one line and the points C
and D on the other in the same direction. This sign

is used when AB and CD intersect as well as when they

do not intersect. See, for example, §5, where EC — '

BC.
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= denotes congruent.^

X —* a^ denotes x tends to a as limit.

07" denotes circumference of circle of radius r.

Or denotes area of circle of radius r.

§1

Given AM, if BN, lying in the same plane with it, does not cut it,

but every half-line BP in ABN^ does cut it, ^
let this be denoted by

BN\\\AM.*

It is evident that there is given such a BN
and indeed from any point B outside of AM
only one, and that

BAM + ABN is not > 2R;

for when BC^ is moved around B until

BAM + ABC = 2K

at some point BC first does not cut AM,
and then BC|||AM. And it is evident that

BN\\\EM, wherever E may be on AM (sup-

posing in all these cases that AM > AE).^

And if, with the point C on AM going off

to infinity, we always have CD = CB, always

we shall have

CDB = CBD < NBC.

But NBC -^ 0. Therefore ADB -^ 0.

1 [Footnote to the original] Let it be permitted by this sign, by which Gauss,

supreme in geometry, has indicated congruent numbers, to denote also geo-

metrical congruence, since no resulting ambiguity is to be feared.

2 [Bolyai uses the sign ""^ \"]

^ [In the angle ABN, the words "in ABN" are in parentheses in the original.

See page 375, footnote 4.]

* fThis is a relation of half-lines, but in writing it the author always leaves

out the mark over the second letter.]

* [Here he speaks of the segment BC because he thinks of the point C moving

along AM, but for the limiting position he writes BC]
* [This seems to mean that E is not to lie beyond M on AM, or that M has

been taken far enough out on this half-line to be beyond where we wish to

take £.]
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If BN\\\AM, we shall have also CN\\\AM.'

For let D be somewhere in MACN
If C lies on BN, BD will cut AM because

BN\\\AM, and so also CD will cut AM.
But if C is in BP, let BQ\\\CD. BQ falls

in ABN (§1)2 and cuts AM. and so CD
cuts AM. Therefore CD cuts AM in both

cases. But CN does not cutAM. There-

fore always CN\\\AM.

§3

// BR and CS are both \\\AM and C is

not in BR, then BR and CS do not inter-

sect each other.

Y^ For if BR and CS had a point D in com-
P mon, DR and DS would at the same time

II
IAM (§2), and DS would fall on DR (§1) and C on BR, contrary

to hypothesis.

§4

// MAN > MAB, for every point B in AB is given a point C in

AM such that BCM = NAM.
M

^ [It is left to the reader to see from the figure that C is a point of BN. The

author often omits details in this way when they are shown in the figure.]

"^ [BN does not cut CD, nor will it do so, even if it rotate towards BA, as long

as the two lines intersect below B.]
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For there is given a BDM > NAM (§l)^ and also an MDP =

MAN, and B falls in NADP. If therefore we move NAM along

AM until AN comes to DP, sometimeAN will have passed through

B and there will be a BCM = NAM.

§5

// BN|||AM (p. 377) there is a point F inAM such thatFM ^ BN.
For there is a BCM > CBN (§1), and if CE = CB, and so

EC ^ BC, it is evident that BEM < EBN. Let P traverse EC,

the angle BPM always called u and the angle PBN always called^

V. It is evident that u is at first less than the corresponding

value of V, but afterwards greater. But u increases from BEM to

BCM continuously, since there is no angle > BEM and < BCM to

which u is not at some time equal (§4). Likewise v decreases

from EBN to CBN continuously. And so there is given on EC
a point F such that BEM = EBN.

§6

// BN\\\AM and E is anywhere in AM and G in BN, then GN\\\

EM and EM\\\GN.

For BN\\\EM (§1), and hence CiV|I|£:M(§2). If then FM ^
BN (§5), then MFBN = NBFM, and so, since BN\\\FM, also

FM\\\BN, and by what precedes EM\\\GN.

§7

// BN and CP are both \\\AM, and C is not in BN, then BN\\\CP.

IP

1 [If we let D move off on AM, the angle ADB will approach zero, and there-

fore at some time become less than the supplement of NAM. Then if Af is

taken beyond this position of D, we shall have BDM the supplement of ADB
greater than NAM.]

- [To show this in the figure on p. 377, P ought to be put where A is.]
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For BN and CP do not cut each other (§3). Moreover, AM,
BNy and CP are in a plane or not. And in the first case AM lies

in BNCP' or not.

If AM, BN, and CP are in a plane and AM falls in BNCP, then

any BQ in NBC cuts AM in a point D because BN\\\AM; and then

since DM\\\CP (§6) it is evident that DQ cuts CP, and so BiV|||CP.

But ifBN and CP lie on the same side of AM, then one of them,

for example CP, will fall between the other two, BN and AM, and

any BQ in NBA will cut AM, and so also CP. Therefore BN\\\CP.

If MAB and MAC form an angle,^ then CBA^ has in common

with ABN only BN, but AM in ABN with BN, and so NBC with

AM, have in common nothing. But a BCD drawn through any

BD in NBA will cut ATI because BD cuts AM, BN being] ||AM.
Therefore if BCD is moved about BC^ until first it leaves AM, at

last BCD will fall in BCN. For the same reason it will fall in

BCP. Therefore BN falls in BCP. Then if BR\\\CP, because

also AM|||CP, BR will fall in BAM for the same reason, and in

BCP because BP|||CP. And so BR is common to MAB and

PCB, and is therefore BN itself.^ Therefore J5iV|||CP.

If therefore CP|I|AM and B is outside of CAM, then the inter-

section of BAM and BCP, that is, BN, is
I||

both to AM and to

CP.s

^ [Notice that the points B and N are taken on one line and the points C
and P on the other in the same direction Thus "in BNCP" means in the

entire strip between BN and CP, and not simply in that portion of this strip

which is above BC. In this paragraph we should take the CP that is to the

right in Figure 58 and regard the entire figure as lying in one plane. In the

second paragraph we take the CP at the left, while in the third paragraph we
take the CP again at the right, but this time the three lines not in one plane.)

^ [A dihedral angle. See page 375, end of footnote 5.)

5 [The point D moving off indefinitely on AM. This brings BD into coinci-

dence with BN and CD with CP.]

* [The argument is this: BN, which is ||| AM, lies in BCP as well as in BAM,
and is therefore their intersection. But in the same way we can say that BR,
which is

III
CP lies in BAM as well as in BCP and is also their intersection.]

^ [Footnote to the original] If the third case had been taken first, the other

two could have been solved as in §10 more briefly and more elegantly (from

edition I, volume I, Errata of the Appendix).



BOLYAI 381

§8

// BN\\\ and ^ CP (or more briefly BN\\\ =^ CP), and if AM
in NBCP bisects EC at right angles, then

BN\\\AM. _ _ _
For if BN should cut AM, also CP

would cut AM Sit the same point, since

MABN = MACP, which would be com-

mon to BN and CP, although BN\\\CP.

But if BQ in CBN cuts CP then also

BQ cuts AM. Therefore BN\
\

|AM.

§91

// BN \\\AM, if MAP ± MAB, and if the angle which NBD
makes with NBA on the side of MABN
where MAP is, is < R, then MAP and

NBD cut each other.

For let BAM = R, let AC ± BN
(whether B falls at C or not), and let

CE J. BN in NBD. ACE wHI be < K
by hypothesis and AF ± CE will fall

in ACE. Let AP be the intersection

of ABF and AMP (these having the

point A in common). Then BAP = BAM = R (since BAM JL

MAP). If, finally, ABF be put upon ABM, A and B remain-

ing fixed,^ AP will fall on AM, and since AC ± BN and AF <
AC, it is evident that AF will end on this side of BN and so BF
will fall in ABN. But BF will cut AP in this position because

BNl\\AM, and so also in their ^rsf positions APand BFwill cut

each other. The point of intersection is a point common to MAP
and NBD, and so MAP and NBD cut each other.

^ [It will be noticed particularly in this section that he sometimes uses a

letter in naming a line or plane and later defines the letter more specifically.

Thus at the beginning BN and AM are arbitrarily given, BN
\\\
AM, but A

and B are not both arbitrarily given on these lines, for later they are taken so

that AB ± AM. Then he speaks of the half-plane MAP although later he

takes AP as the intersection of this half-plane and another, ABF,_and NBD is

mentioned twice before he draws AF ± CE, thus determining BD apparently

as drawn through F.]

2 (We should say, If ABF is revolved on AB so as to fall upon ABM.]
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Then it follows easily that MAP and NBD mutually intersect,

if the sum of the interior angles which they make with MABN is

< 2R1

§10

// BN and CP are both
\\\
^ AM, then also BN\\\ ^ CP.^

For MAB and MAC either make an angle or are in a plane.

If the former let QDF bisect at right angles the line AB. DQ
will be ±AB, and so DQ\\\AM (§8). Likewise, if ERS bisect AC
at right angles, then £K|||AM, and therefore DQ\\\ER (§7).

Easily (through §9) it follows that QDF and ERS mutually

intersect,' and the intersection FS is |i|DQ (§7), and since BN\\\DQ

1 [If he means when neither plane is J_MABN, then at least we can say that

he does not prove it. See footnote 3 below.]

2 [We should remember that this theorem has already been proved so far as

the first sign, |!|, is concerned (§7). It is only the equality of angles repre-

sented by the sign — that has to be proved here.]

2 [The theorem of §9 as proved does not seem to apply here directly, for

neither of these two planes is perpendicular to the plane of DQ and ER, but a

proof can easily be given analogous to the proof of §9. QDF is perpendicular to

ABC, and if DH is their intersection (not drawn in the figure) the perpendicu-

lar from E to DH, which will fall upon DH since it cannot intersect the per-

pendicular DA (Euclid I, 28), will be shorter than any other line from E to

QDF, and so shorter than any line from E to DQ. If then we revolve HDE

around DE until it falls into the plane of QDER, DH will fall within the angle

QDE and will intersect ER. In the same way the intersection of RES with

ABC, if carried in this revolution into the plane of QDER, will fall in the angle
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is also FS\\\BN. Then for every point of KS is FB = FA = FC,'

and FS falls in the plane TGF bisecting the line BC at right angles.

But (by §7), since F5|||B/V, also GT\\\BN. In the same way we

prove GT\\\CP. Moreover GT bisects the line BC at right angles,

and so TGBN ^ TGCP (§1)2 and BN\\\ ^ CP.

If BN, AM, and CP are in a plane let FS, falHng outside of this

plane, be |||
=^ AM. Then (by the preceding) FS\\\ = both BN

and CP, and so BiV||| =^ CP.

§11

Let the complex of the point A and of all the points of which

any one B is such that f BN\\\AM, then BN = AM, be called F,

and let the section of F by any plane containing the line AM be

called L.

In any line which is
|||
AM F has one point and only one, and

it is evident that L is divided by AM into two congruent parts.

Let AM be called the axis of L. It is evident also that in any

plane containing AM there will be one L with axis AM. Any

such L will be called the L of the axis AM, in the plane considered.

It is evident that if L is revolved about AM the F will be described

of which AM is called the axis, and conversely the F may be

attributed to the axis AM.

§12

// B is anywhere in the L df AM and BN\\\ = AM (§11), then

the L oj AM and the L of BN coincide.

For let the L of BN be called for distinction /, and let C be any-

where in /, and CP\\\ ^ BN (§11). Then, since also BN\\\ == AM
will CP be

lil
^ AM (§10), and so C will fall also in L. And if C

is anywhere in L and CP\\\ ^ AM, then CP\\\ ^ BN (§10), and C
will fall also in / (§11). Therefore L and I are the same, and any
BN is also axis of L and is = among all the axes of L.

The same in the same manner is evident of F.

RED and will intersect DQ. In the plane of QDER those two half-lines must

intersect each other, and so before the revolution they must have intersected

each other, and their intersection was a point common to QDF and RES.]
^ [Every point of FS is equidistant from A, B, and C]
* [If TGCP is placed upon TGBN (revolved about TG) so that GC falls on GB,

CP and BN drawn from the same point
||| GT must coincide by §1.]
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§13

// BN\\\AM and CP\\\DQ, and BAM + ABN = 2R, then also

DCP + CDQ = 2R.

MSN L S O P

Let EA = EB and EEM = DCP (§4), then, since

BAM + ABN =2R = ABN + ABC,
will

and if also BG = AF,

and

EBG = EAF,

AEBG = AEAF,

BEG = AEF

and G falls in FR Then is GFM + FGN = 2R (because EGB =
EFA). Also GN\\\FM (§6), and so if MFRS = PCDQ, then RS
\\\GN (§7) and R falls in or outside of EG (if CD is not = EG,

where the thing is evident),

I. In the first case ERS is not > 2R — REM = FGN because

RS\\\EM. But since RS\\\GN also ERS is not < EGN, and so

ERS = EGN, and

REM + FK5 = GEM + FGN = 2R.

Therefore DCP + CDQ = 2R.

II. If K falls outside of FC, then NCR = MER, and we can let

MEGN = NGHL = LHKO, and so on until EK first becomes =
or > ER. This KO\\\HL\\\EM (§7). If K falls on K then KO
falls on K5 (§1), and so

REM + ERS = KEM + EKO = ATFM + EGN = 2K;

but if R falls in HAT, then (from I)

RHL + HK5 = 2R = REM + FK5 = DCP + CDQ.
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§14

// BN\\\AM and CP\\\DQ and BAM + ABN < 2R, then also

DCP + CDQ < 2R.

For if DCP + CDQ is not <, and so (§1) is = 2R, then (by

§13) also BAM + ABN = 2R, contrary to hypothesis.

§15

Weighing carefully §§13 and 14, let the system of geometry resting

on the hypothesis of the truth of Euclid's Axiom XI be called 2, and

let that one built on the contrary hypothesis be S. All things which

are not expressly declared be in 2^ or S are to be understood to be

announced absolutely, that is, to be true whether X or S is true.

§16

// AM is the axis oj any L, then L t?i 2 is a straight line ±AM.
For at any point B of L let the axis

be BN. In S

BAM + ABN = IBAM = 2K,

and so BAM = R. And if C is any

point in AB and CP\\\AM, then (by

§13) CP - AM and C is in L (§11).

But in S no three points A, B, C, of L
or F are in a straight line.

For one of the axes AM, BN, or CP (for example AM) falls

between the other two, and then (§14) both BAM and CAM < R.

§17

L is also in S a line and F a surface.

For (from §11) any plane perpendicular to the axis AM through

any point of F will cut F in the circumference of a circle whose

plane is not perpendicular to any other axis BN (§14). Let F
revolve about BN. Every point of F will remain in F (§12) and

the section of F by a plane not perpendicular to BN will describe

a surface And F (by §12), whatever are the points A and B in it,

can be made congruent to itself in such a way that A will fall at B,

Therefore F is a uniform surface.

Hence it is evident (§11 and §12) that L is a uniform line.^

^ [Footnote to the original] It is not necessary to restrict the demonstration

to S, since the statement may easily be made so as to hold absolutely (for S
and 2). (Edition I, volume I, Errata of the Appendix.)
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§18

The section of any plane through a point A of F, oblique to the axis

AM, with F in S is the circumference of a circle.

s

For let A, B, and C be three points of this section, and BN and

CP axes. AMBN and AMCP will make an angle. For otherwise

the plane determined by A, B, and C (§16) will contain AM,
contrary to hypothesis. Therefore the planes bisecting at right

angles AB and AC will intersect each other (§10) in an axis FS
of F, and FB = FA = FC. Let AH be ± FS, and revolve FAH
about FS. A will describe a circumference of radius HA going

through B and C, lying at the same time in F and in ABC, nor will

F and ABC have anything in common except oHA.
It is evident also that oHA will be described by the extremity

of the portion FA of the line L (like a radius) rotating in F about F.^

§19

The perpendicular BT to the axis BN oj L, Jailing in the plane of L,

is in S tangent to L. [See the figure on p. 385.]

For L has no point in BT except B (§14), but if BQ falls in

TBN, then the center of the plane section through BQ perpendicu-

lar to TBN with the F of BN is manifestly located in jBQ,^ and if

^ [In the surface F about the point F. In the original there is not this con-

fusion because points are denoted by small German letters. The point F is

here taken on FS so that AM = FS.]

^ [Apparently because the entire figure is symmetrical with respect to the

plane TBN, and therefore the section is symmetrical with respect to the line

BQ.]
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BQ is the diameter it is evident that BQ cuts the L of B77in Q.

§20

Through any two points of F a line L is determined (§11 and §18),

and, since from §16 and §19 L is perpendicular to all its axes,

any L-angle in F is equal to the angle oj the planes through its sides

perpendicular to F.

§21

Two L-lines AP and BD in the same F making with a third L-line

AB a sum oj interior-angles < 2R intersect each other. [By AP in F
is meant the L drawn through A and P, and by AP that half of it

beginning at A in which P falls. See the second figure, p. 381.]

For if AM and BN are axes of F, then AMP and BND cut

each other (§9),^ and F cuts their intersection (§7 and §11), and

so AP and BD mutually intersect.

It is evident from this that Axiom XI and all the things which

are asserted in plane geometry and trigonometry follow absolutely

on F, L-Iines taking the place of straight Hnes. Therefore the

trigonometrical functions are to be ac-

cepted in the same sense as in 2, and the

circumference of the circle in F whose

radius is the L-Iine = r, is = 27rr, and

hkewise Or in F is = rr^ (tt being 3'^ol in

F, or 3. 1415926...)-

§22

// AB is the L ofAM and C is in AM,
and the angle CAB formed from the straight

line AM and the L-line AB is moved first

along AB and then along BA to infinity, the

path CD oj C will he the L oj CM.
For (calhng the latter /), let D be any point in CD, DN\\\CM,

and B the point of L falling in DN. BN = AM, and AC = BD,
and so also DN — CM, and therefore D will be in /. But if D
is in^ / and DN\\\CM, and B is the point of L common to it and

^ [Proved in §9 only when one of the angles is a right angle.]

^ [This is a new D. First he takes any point of the path of C and proves

that it is on /, and then he takes any point on / and proves that it is a point of

the path of C Here CD is not necessarily straight.
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DN, then AM = BN and CM =^ DN, whence it is clear that BD
— AC, and D falls in the path of the point C and / and CD are

the same. We designate such an / by l\\L.

§23

If the L-Iine CDF\\ABE (§22), and AB = BE, and AM, BN,
and EP are axes, plainly CD = DF; and if any three points A,

B, and E belong to AB and AB = n . CD, then will AE = n . CF,

and therefore (plainly also for incommensurables AB, AE, and

CD),
AB :CD = AE: CF,

and AB : CD is independeyit of AB and directly determined by AC.
Let this quantity be denoted by the capital letter (as X) of the

same name as the small letter (as x) by which AC is denoted.

§24

V

Whatever be x and y, Y = X^ (§23).

For one of the two letters x and y will be a multiple of the other

(for example, y of x) or not.

Ify = nx, let X = AC = CG = GH etc., until is made AH = y.

Then let CD\\GK\\HL. Then (§23)

X = AB : CD = CD -.GK = GK : HL,

and so

AB
HL

or

-{&
Y = X^ = Xl

If X andy are multiples of i, say x = mi andy = ni, then by the
n y

preceding X = /'", Y = /", and therefore Y = Xm = Xi.

The same is easily extended to the case of incommensurability

of X and y. But if g = y — x, clearly Q = Y : X.

Now it is manifest that in S for any x is A" = 1; but 'mS,X > 1,

and for any AB and ABE there is a CDFUABf such that CDF =
AB, whence AMBN = AMEP^ although the latter is a multiple

of the former, which is indeed singular, but evidently does not

prove the absurdity of S.

' [AMBN means that portion of the plane that lies between the complete

lines AM and BN, and AMEP means that portion that lies between the com-

plete lines AM and EP. See page 375 footnote 5.]
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FERMAT

On Analytic Geometry

(Translated from the French by Professor Joseph Seidlin, Alfred College,

Alfred, N. Y.)

The following extract is from Fermat's Introduction aux Lieux Plans et Solides.

It appears in the the Varia Opera Matbematica of Fermat in 1679, and in the

(Euvres de Fermat, ed. Tannery and Henry, Paris, 1896. It shows how clearly

Fermat understood the connection between algebra and geometry. It will be

observed that Fermat uses the terms "plane and solid loci" in an older sense,

somewhat different from the one now recognized.

The French text will be found in the (Euvres, vol. Ill, pp. 85-96.

Introduction to Plane and Solid Loci

None can doubt that the ancients wrote on loci. We know this

from Pappus, who, at the beginning of Book VII, affirms that

ApoIIonius had written on plane loci and Aristaeus on solid loci.

But, if we do not deceive ourselves, the treatment of loci was not

an easy matter for them. We can conclude this from the fact

that, despite the great number of loci, they hardly formulated a

single generahzation, as will be seen later on. We therefore submit

this theory to an apt and particular analysis which opens the

general field for the study of loci.

Whenever two unknowTi magnitudes appear in a final equation,

we have a locus, the extremity of one of the unknown magnitudes

describing a straight Hne or a curve. The straight line is simple

and unique; the classes of curves are indefinitely many,—circle,

parabola, hyperbola, ellipse, etc.

When the extremity of the unknown magnitude which traces

the locus, follows a straight line or a circle, the locus is said to be

plane; when the extremity describes a parabola, a hyperbola, or

an elHpse, the locus is said to be sohd. . .

.

It is desirable, in order to aid the concept of equation, to let the

two unknown magnitudes form an angle, which usually we would

suppose to be a right angle, with the position and the extreme

point of one of the unknown magnitudes established. If neither

of the two unknowns is greater than a quadratic, the locus will

389
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be plane or solid, as can be clearly seen from the following:

Let. NZM be a straight line of given position with point N
/y fixed. Let NZ be the unknown quantity

a and ZI (the line drawn to form the angle

NZI) the other unknown quantity e.

If c/a = be, the point I will describe a

line of fixed position. Indeed, we would have

^ = -. Consequently the ratio a:e is given,

iV 'z M~ as is also the angle at Z. Therefore both

the triangle NIZ and the angle INZ are determined. But the

point iV and the position of the Hne NZ are given, and so the

position of NI is determined. The synthesis is easy.

To this equation we can reduce all those whose terms are either

known or combined with the unknowns a and e, which may enter

simply or may be multiphed by given magnitudes.

z" — da = be.

Suppose that z" = dr. We then have

b _ r — a

d e

If we let MN = r, point M will be fixed and we shall have

MZ = r - a.

The ratio -^y- therefore becomes fixed. With the angle at Z

given, the triangle IZM will be determined, and in drawing MI it

follows that this line is fixed. Thus point / will be on a line of

determined position. A ike conclusion can be reached without

difficulty for any equation containing the terms a or e.

Here is the first and simplest equation of a locus, from which

all the loci of a straight line may be found; for example, the propo-

sition 7 of Book I of Apollonius "On Plane Loci," which has since,

however, found a more general expression and mode of construc-

tion. This equation yields the following interesting proposition:

"Assume any number of lines of given position. From a given

point draw lines forming given angles. If the sum of the products

of the lines thus drawn by the given lines equals a given area, then

the given point will trace a line of determined position."

We omit a great number of other propositions, which could be

considered as corollaries to those of Apollonius.
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The second species of equations of this kind are of the form

ae = z", in which case point / traces a hyperbola. Draw NR
parallel to ZI; through any point, ^
such as M, on the line NZ, draw

MO parallel to ZI. Construct the

rectangle NMO equal in area to z".

Through the point 0, between the

asymptotes NR, NM, describe a hyper-

bola; its position is determined and it

will pass through point /, having assum-

ed, as it were, ae,—that is to say the

rectangle NZI,—equivalent to the rec-

tangle NMO. To this equation we may reduce all those whose

terms are in part constant, or in part contain a or e or ae.

If we let

cf" + ae = ra + 5e

we obtain by fundamental principles ra -\- se — ae = d". Con-

struct a rectangle of such dimensions as shall contain the terms

ra -jr se — ae. The two sides will be a — s and r — e, and their

rectangle, ra + se — ae — rs.

If from (f" we subtract rs, the rectangle

(a — s){r — e) = (/" — rs.

Take NO equal to s, and ND, parallel to ZI, equal to r.

Through point D, draw DP parallel

to NM; through point 0,0V par-

allel to ND; prolong ZI to P.

Since NO = 5 and NZ = a, we

have a — s = OZ = VP. Similarly,

M since ND = ZP = r and ZI = e, we

have r — e = PI. The rectangle PV X PI is therefore equal to

the given area d" — rs; the point / is therefore on a hyperbola

having PV, VO as asymptotes.

If we take any point X, the parallel XY, and construct the

rectangle VXY = c?" — rs, and through point Y we describe a

hyperbola between the asymptotes PV, VO, it will pass through

point /. The analysis and construction are easy in every case.

The following species of loci equations arises if we have a^ = e^

or if a^ is in a given relation to e^, or, again, if a^ + ae is in a given

relation to e^. Finally this type includes all the equations whose

terms are of the second degree containing a-, e^, or ae. In all
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these cases point / traces a straight line, which is easily

demonstrated.

NZ' + NZ.ZI
If the ratio

Z/=

drawn, then it is easy to show that

is given, and any parallel OR is

NO^ + NO.OR
has the value

of the given ratio. The point / will there-

fore be on a Hne of determined position. The
same will be true of all equations whose terms

are either the squares of the unknowns or their

product. It is needless to enumerate additional

specific instances.

If to the squares of the unknowns, with or without their product,

are added absolute terms or terms which are the products of one

of the unknowns by a given magnitude, the construction is more

difficult. We shall indicate the construction and give the proof

for several cases.

If a^ = de, point / is on a parabola.

Let NP be parallel to ZI; with NP as diameter, construct

the parabola whose parameter is the given

line d and whose ordinates are parallel to NZ.

The point / will be on the parabola whose posi-

tion is defined. In fact, it follows from the

construction that the rectangle d X NP = PP,

that is, dXlZ — NZ"^ and, consequent y, de = a-.

To this equation we can easily reduce all those in which, with

a\ appear the products of the given magnitudes and e, or with e^

appear the products of the given magnitudes with a. The same

would hold true were the equation to contain absolute terms.

If, however, e^ = da, then, in the preceding figure, with N as

vertex and with NZ as diameter, construct the parabola whose

parameter is d and whose ordinates are parallel to the line NP.

It is plain that the imposed condition is satisfied.

If we let h^ — a^ = de, we have b"^ — de = a^. Divide 6^

by d; let 6^ = dr, and we have dr — de = a^ or d{r — e) = a^.

We shall have reduced this equation to the former [—that is,

a^ = de,—] by replacing r — e by e.

Let us assume MN (p. 393) parallel to ZI and equal to r;

through the point M draw MO parallel to NZ. Point M and the

position of the line MO are now given. It follows from the con-

struction that 01 = r- e. Therefore d X 01 = NZ' = M0\
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The parabola drawn with M as vertex, diameter MN, d as para-

meter, and the ordinates parallel to NZ, satis-

fies the condition as is clearly shown by the

construction.

If h"^ -{ a^ = de, we have de — h"^ = a^, etc.,

as above. Similarly then we can construct all

the equations containing a^ and e.

But a^ is often found with e^ and with absolute terms. Let

62 _ ^2 = ^2^

The point / will be on a circle of determined position if the angle

NZI is a right angle.

Assume MN equal to 6. The circle described with N as

center and with NM as radius will satisfy

the condition. That is to say, that no mat-

ter which point / is taken, anywhere on the

circumference, it is clear that Z/- (or e^) will

equal NW (or h"-) - NZ'' (or a^).

To this equation may be reduced all those

containing terms in a^ e^ and in a or e mul-

tiplied by given magnitudes, provided angle NZI be a right angle,

and, moreover, that the coefficient of a~ be equal to that of e^.

Let
62 - Ida - a2 = £2 _|- Ire.

Adding r^ to both sides and, thus replacing e by e + r, we have

r2 -f 62 - Ida - a- = e'^ + r^ + Ire.

Adding (/2 to r2 + 6^, thus replacing a by J + a, and denoting

the sum of the squares r~-\-h''-\- d^ by p-, we get

p2 _ (/2 _ 2da - a2 = r2 -f 62 - Ida - a\

which leads to
p2 _ J2 = ^2 4. ^2^

If now we replace a -f- c/ by a and e + r by e, we shall have

p2 — a2 = e2,

which equation is reduced to the preceding.

By like reasoning we are able to reduce all similar equations.

Based on this method we have built up all of the propositions of

the Second Book of ApoIIonius "On Plane Loci" and we have

proved that the six first cases have loci for any points whatever,

which is quite remarkable and which was probably unknown to

ApoIIonius.
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When
b'-

e-
is a given ratio, the point / will be on an ellipse.

Let MN equal b. With M as vertex, NM as diameter, and N as

center describe an ellipse whose ordinates are parallel to ZI, so that

the squares of the ordinates shall be in a given ratio to the product

of the segment of the diameter. The point / will be on that ellipse.

That is, TViVP — NZ^ is equal to the product of the segments of

the diameter.

To this equation can be reduced all those in which a- is on one

side of the equation and e^ with an opposite sign and a different

coefficient on the other side. If the coefficients are the same and

the angle a right angle, the locus will be a circle, as we have said.

If the coefficients are the same but the angle is not a right angle,

the locus will be an ellipse.

Moreover, though the equations include terms which are

products of a or e by given magnitudes, the reduction may never-

theless be made by the method which we have already employed.

If (a^ + b^):e^ is a given ratio, the point / will be on a hyperbola.

Draw NO parallel to ZI; let the given ratio be equal

to b^-.NR\ Point R will then be

fixed. With R as vertex, RO as

diameter, and N as center, con-

struct an hyperbola whose ordinates

are parallel to NZ, such that the

product of the whole diameter (MR)
by RO together with RO^ shall be to

It follows, letting MN = NR, that {MO X OR -\-

NK2):(0/2 + 62) is equal to NR^:b\ the given ratio.

But

MOXOR-\- NR^- = N02 = ZI^ = e^

and
0/2 + 62 = NZ^ (or a2) + 6'-.

Therefore e'^:{b^ -^ a^) = NR^-.b"^ and, inverting, {b^ -\- a'^):e'^

is the given ratio. Therefore point / is on an hyperbola of deter-

mined position.

By the scheme we have already employed we may reduce to this

equation all those in which a^ and e^ are contained with given

terms (separately) or with expressions involving the products of

a or e by the given terms, and in which a^ and e^ have the same

sign and appear on the opposite sides of the equation. If the

signs were different the locus would be a circle or an ellipse.



PERMAT 395

The most difficult type of equation is that containing, along

with a^ and e^, terms involving ae, other given magnitudes, etc.

Let

62 - 2a2 = 2ae + e\

Add a^ to both sides so as to have a + e as a factor of one of the

members. Then

^2 _ (j2 _ ^2 _|_ 2ae + e^

Replace a + e by, say, e; then, according to the preceding

development, the circle MI will satisfy the

equation; that is to say, MN^ { = b^) - ^Z^
( = a2) = ZP{ = [a + e]2). Letting VI = NZ
= a, we have ZV = e.

In this problem, however, we are looking for

the point V or the extremity of the line e. It

is therefore necessary to find, and to Indicate,

the line upon which the point V is located.

Let MR be parallel to ZI and equal to MN.
Draw NR which meets IZ, prolonged, at 0. ^^

Since MN = MR, NZ = ZO. But NZ=VI; therefore, by addi-

tion, VO = ZI. Therefore MN^ - NZ'- = V0\ But triangle

NMR is known; therefore the ratio NM^iNR"^ is given as are also

the ratios NZ'-.NO^ and {MN^ - NZ^):{NR^ - NO'). But we

have proved that OV = MN' - NZ'. Therefore the ratio (NR'
— NO'): OV is known. But the points N and R are given, as

well as the angle NOZ. Therefore, as we have just shown, point

V is on an ellipse.

By analogous procedure we reduce to the preceding cases all

the others in which along with the terms containing ae and a^

or e' are also terms consisting of products of a and e by given

magnitudes. The discussion of these different cases is very easy.

The problem may always be solved by means of a triangle of

known configuration.

We have therefore Included in a brief and clear exposition all

that the ancients have left unexplained concerning plane and sohd

loci. Consequently one can recognize at once which loci apply

to all cases of the final proposition of Book I of ApoIIonlus "On
Plane Loci," and one can generally discover without great diffi-

culty all which pertains to that matter.

As a culminating point to this treatise, we shall add a very

interesting proposition of almost obvious simplicity:
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"Given the position of any number of lines; if from some definite

point lines be drawn forming given angles with the given lines,

and the sum of the squares of all the segments is equal to a given

area, the point will describe a solid locus of determined position,"

A single example will suffice to indicate the general method

of construction. Given two points

N and M, required the locus of

the points such that the sum of

the squares of IN, IM, shall be in

a given ratio to the triangle INM.
Let NM = h. Let e be the line

ZI drawn at right angles to NM,
and let a be the distance NZ. In

N z M accordance with fundamental prin-

ciples, (2a2 + 6^ — 26a 4- 2e2): be is a given ratio. Following

in treatment the procedures previously explained we have the

suggested construction.

Bisect NM at Z; erect at Z the perpendicular ZV; make the

ratio 4ZV:NM equal to the given ratio. On VZ draw the semi-

circle VOZ, inscribe ZO = ZM, and draw VO. With V as center

and VO as radius draw the circle OIR. If from any point R on

this circle, we draw RN, RM, I say that RN^ + RM^ is in the

given ratio to the triangle RNM.
The constructions of the theorems on loci could have been

much more elegantly presented if this discovery had preceded

our already old revision of the two books on plane loci. Yet, we

do not regret this work, however precocious or insufficiently ripe

it may be. In fact, there is for science a certain fascination in

not exposing to posterity works which are as yet spiritually

incomplete; the labor of the work at first simple and clumsy gains

strength as well as stature through new inventions. It is quite

important that the student should be able to discern clearly the

progress which appears veiled as well as the spontaneous develop-

ment of the science.
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DESCARTES

On Analytic Geometry

(Translated from the French by Professor David Eugene Smith, Teachers

College, Columbia University, New York City, and the late Marcia L.

Latham, Hunter College, New York City.)*

Rene Descartes (1596-1650), philosopher, mathematician, physicist, soldier,

and litterateur, published the first book that may properly be called a treatise

on analytic geometry. This appeared as the third appendix to his Discours de

la metbode pour bien conduire sa raison et cbercber la verite dans les sciences,

which was published at Leyden in 1637. Pierre de Fermat (c. 1608-1665) had

already conceived the idea as early as 1629, as is shown by a letter written

by him to Roberval on Sept. 22, 1636, but he published nothing upon the

subject. For the posthumous publication see p. 389.

The following extract constitutes the first eight pages of the first edition

(pages 297-304, inclusive) of the Discours.

La Geometrie

Book I

Problems the Construction of Which Requires Only
Straight Lines and Circles

Any problem in geometry can easily be reduced to such terms

that a knowledge of the lengths of certain straight lines is sufficient

for its construction.^ Just as arithmetic consists of only four or

five operations, namely, addition, subtraction, multiphcation,

division, and the extraction of roots, which may be considered a

kind of division, so in geometry, to find required lines it is merely

necessary to add or subtract other lines; or else, taking one line

which I shall call unity in order to relate it as closely as possible

' From the edition of La Geometrie published in facsimile and translation by The Open
Court Publishing Co., Chicago, 1925, and here reprinted with the permission of the publisher.

* [Large collections of problems of this nature are contained in the following

works: Vincenzo Riccati and Girolamo Saladino, Institutiones Analyticae,

Bologna, 1765; Maria Gaetana Agnesi, Istituzioni Analitiche, Milan, 1748;

Claude Rabuel, Commentaires sur la Geomktrie de M. Descartes, Lyons, 1730;

and other books of the same period or earlier.]

397
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to numbers/ and which can in general be chosen arbitrarily, and
having given two other lines, to find a fourth hne which shall be

to one of the given Hnes as the other is to unity (which is the same
as multiplication) ; or, again, to find a fourth fine w hich is to one

of the given lines as unity is to the other (which is equivalent to

division) ; or, finally, to find one, two, or several mean proportionals

between unity and some other fine (which is the same as extracting

the square root, cube root, etc., of the given line). And I shall not

hesitate to introduce these arithmetical terms into geometry, for

the sake of greater clearness.

For example, let AB be taken as unity, and let it be required

to multiply BD by BC. I have

only to join the points A and C,

and draw DE parallel to CA ; then

BE is the product of BD and BC.
If it be required to divide BE by

BD, I join E and D, and draw AC
parallel to DE; then BC is the re-

sult of the division.

If the square root ofGH is desired, I add, along the same straight

line, EG equal to unity; then, bisect- /^

ing FH at K, I describe the circle FIH
about K as a. center, and draw from G
a perpendicular and extend it to /,

and GL is the required root. I do not

speak here of cube roots, or other roots, F G K H
since I shall speak more conveniently of them later.

Often it is not necessary thus to draw the fines on paper, but

it is sufficient to designate each by a single letter. Thus, to add

the fines BD and GH, I caH one a and the other 6, and write a + 6.

Then a — b will indicate that b is subtracted from a; ab that a is

multipfied by 6; > that a is divided by 6; aa or a^ that a is multipfied

by itself; a' that this result is multiplied by a, and so on, indefi-

nitely.2 Again, if I wish to extract the square root of a^ + 6^

^ [Van Schooten, in his Latin edition of 1683, has this note: "Per unitatem

intellige lineam quandam determinatam qua ad quamvis reliquarum linearum

talem relationem babeat, qualem unitas ad certum aliquem nwnerum."]
^ [Descartes uses a^, a*, a^ a*, and so on, to represent the respective powers

of a, but he uses both aa and a^ without distinction. For example, he often has

aahb, but he also uses 3a*/46*.]



DESCARTES 399

I write \/a^ + 6^; If I with to extract the cube root of a^ — 6^

4- a6^ I write v^a^ — 6^ + a6^ and similarly for other roots. ^

Here it must be observed that by a^ 6^ and similar expressions,

I ordinarily mean only simple lines, which, however, I name

squares, cubes, etc., so that I may make use of the terms employed

in algebra.

It should also be noted that all parts of a single line should always

be expressed by the same number of dimensions, provided unity

is not determined by the conditions of the problem. Thus, a'

contains as many dimensions as ah^ or 6^, these being the com-

ponent parts of the line which I have called \/a^ — 6^ + ab^.

It is not, however, the same thing when unity is determined,

because unity can always be understood, even when there are too

many or too few dimensions; thus, if it be required to extract the

cube root of a^6^ — 6, we must consider the quantity a^6^ divided

once by unity, and the quantity b multiplied twice by unity.-

Finally, so that we may be sure to remember the names of these

lines, a separate list should always be made as often as names are

assigned or changed. For example, we may write, AB = 1,

that is AB equal to 1 ;' GH = a, BD = b, and so on.

If, then, we w'ish to solve any problem, we first suppose the

solution already effected, and give names to all the lines that seem

needful for its construction,—to those that are unknown as well

as to those that are known. Then, making no distinction between

known and unknown lines, we must unravel the difficulty in any

way that shows most naturally the relations between these lines,

until we find it possible to express a single quantity in two ways.'*

This will constitute an equation, since the termsof one of these two

expressions are together equal to the terms of the other.

' [Descartes writes: -^C.a^ — b^ + abb.]

^ [Descartes seems to say that each term must be of the third degree, and

that therefore we must conceive of both 0^6- and b as reduced to the proper

dimension.]

' [Van Schooten adds "seu unitati," p. 3. Descartes writes, ABx 1. He
seems to have been the first to use this symbol. Among the few writers who

followed him, was Hudde (1633-1704). It is very commonly supposed that

» is a ligature representing the first two letters (or diphthong) of "aequale."

See, for example, M. Aubry's note in W. R. Ball's Recreations Matbematiques

€t Problemes des Temps Anciens et Modernes, French edition, Paris, 1909, Part

III, p. 164. See also F. Cajori, Hist, oj Math. Notations, vol. I, p. 301.]

* [That is, we must solve the remaining simultaneous equations.]
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We must find as many such equations as there are supposed to

be unknown lines ;^ but if, after considering everything involved,

so many cannot be found, it is evident that the question is not

entirely determined. In such a case we may choose arbitrarily

lines of known length for each unbroken line to which there

corresponds no equation.

If there are several equations, we must use each in order, either

considering it alone or comparing it with the others, so as to obtain

a value for each of the unknown lines; and so we must combine

them until there remains a single unknown line which is equal to

some known line, or whose square, cube, fourth power, fifth power,

sixth power, etc., is equal to the sum or difference of two or more

quantities, one of which is known, while the others consist of

mean proportionals between unity and this square, or cube, or

fourth power, etc., multiplied by other known lines. I may
express this as follows:

z = 6,

or

or

or

z^ = —az-\- b^,

z^ = az^ -+- b-z -

z* = az^ — c^z -\- d*, etc.

That is, z, which I take for the unknown quantity, is equal to 6;

or, the square of z is equal to the square of b diminished by a

multiplied by z; or, the cube of z is equal to a multiphed by the

square of z, plus the square of 6 multiphed by z, diminished by the

cube of c; and similarly for the others.

Thus, all the unknown quantities can be expressed in terms of a

single quantity, whenever the problem can be constructed by

means of circles and straight lines, or by conic sections, or even by

some other curve of degree not greater than the third or fourth.

But I shall not stop to explain this in more detail, because I

should deprive you of the pleasure of mastering it yourself, as well

^ [Van Schooten (p. 149) gives two problems to illustrate this statement.

Of these, the first is as follows: Given a line segment AB containing any point

C, required to produce AB to D so that the rectangle AD.DB shall be equal to

the square on CD. He lets AC = a, CB = b, and BD = x. Then AD =

a + b + X, and CD = b + x, whence ax + 6x + x* = 6* + 26x + x* and

^'
1
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as of the advantage of training your mind by working over it,

which is in my opinion the principal benefit to be derived from this

science. Because, I find nothing here so difficult that it cannot

be worked out by any one at all familiar with ordinary geometry

and with algebra, who will consider carefully all that is set forth in

this treatise.

I shall therefore content myself with the statement that if the

student, in solving these equations, does not fail to make use of

division wherever possible, he will surely reach the simplest terms

to which the problem can be reduced.

And if it can be solved by ordinary geometry, that is, by the

use of straight lines and circles traced on a plane surface, when the

last equation shall have been entirely solved there will remain at

most only the square of an unknown quantity, equal to the product

of its root by some known quantity, increased or diminished by
some other quantity also known. ^ Then this root or unknown
line can easily be found. For example, if I have z"^ = az -\- b^,^

I construct a right triangle NLM with one side LM, equal to 6,

the square root of the known
quantity 6^, and the other side,

LN, equal to J'^a, that is to

half the other known quantity

which was multiplied by z,

which I suppose to be the un-

known fine. Then prolonging

MNy the hypotenuse' of this triangle, to 0, so that NO is equal to

NL, the whole fine OM is the required fine z. This is expressed in

the following way:^

z = >^a + V^ia-" + h\

But if I have y^ = —ay-{- 6^, where y is the quantity whose
value is desired, I construct the same right triangle NLM, and

^ [That is, an expression of the form z^ = az ± b. " Esgal a ce qui se

produit de ['Addition, ou soustraction de sa racine multiplee par quelque
quantity connue, & de quelque autre quantit6 aussy connue."]

^ [Descar.es proposes to show how a quadratic may be solved geomet-
rically.]

^ [Descartes says "prolongeant MN la baze de ce triangle," because the

hypotenuse was commonly taken as the base in earlier times.]

* [From the figure OM.PM = LMK If OAf = z, PM = z - a, and since

LM = b, we have z (z - a) = b^ or z^ = az + bK Again, MN = '\/Ha^ + b\

whence OM = z = ON + MN = Ha + 'S/^a* + b'. Descartes ignores the

second root, which is negative.]
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on the hypotenuse MN lay off NP equal to NL, and the remainder

PM is y, the desired root. Thus I have

y = -y2a + V'Ha^- + b'

In the same way if I had

X* = -ax2 4- b\

PM would be x^ and I should have

X = V-}ia + V>'4a2 + b\

and so for other cases.

Finally, if I have z- = az — 6^ I make NL equal to 3^a and LM
equal to b as before; then, instead of joining the

points M and N, I draw MQR parallel to LN, and

with N as a center describe a circle through L
cutting XIQR in the points Q and R; then 2, the

line sought, is either MQ or MR, for in this case it

can be expressed in two ways, namely,

z = Ka + VHa' - fe^

and ^^____
z = Ha - VMa' - 62.

And if the circle described about N and passing through L
neither cuts nor touches the Hne MQR, the equation has no root,

so that we may say that the construction of the problem is

impossible.

These same roots can be found by many other methods. I

have given these very simple ones to show that it is possible to

construct all the problems of ordinary geometry by doing no more

than the Httle covered in the four figures that I have explained.^

This is one thing which I believe the ancient mathematicians did

not observe, for otherwise they would not have put so much labor

into writing so many books in which the very sequence of the

propositions shows that they did not have a sure method of finding

all,2 but rather gathered those propositions on which they had

happened by accident.

1 [It will be seen that Descartes considers only three types of the quadratic

equation in z, namely z^ -jr az — b^ = 0, z^ — az — b'^ = 0, and z^ — az -{-

b^ = 0. It thus appears that he has not been able to free himself from the old

traditions to the extent of generalizing the meaning of the coefficients,

—

as negative and fractional as well as positive. He does not consider the type

2^ + az + 6^ = 0, because it has no positive roots.]

^ ["Qu'ils n'ont point eu la vraye methode pour les trouuer toutes."]



POHLKE'S THEOREM

(Translated from the German by Professor Arnold Emch, University of

Illinois, Urbana, 111.)

Karl Pohike was born in Berlin on January 28, 1810, and died there Novem-
ber 27, 1876. He taught in various engineering schools, closing his work in

the Technische Hochschule in Charlottenburg. In his Darstellende Geometrie

(Berlin, 1859; 4th ed., 1876, p. 109) is found "the principal theorem of axo-

nometry," now generally known as Pohlke's Theorem. It is here translated

as an important piece of source material, but without proof, the demonstra-

tion being available in an article by Arnold Emch, American Journal oj

Mathematics, vol. 40 (1918). On the general development of orthogonal

axonometry see F. J. Obenrauch, Gescbicbte der darstellenden und projectiven

Geometrie, Brunn,1897, pp. 385 seq.

Three segments of arbitrary length aiXi, aiyi, CiZi, which are

drawn in a plane from a point ai under arbitrary angles, form a

parallel projection of three equal segments ax, ay, az from the

origin on three perpendicular coordinate axes; however, only one

of the segments aiXi,. . ., or one of the angles may vanish.
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RIEMANN

On Rienl\nn's Surfaces and Analysis Situs

(Translated from the German by Dr. James Singer, Princeton University,

Princeton, N. J.)

Georg Friedrich Bemhard Riemann (1826-1866) was born at Breselenz in

Hannover and died at Selasca on his third trip to Italy. He studied theology

at G^ttingen and also attended some mathematical lectures there. He soon

gave up thcolog>- for mathematics and studied under Gauss and Stem. In

1847 he went to Berlin, drawn by the fame of Dirichlet, Jacobi, Steiner, and

Eisenstein. He returned to GOttingen in 1S50 to study physics under Weber

and there he received his doctorate the following year. He became a Privat-

dozent at Gi)ttingen in 1S54, a professor in 1S57, and in 1S59 succeeded

Dirichlet as ordinan,- professor. His work on the ditTerential equations of

physics, a series of lectures edited by Hattendorf and later by H. Weber, is

still a standard textbook. In prime numbers also he opened a new field.

The first section of this article is a translation of part of Riemann's pap>er

entitled "Allgemeine N'oraussetzungen und Hiilfsmittel fiir die Untersuchung

von Functionen unbeschrankt veranderlicher Grossen," which appeared in

Crelle's Jotirna//iir reine und angewandte Matbematik, Bd. 54, 1857, pp. 103-104.

The second division is a translation of part of his paper, "Lehrsatze aus der

Analysis Situs fiir die Theorie der Integrale von zweigliedrigen vollstandigen

Differentialien," which app>eared in the same issue, pp. 105-110. The papers

can also be found in his Matbematiscbe Werke collected by H. Weber, first

edition, pp. S3-S9; second edition, pp. 90-96.

The imp>ortance of these two contributions of Riemann can scarcely be

exaggerated. Thanks to the Riemann surface the theory of single-valued

analytic functions of one variable can largely be extended to multiple-valued

functions. Riemann introduced his surface for the purpose of studying alge-

braic functions, in which field it plays a fundamental part. In Riemann's

work we find also the real beginning of modern Analysis Situs, which in a

larger sense was however created by Poincar^ (1895).

1. For many investigations, especially in the investigation of

algebraic and Abelian functions, it is advantageous to represent

geometrically the modes of brandling of a multivalued function

in the following way: We imagine another surface spread over the

(.V, v)-plane and coincident ^^-ith it (or an infinitely thin body spread

over the plane) which extends as far and only as far as the function

is defined. By a continuation of this function this surface will

404
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be likewise further extended. In a portion of the plane in which

there exist two or more continuations of the function, the surface

will be double or multifold; it will consist there of two or more
sheets, each one of which represents one branch of the function.

Around a branch point of the function a sheet of the surface will

be continued into another, so that in the neighborhood of such a

point the surface can be considered as a helicoid with its axis

perpendicular to the (x, y)-plane at this point, and with infinitely-

small pitch. If the function takes on again its original value

after several revolutions of z around a branch point (for example,
m

as (z — a)n, where m and n are relatively prime numbers, after

n revolutions of z around a), we must then of course assume that

the topmost sheet of the surface is continued into the lowermost

by means of the remaining ones. The multiple-valued function

has only one definite value for each point of the surface represent-

ing its modes of branching and therefore can be regarded as a

fully determined function of the position in this surface.

2. In the investigation of functions which arise from the integra-

tion of total differentials several theorems belonging to Analysis

Situs are almost indispensable. This name, used by Leibniz,

although perhaps not entirely with the same significance, may well

designate a part of the theory of continuous entities which treats

them not as existing independently of their positions and measur-

able by one another but, on the contrary, entirely disregarding

the metrical relations, investigates their local and regional proper-

ties. While I propose to present a treatment entirely free from

metric considerations, I will here present in a geometric form

only the theorems necessary for the integration of two-termed

total differentials.

If upon a surface F two systems of curves, a and 6, together

completely bound a part of this surface, then every other system

of curves which together with a, completely bounds a part of F
also constitutes with b the. complete boundary of a part of the

surface; which part is composed of both of the first partitions of

the surface joined along a (by addition or subtraction, according

as they lie upon opposite or upon the same side of a). Both

systems of curves serve equally well for the complete boundary
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of a part of F and can be interchanged as far as the satisfying of

this requirement.^

// upon the surface F there can be draivn n closed curves Ci, 02, ...

,

a„ which neither by themselves nor with one another completely

bound a part of this surface F, but with whose aid every other closed

curve does form the complete boundary of a part of F, the surface is

said to be (n + ^)-fold connected.

This character of the surface is independent of the choice of the

system of curves ai, 02, ... , a„ since any other n closed curves 61,

62, ... , bn which are not sufficient to bound completely a part of

this surface, do hkewise completely bound a part of F when taken

together with any other closed curve.

Indeed, since 61 completely bounds a part of F when taken

together with curves a, one of these curves a can be replaced by

62 and the remaining curves a. Therefore, any other curve, and

consequently also 62, together with 61 and these n — 1 curves

a is sufficient for the complete boundary of a part of F, and hence

one of these n — 1 curves a can be replaced by 61, 62 and the

remaining n — 2 curves a. If, as assumed, the curves b are not

sufficient for the complete boundary of a part of F, this process

can clearly be continued until all the as have been replaced by
the 6's.

^ [Note by H. Weber.] The theorem stated here needs to be somewhat
restricted and made more precise, as was pointed out by Tonelli {Atti delta

R. accademia del Lincei, Ser. II, vol. 2, 1875. In an extract from the Nacbricb-

ten der Gesselscbajt der Wissenscbajten zu Gbttingen, 1875.)

If the system of curves a completely bounds a part of the surface F when
taken together with a system of curves 6 as well as with a second system of

curves c, it is generally necessary, in order that the systems of curves b and c

taken together likewise bound a part of the surface, that no subset of the

curves a together with b or with c already bounds a part of the surface. The
part of the surface bounded by the systems of curves b, c which, even when the

parts of the surface a, 6, and a, c are simple, can consist of several separate

pieces, are described by Tonelli in the following fashion: It consists of the

totality of the parts of the surface a, b, and a, c when those parts which are

bounded by the curves a are taken away from the parts common to both of

these surface partitions.

The example given by Tonelli of a closed Cve-fold connected double anchor

ring bounded by a point illustrates this relation and makes it intuitive.

These remarks have no influence on the use which Riemann makes of this

theorem for the definition of the (n + l)-foId connectivity, since the system

here denoted by a always consists of only one curve, namely the curve a which

is replaced by b.



RIEMANN 407

By means oj a crosscut,—i. e., a line lying in the interior oj the

surface and going from a boundary point to a boundary point,—an

(n + I)-fold connected surface F can be changed into an n-fold

connected one, F'. The parts of the boundary arising from the

cutting play the role of boundary even during the further cutting so

that a crosscut can pass through no point more than once but can end

in one of its earlier points.

Since the lines ai, 02, ... , a„ are not sufficient for the complete

boundary of a part of F, if one imagines F cut up by these lines,

then the piece of the surface lying on the right of a„ as well as

that lying on the left must contain boundary elements other than

the Hnes a and which belong therefore to the boundary of F. One
can therefore draw a line in the one as well as the other of these

pieces of surface not cutting the curves a from a point of On to the

boundary of F, Both of these two lines q' and q" taken together

then constitute a crosscut q of the surface F which satisfies the

requirement.

Indeed, on the surface F' arising from this crosscut of F the

curves ai, ao, . . ., a„_i are closed curves lying in the interior of F'

which are not sufficient to bound a part of F and hence also not a

part of F'. However, every other closed curve / lying in the

interior of F' constitutes with them the complete boundary of a

part of F'. For the line / forms with a complex of the lines ai,

02, ... , (In the complete boundary of a part / of F. However, it

can be shown that a^ cannot occur in the boundary of/; because

then, according as/ lies on the left or right side of an, q' or q" would

go from the interior of/ to a boundary point of F, hence to a point

lying outside of /, and therefore would cut the boundary of /
contrary to the hypothesis that / as well as the lines a, excepting

for the point of intersection of a„ and q, always lie in the interior

ofF.
The surface F' into which F is decomposed by the crosscut q is

therefore n-fold connected, as required.

It shall now be shown that the surface F is changed into an n-

fold connected one F' by any crosscut p which does not decompose

it into separate pieces. If the pieces of surface adjacent to the

two sides of the crosscut p are connected, a hne 6 can be drawn
from one side of p through the interior of F' back to the starting

point on the other side. This line b forms a line in the interior of

F leading back into itself; and since the crosscut issuing from it on

both sides goes to a boundary point, 6 cannot constitute the com-
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plete boundary of either of the two pieces of surface into which it

separates F. We can therfore replace one of the curves a by the

curve 6 and each of the remaining n — 1 curves a by a curve in

the interior of F' and the curve b, if necessary; wherefrom we can

deduce by the same means as above the proof that F' is n-fold

connected.

An (n + \)-Jold connected surface will therefore be changed into

an n-fold connected 07ie by means of any crosscut which does not

separate it into pieces.

The surface arising from a crosscut can be divided again by a

new crosscut, and after n repetitions of this operation an (n + 1)-

fold connected surface will be changed into a simply connected

one by means of n successive non-interesting crosscuts. To apply

these considerations to a surface without boundary, a closed

surface, we must change it into a bounded one by the speciaHza-

tion of an arbitrary point; so that the first division is made by
means of this point and a crosscut beginning and ending in it,

hence by a closed curve. For example, the surface of an anchor

ring, which is 3-foId connected, will be changed into a simply

connected surface by means of a closed curve and a crosscut.

Simply-connected Surface

It will be decomposed into parts by any crosscut, and any closed

curve in it constitutes the complete boundary of a part of the

surface.
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Doubly-connected Surface

It will be reduced to a simply-connected one by any crosscut q

that does not disconnect it. Any closed curve in it can, with the

aid of a, constitute the complete boundary of a part of the surface.

Triply-connected Surface

In this surface any closed curve can constitute the complete

boundary of a part of the surface with the aid of the curves ai

and 02. It is decomposed into a doubly connected surface by any

crosscut that does not disconnect it and into a simply connected

one by two such crosscuts, gi and qz.
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This surface is double in the regions a, /3, 7, 5 of the plane. The
arm of the surface containing ai is imagined as lying under the

other and is therefore represented by dotted lines.
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On the Hypotheses which Lie at the Foundations

OF Geometry

(Translated from the German by Professor Henry S. White, Vassar College,

Poughkeepsie, N. Y.)

For a biographical sketch of Riemann see page 404.

The paper here translated is Riemann's Probe-Vorlesung, or formal initial

lecture on becoming Privat-Docent. It is extraordinary in scope and originality

and it paved the way for the now current theories of hyperspace and relativity.

It was read on the 10th of June, 1854, for the purpose of Riemann's "Habilita-

tion" with the philosophical faculty of Gottingen. This explains the form of

presentation, in which analytic investigations could be only indicated; some

elaborations of them are to be found in the " Commentatio matbematica, qua

respondere tentatur quaestioni ab Illma Academia Parisiensi propositae" etc.,

and in the appendix to that paper. It appears in vol. XIII of the Abbandlun-

gen of the Royal Society of Sciences of Gottingen.

Plan oj the Investigation

It is well known that geometry presupposes not only the concept

of space but also the first fundamental notions for constructions

in space as given in advance. It gives only nominal definitions

for them, while the essential means of determining them appear

in the form of axioms. The relation of these presuppositions is

left in the dark; one sees neither whether and in how far their

connection is necessary, nor a priori whether it is possible.

From Euchd to Legendre, to name the most renowned of modern

writers on geometry, this darkness has been Hfted neither by the

mathematicians nor by the philosophers who have labored upon

it. The reason of this lay perhaps in the fact that the general

concept of multiply extended magnitudes, in which spatial magni-

tudes are comprehended, has not been elaborated at all. Accord-

ingly I have proposed to myself at first the problem of constructing

the concept of a multiply extended magnitude out of general

notions of quantity. From this it will result that a multiply

extended magnitude is susceptible of various metric relations and
that space accordingly constitutes only a particular case of a

411
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triply extended magnitude. A necessary sequel of this Is that the

propositions of geometry are not derivable from general concepts of

quantity, but that those properties by which space is distinguished

from other conceivable triply extended magnitudes can be gathered

only from experience. There arises from this the problem of

searching out the simplest facts by which the metric relations of

space can be determined, a problem which in nature of things

is not quite definite; for several systems of simple facts can be

stated which would suffice for determining the metric relations of

space; the most important for present purposes is that laid down
for foundations by Euclid. These facts are, Kke all facts, not

necessary but of a merely empirical certainty; they are hypotheses;

one may therefore Inquire into their probabihty, which is truly

very great within the bounds of observation, and thereafter decide

concerning the admissibility of protracting them outside the

limits of observation, not only toward the immeasurably large,

but also toward the immeasurably small.

/. The Concept of n-Jold Extended Manifold

While I now attempt In the first place to solve the first of these

problems, the development of the concept of manifolds multiply

extended, I think myself the more entitled to ask considerate judg-

ment Inasmuch as I have had httle practise in such matters of a

philosophical nature, where the difficulty lies more in the concepts

than in the construction, and because I have not been able to make
use of any prehmlnary studies whatever aside from some very

brief hints which Privy Councillor Gauss has given on the subject

in his second essay on biquadratic residues and in his Jubilee

booklet, and some philosophical investigations of Herbart.

1

Notions of quantity are possible only where there exists already

a general concept which allows various modes of determination.

According as there is or is not found among these modes of deter-

mination a continuous transition from one to another, they form

a continuous or a discrete manifold; the individual modes are

called in the first case points, in the latter case elements of the

manifold. Concepts whose modes of determination form a

discrete manifold are so numerous, that for things arbitrarily

given there can always be found a concept, at least in the more

highly developed languages, under which they are comprehended
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(and mathematicians have been able therefore in the doctrine of

discrete quantities to set out without scruple from the postulate

that given things are to be considered as all of one kind) ; on the

other hand there are in common life only such infrequent occasions

to form concepts whose modes of determination form a continuous

manifold, that the positions of objects of sense, and the colors,

are probably the only simple notions whose modes of determina-

tion form a multiply extended manifold. More frequent occasion

for the birth and development of these notions is first found in

higher mathematics.

Determinate parts of a manifold, distinguished by a mark or

by a boundary, are called quanta. Their comparison as to

quantity comes in discrete magnitudes by counting, in continuous

magnitude by measurement. Measuring consists in superposi-

tion of the magnitudes to be compared; for measurement there is

requisite some means of carrying forward one magnitude as a

measure for the other. In detault of this, one can compare two

magnitudes only when the one is a part of the other, and even

then one can only decide upon the question of more and less, not

upon the question of how many. The investigations which can

be set on foot about them in this case form a general part of the

doctrine of quantity independent of metric determinations, where

magnitudes are thought of not as existing independent of position

and not as expressible by a unit, but only as regions in a manifold.

Such inquiries have become a necessity for several parts of mathe-

matics, namely for the treatment of many-valued analytic func-

tions, and the lack of them is likely a principal reason why the

celebrated theorem of Abel and the contributions of Langrange,

Pfaff, and Jacobi to the theory of differential equations have

remained so long unfruitful. For the present purpose it will be

sufficient to bring forward conspicuously two points out of this

general part of the doctrine of extended magnitudes, wherein

nothing further is assumed than what was already contained in

the concept of it. The first of these will make plain how the

notion of a multiply extended manifold came to exist; the second,

the reference of the determination of place in a given manifold to

determinations of quantity and the essential mark of an n-fold

extension.

2

In a concept whose various modes of determination form a

continuous manifold, if one passes in a definite way from one mode
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of determination to another, the modes of determination which are

traversed constitute a simply extended manifold and its essential

mark is this, that in it a continuous progress is possible from any

point only in two directions, forward or backward. If now one

forms the thought of this manifold again passing over into another

entirely different, here again in a definite way, that is, in such a

way that every point goes over into a definite point of the other,

then will all the modes of determination thus obtained form a

doubly extended manifold. In similar procedure one obtains

a triply extended manifold when one represents to oneself that a

double extension passes over in a definite way into one entirely

different, and it is easy to see how one can prolong this construc-

tion indefinitely. If one considers his object of thought as variable

instead of regarding the concept as determinable, then this con-

struction can be characterized as a synthesis of a variability of

n + 1 dimensions out of a variability of n dimensions and a varia-

bility of one dimension.

I shall now show how one can conversely split up a variability,

whose domain is given, into a variability of one dimension and a

variabihty of fewer dimensions. To this end let one think of a

variable portion of a manifold of one dimension,—reckoning from

a fixed starting-point or origin, so that its values are comparable

one with another—which has for every point of the given manifold

a definite value changing continuously with that point; or in

other words, let one assume within the given manifold a continu-

ous function of place, and indeed a function such that it is not

constant along any portion of this manifold. Every system of

points in which the function has a constant value constitutes

now a continuous manifold of fewer dimensions than that which

was given. By change in the value of the function these manifolds

pass over, one into another, continuously; hence one may assume

that from one of them all the rest emanate, and this will come about,

speaking generally, in such a way that every point of one passes

over into a definite point of the other. Exceptional cases, and

it is important to investigate them,—can be left out of considera-

tion here. By this means the fixing of position in the given mani-

fold is referred to the determination of one quantity and the fixing

of position in a manifold of fewer dimensions. It is easy now to

show that this latter has n — 1 dimensions if the given manifold
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was n-fold extended. Hence by repetition of this procedure, to

n times, the fixing of position in an n-dimensional manifold is

reduced to n determinations of quantities, and therefore the fixing

of position in a given manifold is reduced, whenever this is possible,

to the determination of a finite number of quantities. There

are however manifolds in which the fixing of position requires

not a finite number but either an infinite series or a continuous

manifold of determinations of quantity. Such manifolds are

constituted for example by the possible determinations of a func-

tion for a given domain, the possible shapes of a figure in space,

et cetera.

//. Relations of Measure, of Which an n-dimensional Manifold is

Susceptible, on the Assumption that Lines Possess a Length

Independent of Their Position; that is, that Every Line Can
Be Measured by Every Other

Now that the concept of an n-fold extended manifold has been

constructed and its essential mark has been found to be this, that

the determination of position therein can be referred to n deter-

minations of magnitude, there follows as second of the problems

proposed above, an investigation into the relations of measure

that such a manifold is susceptible of, also into the conditions

which suffice for determining these metric relations. These

relations of measure can be investigated only in abstract notions

of magnitude and can be exhibited connectedly only in formulae;

upon certain assumptions, however, one is able to resolve them

into relations which are separately capable of being represented

geometrically, and by this means it becomes possible to express

geometrically the results of the calculation. Therefore if one is

to reach solid ground, an abstract investigation in formulae is

indeed unavoidable, but its results will allow an exhibition in the

clothing of geometry. For both parts the foundations are con-

tained in the celebrated treatise of Privy Councillor Gauss upon

curved surfaces.

1

Determinations of measure require magnitude to be independent

of location, a state of things which can occur in more than one way.

The assumption that first offers itself, which I intend here to follow

out, is perhaps this, that the length of hnes be independent of

their situation, that therefore every Hne be measurable by every
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other. If the fixing of the location is referred to determinations

of magnitudes, that is, if the location of a point in the n-dimensional

manifold be expressed by n variable quantities Xi, Xj, Xz, and so on

to Xn, then the determination of a line will reduce to this, that

the quantities x be given as functions of a single variable. The
problem is then, to set up a mathematical expression for the length

of lines, and for this purpose the quantities x must be thought of

as expressible in units. This problem I shall treat only under

certain restrictions, and limit myself first to such lines as have

the ratios of the quantities dx—the corresponding changes in the

quantities x—changing continuously; one can in that case think

of the lines as laid off into elements within which the ratios of the

quantities dx may be regarded as constant, and the problem

reduces then to this: to set up for every point a general expression

for a line-element which begins there, an expression which will

therefore contain the quantities x and the quantities dx. In

the second place I now assume that the length of the line-element,

neglecting quantities of the second order, remains unchanged when
all its points undergo infinitely small changes of position; in this

it is implied that if all the quantities dx increase in the same ratio,

the line-element likewise changes in this ratio. Upon these

assumptions it will be possible for the line-element to be an arbi-

trary homogeneous function of the first degree in the quantities

dx which remains unchanged when all the dx change sign, and in

which the arbitrary constants are continuous functions of the

quantities x. To find the simplest cases, I look first for an expres-

sion for the (n — l)-fold extended manifolds which are everywhere

equally distant from the initial point of the line-element, that is,

I look for a continuous function of place, which renders them
distinct from one another. This will have to diminish or increase

from the initial point out in all directions; I shall assume that it

increases in all directions and therefore has a minimum in that

point. If then its first and second differential quotients are

finite, the differential of the first order must vanish and that of

the second order must never be negative; I assume that it is

always positive. This differential expression of the second order

accordingly remains constant if ds remains constant, and increases

in squared ratio when the quantities dx and hence also ds

all change in the same ratio. That expression is therefore =
const, ds^, and consequently ds = the square root of an everywhere

positive entire homogeneous function of the second degree in
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quantities dx having as coefficients continuous functions of the

quantities x. For space this is, when one expresses the position

of a point by rectangular coordinates, ds = \/'L{dxy; space is

therefore comprised under this simplest case. The next case in

order of simplicity would probably contain the manifolds in which

the hne-element can be expressed by the fourth root of a differ-

ential expression of the fourth degree. Investigation of this more

general class indeed would require no essentially different princi-

ples, but would consume considerable time and throw relatively

little new light upon the theory of space, particularly since the

results cannot be expressed geometrically. I limit myself therefore

to those manifolds in which the line-element is expressed by the

square root of a differential expression of the second degree.

Such an expression one can transform into another similar one

by substituting for the n independent variables functions of n

new independent variables. By this means however one cannot

transform every expression into every other; for the expression

n + 1
contains n . —^— coefficients which are arbitrary functions of

the independent variables; but by introducing new variables one

can satisfy only n relations (conditions), and so can make only

n of the coefficients equal to given quantities. There remain

n — 1
then n . —^— others completely determined by the nature of the

manifold that is to be represented, and therefore for determining

its metric relations n .
—

^^
— functions of position are requisite.

The manifolds in which, as in the plane and in space, the line-

element can be reduced to the form '\/'L(dxy constitute therefore

only a particular case of the manifolds under consideration here.

They deserve a particular name, and I will therefore term flat

these manifolds in which the square of the line-element can be

reduced to the sum of squares of total differentials. Now in

order to obtain a conspectus of the essential differences of the

manifolds representable in this prescribed form it is necessary to

remove those that spring from the mode of representation, and

this is accomplished by choosing the variable quantities according

to a definite principle.

For this purpose suppose the system of shortest lines emanating

from an arbitrary point to have been constructed. The position
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of an undetermined point will then be determinable by specifying

the direction of that shortest Hne in which it lies and its distance,

in that Hne, from the starting-point; and it can therefore be

expressed by the ratios of the quantities dx^, that is the limiting

ratios of the dx at the starting point of this shortest line and by
the length 5 of this line. Introduce now instead of the dx° such

linear expressions da formed from them, that the initial value of

the square of the line-element equals the sum of the squares of

these expressions, so that the independent variables are: the

quantity s and the ratios of quantities da. Finally, set in place

of the da such quantities proportional to them, Xi, xj, . . ., x„, that

the sum of their squares = s-. After introducing these quantities,

the square of the line-element for indefinitely small values of x

becomes = I,(dx)^, and the term of next order in that (dsy will

be equal to a homogeneous expression of the second degree in the

n — 1 . .

n—^— quantities {xidx^ — X2dxi), {xidxi — x^dxi),.

.

., that is,

an indefinitely small quantity of dimension four; so that one

obtains a finite magnitude when one divides it by the square of the

indefinitely small triangle-area in whose vertices the values of

the variables are (0, 0, 0, . . .), (xi, X2, Xz,. . .), {dxi, dx^, dxs,. . .).

This quantity retains the same value, so long as the quantities

X and dx are contained in the same binary linear forms, or so

long as the two shortest lines from the values to the values x

and from the values to the values dx stay in the same element

of surface, and it depends therefore only upon the place and

the direction of that element. Plainly it is = if the manifold

represented is flat, that is if the square of the line-element is

reducible to S((fx)^ and it can accordingly be regarded as the

measure of the divergence of the manifold from flatness in this

point and in this direction of surface. Multiplied by —^ it

becomes equal to the quantity which Privy Councillor Gauss has

named the measure of curvature of a surface.

For determining the metric relations of an n-fold extended mani-

fold representable in the prescribed form, in the foregoing discuss-

n — 1
sion n .—s— functions of position were found needful ; hence

when the measure of curvature in every point in n . —=— surface-

directions is given, from them can be determined the metric

relations of the manifold, provided no identical relations exist



RIEMANN 419

among these values, and indeed in general this does not occur.

The metric relations of these manifolds that have the hne-element

represented by the square root of a differential expression of the

second degree can thus be expressed in a manner entirely independ-

ent of the choice of the variable quantities. A quite similar path

to this goal can be laid out also in case of the manifolds in which

the line-element is given in a less simple expression; e. g., as the

fourth root of a differential expression of the fourth degree. In

that case the line-element, speaking generally, would no longer be

reducible to the form of a square root of a sum of squares of differ-

ential expressions; and therefore in the expression for the square

of the line-element the divergence from flatness would be an

indefinitely small quantity of the dimension two, while in the

former manifolds it was indefinitely small of the dimension four.

This peculiarity of the latter manifolds may therefore well be

called flatness in smallest parts. The most important peculiarity

of these manifolds, for present purposes, on whose account solely

they have been investigated here, is however this, that the rela-

tions of those doubly extended can be represented geometrically

by surfaces, and those of more dimensions can be referred to those

of the surfaces contained in them; and this requires still a brief

elucidation.

3 .

In the conception of surfaces, along with the interior metric

relations, in which only the length of the paths lying in them comes

into consideration, there is always mixed also their situation with

respect to points lying outside them. One can abstract however

from external relations by carrying out such changes in the surfaces

as leave unchanged the length of lines in them; i. e., by thinking

of them as bent in any arbitrary fashion,—without stretching

—

and by regarding all surfaces arising in this way one out of another

as equivalent. For example, arbitrary cylindrical or conical

surfaces are counted as equivalent to a plane, because they can be

formed out of it by mere bending, while interior metric relations

remain unchanged; and all theorems regarding them—the whole

of planimetry—retain their validity; on the other hand they

count as essentially distinct from the sphere, which cannot be

converted into a plane without stretching. According to the

above investigation in every point the interior metric relations

of a doubly extended manifold are characterized by the measure
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of curvature if the line-element can be expressed by the square

root of a differential expression of the second degree, as is the case

with surfaces. An intuitional significance can be given to this

quantity in the case of surfaces, namely that it is the product of

the two curvatures of the surface in this point; or also, that its

product into an indefinitely small triangle-area formed of shortest

lines is equal to half the excess of its angle-sum above two right

angles, when measured in radians. The first definition would

presuppose the theorem that the product of the two radii of curva-

ture is not changed by merely bending a surface; the second, the

theorem that at one and the same point the excess of the angle-

sum of an indefinitely small triangle above two right angles is

proportional to its area. To give a tangible meaning to measure

of curvature of an n-dimensional manifold at a given point and in

a surface direction passing through that point, it is necessary to

start out from the principle that a shortest fine, originating in a

point, is fully determined when its initial direction is given.

According to this, a determinate surface is obtained when one

prolongs into shortest fines all the initial directions going out from

a point and lying in the given surface element; and this surface

has in the given point a determinate measure of curvature, which

is also the measure of curvature of the n-dimensional manifold

in the given point and the given direction of surface.

Now before applications to space some considerations are needful

regarding flat manifolds in general, i. e., regarding those in which

the square of the fine-element is representable by a sum of squares

of total differentials.

In a flat n-dimensional manifold the measure of curvature at

every point is in every direction zero; but by the preceding investi-

gation it suffices for determining the metric relations to know that
„ 1

at every point, in n .
—

^
— surface directions whose measures of

curvature are independent of one another, that measure is zero.

Manifolds whose measure of curvature is everywhere zero may
be regarded as a particular case of those manifolds whose curvature

is everywhere constant. The common character of those mani-

folds of constant curvature can also be expressed thus: that the

figures lying in them can be moved without stretching. For it is

evident that the figures in them could not be pushed along and
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rotated at pleasure unless In every point the measure of curvature

were the same in all directions. Upon the other hand, the metric

relations of the manifold are completely determined by the

measure of curvature. About any point, therefore, the metric

relations in all directions are exactly the same as about any other

point, and so the same constructions can be carried out from it,

and consequently in manifolds with constant curvature every

arbitrary position can be given to the figures. The metric relations

of these manifolds depend only upon the value of the measure of

curvature, and it may be mentioned, with reference to analytical

presentation, that if one denotes this value by a, the expression

for the line element can be given the form

J
1 + ^V^d^'

Consideration of surfaces with constant measure of curvature

can help toward a geometric exposition. It is easy to see that

those surfaces whose curvature is positive will always permit them-

selves to be fitted upon a sphere whose radius is unity divided by
the square root of the measure of curvature; but to visualize the

complete manifold of these surfaces one should give to one of them
the form of a sphere and to the rest the form of surfaces of rotation

which touch it along the equator. Such surfaces as have greater

curvature than this sphere will then touch the sphere from the

inner side and take on a form like that exterior part of the surface

of a ring which is turned away from the axis (remote from the

axis) ; they could be shaped upon zones of spheres having a smaller

radius, but would reach more than once around. Surfaces with

lesser positive measure of curvature will be obtained by cutting

out of spherical surfaces of greater radius a portion bounded by
two halves of great circles, and making its edges adhere together.

The surface with zero curvature will be simply a cylindrical surface

standing upon the equator; the surfaces with negative curvature

will be tangent to this cylinder externally and will be formed like

the inner part of the surface of a ring, the part turned toward the

axis.

If one thinks of these surfaces as loci for fragments of surface

movable in them, as space is for bodies, then the fragments are

movable in all these surfaces without stretching. Surfaces with
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positive curvature can always be formed in such wise that those

fragments can be moved about without even bending, namely as

spherical surfaces, not so however those with negative curvature.

Beside this independence of position shown by fragments of sur-

face, it is found in the surface with zero curvature that direction is

independent of position, as is not true in the rest of the surfaces.

///. Application to Space

1

Following these investigations concerning the mode of fixing

metric relations in an n-fold extended magnitude, the conditions

can now be stated which are sufficient and necessary for determin-

ing metric relations in space, when it is assumed in advance that

lines are independent of position and that the linear element is

representable by the square root of a differential expression of the

second degree; that is if flatness in smallest parts is assumed.

These conditions in the first place can be expressed thus: that

the measure of the curvature in every point is equal to zero in

three directions of surface; and therefore the metric relations of

the space are determined when the sum of the angles in a triangle

is everywhere equal to two right angles.

In the second place if one assumes at the start, like Euclid, an

existence independent of situation not only for lines but also for

bodies, then it follows that the measure of curvature is everywhere

constant; and then the sum of the angles in all triangles is deter-

mined as soon as it is fixed for one triangle.

In the third place, finally, instead of assuming the length of

lines to be independent of place and direction, one might even

assume their length and direction to be independent of place.

Upon this understanding the changes in place or differences in

position are complex quantities expressible in three independent

units.

2

In the course of preceding discussions, in the first place relations

of extension (or of domain) were distinguished from those of

measurement, and it was found that different relations of measure

were conceivable along with identical relations of extension.

Then were sought systems of simple determinations of measure by

means of which the metric relations of space are completely deter-
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mined and of which all theorems about such relations are a neces-

sary consequence. It remains now to examine the question how,

in what degree and to what extent these assumptions are guaran-

teed by experience. In this connection there subsists an essential

difference between mere relations of extension and those of

measurement: in the former, where the possible cases form a

discrete manifold the declarations of experience are indeed never

quite sure, but they are not lacking in exactness; while in the latter,

where possible cases form a continuum, every determination

based on experience remains always inexact, be the probability

that it is nearly correct ever so great. This antithesis becomes

important when these empirical determinations are extended

beyond the limits of observation into the immeasurably great and

the immeasurably small; for the second kind of relations obviously

might become ever more inexact, beyond the bounds of observa-

tion, but not so the first kind.

When constructions in space are extended into the immeasurably

great, unlimitedness must be distinguished from infiniteness; the

one belongs to relations of extension, the other to those of measure.

That space is an unlimited, triply extended manifold is an assump-

tion applied in every conception of the external world; by it at

every moment the domain of real perceptions is supplemented and

the possible locations of an object that is sought for are constructed,

and in these applications the assumption is continually being

verified. The unlimitedness of space has therefore a greater

certainty, empirically, than any experience of the external. From
this, however, follows in no wise its infiniteness, but on the contrary

space would necessarily be finite, if one assumes that bodies are

independent of situation and so ascribes to space a constant

measure of curvature, provided this measure of curvature had any

positive value however small. If one were to prolong the elements

of direction, that lie in any element of surface, into shortest lines

(geodetics), one would obtain an unlimited surface with constant

positive measure of curvature, consequently a surface which would

take on, in a triply extended manifold, the form of a spherical

surface, and would therefore be finite.

3

Questions concerning the immeasurably large area, for the

explanation of Nature, useless questions. Quite otherwise is it

however with questions concerning the immeasurably small.
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Knowledge of the causal connection of phenomena is based essenti-

ally upon the precision with which we follow them down into the

infinitely small. The progress of recent centuries in knowledge

of the mechanism of Nature has come about almost solely by the

exactness of the syntheses rendered possible by the invention of

Analysis of the infinite and by the simple fundamental concepts

devised by Archimedes, Galileo, and Ne\\'ton, and effectively

employed by modern Physics. In the natural sciences however,

where simple fundamental concepts are still lacking for such

syntheses, one pursues phenomen into the spatially small, in

order to perceive causal connections, just as far as the microscope

permits. Questions concerning spatial relations of measure in

the indefinitely small are therefore not useless.

If one premise that bodies exist independently of position,

then the measure of curvature is everywhere constant; then from

astronomical measurments it follows that it cannot differ from

zero; at any rate its reciprocal value would have to be a surface in

comparison with which the region accessible to our telescopes

would vanish. If however bodies have no such non-dependence

upon position, then one cannot conclude to relations of measure in

the indefinitely small from those in the large. In that case the

curvature can have at every point arbitrary values in three direc-

tions, provided only the total curvature of every metric portion

of space be not appreciably different from zero. Even greater

complications may arise in case the line element is not repre-

sentable, as has been premised, by the square root of a differential

expression of the second degree. Now however the empirical

notions on which spatial measurements are based appear to lose

their validity when applied to the indefinitely small, namely the

concept of a fixed body and that of a light-ray; accordingly it is

entirely conceivable that in the indefinitely small the spatial

relations of size are not in accord with the postulates of geometry,

and one would indeed be forced to this assumption as soon as it

would permit a simpler explanation of the phenomena.

The question of the validity of the postulates of geometry in

the indefinitely small is involved in the question concerning the

ultimate basis of relations of size in space. In connection with

this question, which may well be assigned to the philosophy of

space, the above remark is applicable, namely that while in a

discrete manifold the principle of metric relations is implicit in

the notion of this manifold, it must come from somewhere else
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in the case of a continuous manifold. Either then the actual

things forming the groundwork of a space must constitute a

discrete manifold, or else the basis of metric relations must be

sought for outside that actuality, in colligating forces that operate

upon it.

A decision upon these questions can be found only by starting

from the structure of phenomena that has been approved in experi-

ence hitherto, for which Newton laid the foundation, and by modi-

fying this structure gradually under the compulsion of facts which

it cannot explain. Such investigations as start out, like this

present one, from general notions, can promote only the purpose

that this task shall not be hindered by too restricted conceptions,

and that progress in perceiving the connection of things shall not

be obstructed by the prejudices of tradition.

This path leads out into the domain of another science, into the

realm of physics, into which the nature of this present occasion

forbids us to penetrate.

"Riemann, who was logically the immediate predecessor of Einstein,

brought in a new idea of which the importance was not perceived for half a

century. He considered that geometry ought to start from the infinitesimal,

and depend upon integration for statements about finite lengths, areas, or

volumes. This requires, inter alia, the replacement of the straight line by

the geodesic: the latter has a definition depending upon infinitesimal distances,

while the former has not. The traditional view was that, while the length

of a curve could, in general, only be defined by integration, the length of the

straight line between two points could be defined as a whole, not as the limit

or a sum of little bits. Riemann's view was that a straight line does not differ

from a curve in this respect. Moreover, measurement, being performed by

means of bodies, is a physical operation, and its results depend for their

interpretation upon the laws of physics. This point of view has turned out

to be of very great importance. Its scope has been extended by the theory

of relativity, but in essence it is to be found in Riemann's dissertation."

(Bertrand Russell, The Analysis of Matter, p. 21, New York, 1927, Harcourt,

Brace and Company, Quoted by permission of the publishers.



MONGE

On the Purpose of Descriptive Geometry

(Translated from the French by Professor Arnold Emch, University of Illinois,

Urbana, III.)

Gaspard Monge (1746-1818) was the son of an itinerant tradesman. At

twenty-two he was professor of mathematics in the military school at Mezi^res

and finally held a similar position in the £coIe Polytechnique in Paris. He
is known chiefly for his elaboration of descriptive geometry, a theory which

had been suggested by Frezier in 1738. He lectured upon the subject at

Paris in "Fan 3 de la Republique" (1794-1795) and his Geometrie Descriptive

was published in "I'an 7" (1798-1799). He had already laid the foundations

for the theory when teaching at Mezieres, and on January 11, 1775 he had

presented a memoir before the Academic des Sciences in which he made use of

two planes of projection. He was one of the leaders in the foundation and

organization of the Ecole Normale and the Ecole Polytechnique. The follow-

ing brief quotation from his treatise (5th ed., Paris, 1927, pp. 1-2) will serve

to set forth the purpose which he had in view and which the government

guarded as a secret for some years because of its value in the construction of

fortifications:

Descriptive geometry has two objects: the first is to estabhsh

methods to represent on drawing paper which has only two

dimensions,—namely, length and width,—all sohds of nature

which have three dimensions,—length, width, and depth,—pro-

vided, however, that these sohds are capable of rigorous definition.

The second object is to furnish means to recognize accordingly

an exact description of the forms of sohds and to derive thereby

all truths which result from their forms and their respective

positions.
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REGIOMONTANUS

On the Law of Sines for Spherical Triangles

(Translated from the Latin by Professor Eva M. Sanford, College for Women.
Western Reserve University, Cleveland, Ohio.)

Johann Miiller (1436-1476), known as Regiomontanus, was the first to

write a treatise devoted wholly to trigonometry. This appeared in manuscript

about 1464, and had the title De triangulis oinnimodis. The completeness of

this work may be judged from the author's treatment of the Law of Sines for

Spherical Triangles, a theorem which was probably of his own invention.

In every right-angled triangle, the ratio of the sine of each side

to the sine of the angle which it subtends is the same.^

Given the triangle abg having the angle b a right angle. I say

that the ratio of the sine of the side ah to the sine of the angle agb

is the same as the ratio of the sine of the side bg to the sine of the

angle bag, and also as the ratio of the sine of the side ag to the sine

of the angle abg, which we shall prove as follows.

It is inevitable that each of the angles a and g is a right angle,

or that one or other of them is a right angle, or that neither is a

right angle. If each of them is a right angle, then, by hypothesis,

the point a is the pole of the circle bg, and moreover the point b

is the pole of the circle ag and g is the pole of the circle ab. Thus,

by definition, each of the three arcs will measure^ its respective

angle. Therefore, the sine of any one of the three sides will be

the same as that of the angle opposite, and accordingly the sine of

each side has the same ratio to the sine of its respective angle,

this ratio being that of equality.

If, however, but one of the angles a and g is a right angle, let

this one be the angle g. Since the hypothesis made 6 a right angle

also, then, on this supposition, a is the pole of the circle bg, and

each of the arcs ba and ag is a fourth of a great circle. Thus by

definition, each of the arcs ab, bg, and ga will determine the size

1 [De triangulis omnimodis. Lib. IIII, XVI, pp. 103-105, Nurnberg, 1533.

The proof as given in this work has been divided into paragraphs for greater

clarity in the translation.]

^ [Literally "will determine the size of."]

427
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of Its respective angle, and the sine of any side will be the same as

that of the corresponding angle by applying the definition of the

sine of the angle. It will then be evident that the sine of each

side has the same ratio, namely that of equality, to the sine of its

corresponding angle.

But if neither of the angles a and g be a right angle, no one of

the three sides will be a quadrant of a great circle, but they will

be found in three-fold variety.^ If each of the angles a and g

should be acute, each of the arcs ab and bg will be less than a

quadrant, and accordingly the arc ag will be less than a fourth

of a great circle. Then let the arc ga be produced^ toward a

until it becomes the quadrant gd, and taking the chord which is

the side of a great square^ as a radius and the point g as a center,

describe a great circle cutting the arc gb produced in the point e.

Finally, let the arc ag be extended to the

point z thus obtaining the quadrant az

whose chord, swung about the pole a gen-

erates a circle which meets the arc ab ex-

tended In the point h. We have drawn a

diagram illustrating these conditions.

But if each of the angles be obtuse, each

of the arcs ab and gb will exceed a quadrant,

and we know that the arc ag Is less than a

quadrant. Therefore, prolonging the arc ag

on both sides as before until the fourth arc gd

Is formed and the arc az also, let two great

circles be described with the centers at g and

a. The circumference of the one described

with g as a center will necessarily cut the

arc gb, which Is greater than a quadrant.

Let this happen at the point e. The other

circle described with a as a center will cut

the arc ab at the point b. Thus another figure will be produced.

^ [That is, all three sides will be less than a quadrant, or ab and bg will each

be greater and ag less, or bg and ag will each be greater than a quadrant and ab

will be less. It should be noted that Regiomontanus uses the letters in his

diagrams in the order in which they appear in the Greek alphabet which is a

natural outcome of his familiarity with mathematical classics in Greek.)

^ [Literally "increased.")

' [Literally, "costa quadrati magni." This is evidently the chord of the

quadrant of a great circle, the pole being used as a center in describing the

circle on the sphere.)
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But if one of the angles a and g is obtuse and the other acute,

let a be obtuse and let the other be acute. Then, according to

the cases cited, each of the arcs bg and ga is greater than a quadrant,

but the arc ab is less than a quadrant. Therefore let two quad-

rants gd and az, which share the arc dz, be cut off from the arc

ag. Then the circumference of a circle described as before with

g as a pole will cut the arc bg which is greater than a quadrant.

Let e be this point of intersection. Moreover the circumference

of the circle described about a will not cut the arc ab, since this

arc is less than a quadrant, but it will meet it if it is prolonged

sufficiently, as at b. Therefore when
neither of the angles a and g is a right

angle, although we use a triple diagram,

yet a single syllogism will result.

Since the two circles gd and ge meet

obhquely,^ and since two points are

marked on the circumference of the

circle gd with the perpendiculars ab and

de drawn at these points, then accord-

ing to the preceding demonstration the ratio of the sine of the arc

ga to the sine of the arc ab will be as the sine of the arc gd to the

sine of the arc de, and, by interchanging these terms,^ the ratio

of the sine ga to the sine gd will be that of the sine ab to the sine

de. In like fashion, the two circles az and ah meet obliquely, and

two points g and z are marked on the circumference of the circle

az from which are drawn two perpendicular arcs gb and zh. There-

fore, according to the foregoing proofs, the ratio of the sine ag

to the sine gb is as that of the sine az to the sine zb; and by alterna-

tion, the sine ag is to the sine az as the sine gb is to the sine zb.

Moreover, the sine ag is to the sine az as the sine ga is to the sine

gd. Each of the arcs az and ga is a quadrant. Therefore the

sine of the side ab has the same ratio to the sine de as the sine of the

side gb has to the sine zb, which is that of the sine of the side ag

to the sine of the quadrant. Moreover, the sine de is the sine of

the angle agb, for the arc de measures the angle agb with the point

g acting as the pole of the circle de. In like manner, the sine zb

is the sine of the angle bag. Furthermore, the sine of the quadrant

is the sine of a right angle, therefore the ratio of the sine of the

side ab to the sine of the angle agb, and that of the sine of the side

* [Literally, "are inclined toward each other."]

^ [Literally, "by permuting the terms."]



430 SOURCE BOOK IN MATHEMATICS

bg to the sine of the angle bag, and also the ratio of the sine of the

side ag to the sine of the right angle abg are one and the same, which

was to be shown.

In every triangle, not right-angled, the sines of the sides have

the same ratio as the sines of the angles opposite.^

The statement which the preceding proposition demonstrated

for right-angled triangles may be proved for triangles that are not

right-angled. Suppose that the triangle abg has no right angle.

I say that the ratio of the sine of the side ab to the sine of the

angle g, and that of the sine of the side bg to the sine of the angle

a, and of the sine of the side ga to the sine of the angle b are one

and the same.

I draw a perpendicular ad from a cutting the arc bg if it remains

inside the triangle, or meeting the arc bg opportunely prolonged

if it falls outside the triangle but being coterminus with neither

ab nor ag; for in such a case, one of the angles 6 and g would be

considered to be a right angle which our hypothesis has stated is

not a right angle. Therefore; let it fall first within the triangle,

marking out two triangles abd and agd.

According to the preceding proof, but alter-

nating the terms, the ratio of the sine ab

to the sine ad is the same as that of the

sine of the angle adb, a right angle, to that

of the angle abd. But by the same previ-

ous proof, the ratio of the sine ad to the

sine ag is the same as that of the sine of

the angle agd to the sine of a right angle adg, since the sine of

the angle adg is the same as that of the angle adb and since each

of them is a right angle. Then^ the sine of ab will be to the sine

of ag as the sine of the angle agb is to the sine of the angle abg;

and by alternation, the sine of the side ab will be to the sine of the

angle agb as the sine of the side ag is to the sine of the angle abg.

Finally, you will conclude that the ratio of the sine of the side

bg to the sine of the angle bag is the same, if from one of the

vertices 6 or g you draw an arc perpendicular to the side opposite it.

But if the perpendicular ad falls outside the triangle, thus

changing the figure a little, let us seek the original syllogism; for

reasoning by alternation from the preceding proof, the sine ab

will be to the sine ad as the sine of the right angle adb s to the sine

•[Lib. nil, XVII.]
' [" By reason ot the equal indirect proportion."]
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of the angle abd. Likewise, the sine of ad will be to the sine ag

as the sine of the angle agb is to the sine of the right angle adg.

Therefore, the sine of the side ab will be

to the sine of the side ag as the sine of the

angle agb is to the sine of the angle abd.

Moreover, the sine of the angle abd is also

the sine of the angle abg by common
knowledge.^ Therefore the sine ab is to

the sine ag as the sine of the angle agb

is to the sine of the angle abd, and thus,

changing the terms, the sine of the side ab is to the sine of the

angle agb as the sine of the side ag is to the sine of the angle

abg. Finally, we shall prove that this is the ratio of the sine of

the side bg to the sine of the angle bag, by the method which we
have used above. Therefore the statement w^hich was demon-

strated in these theorems in regard to right-angled and non-right-

angled triangles, respectively, we are at last free to state in general

in regard to all triangles of whatever sort they may be, and we
shall now consider step by step the great and jocund fruits which

this study is to yield.

1 ["Per communem scfentiam" a direct translation from the Greek name for

axiom.]
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On the Relations of the Parts of a Triangle

(Translated from the Latin by Professor Vera Sanford, Western Reserve

University, Qeveland, Ohio.)

Regiomontanus is the Latin name assumed by Johann Miiller (1436-1476),

being derived from his birthplace, Konigsberg, in Lower Franconia. In a

block-book almanac prepared by him his name appears as Magister Johann van

Kunsperck. He was known in Italy, where he spent some years, as Joannes

de Monteregio. He wrote De triangulis omnimodis c. 1464, but it was not

printed until 1533. It was the first work that may be said to have been

devoted solely to trigonometry. The following extract is from this work, lib.

II, p. 58. In it Regiomont,anus shows the relations of the parts of a triangle,

and from it is easily derived the formula which, in our present symbols, would

appears as ^ = M6c sin /I.

XXVI

Given the area of a triangle and the rectangle^ of the two sides,

then the angle opposite the base will either be known or with the

known angle will equal two right angles.

^

Using again the diagrams of the preceding proposition, if the

perpendicular bk meeting the line ag falls outside the triangle,

then by the first case, the ratio of bk to 6a will be known, and so

1 [I.e., the product.]

* [This enables one to find sin A, having given the area of the triangle and

the product 6c. Regiomontanus, however, does not seem to have changed this

into the form: Given A, 6, and c to find the area. The theorem determines the

acute angle at the vertex, whether this be interior or exterior to the triangle.)
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by the angle of this first figure, we shall assume bak as known,

accordingly the angle bag with the known angle bak will equal two

right angles. But if the perpendicular bk falls inside the triangle

as is seen in the third diagram [the one here shown] of the preceed-

ing proposition, then as before ab will have a known ratio to bk,

and therefore the angle bak or bag will be known. But if the

perpendicular bk coincides with the side ab, the angle bag must

have been a right angle and therefore must be known, which

indeed happens when the area of the proposed triangle equals that

of the rectangle which is inclosed by the two sides.



PITISCUS

On the Laws of Sines and Cosines

(Translated from the Latin by Professor Jekuthiel Ginsburg, Yeshiva College,

New York City.)

Bartholemaus Pitiscus (1561-1613), a German clergyman, wrote the first

satisfactory textbook on trigonometry, and the first book to bear this title,

—the Trigonometriae sive de dimensione trianguloTum libri quinque (Frank-

fort, 1595, with later editions in 1599, 1600, 1608, and 1612, and an English

edition in 1630). The selections here translated are from the 1612 edition,

pages 95 and 105, and set forth the laws of sines and cosines. The translation

makes use of modem symbols.

Fragment I

The ratio of the sides of a triangle to each other is the same as

the ratio of the sines of the opposite angles.

The sines are halves of the [corresponding] chords. The sides

of a triangle have the same ratio as the chords of the opposite

angles, hence the ratio of the sides will be equal to the ratio of the

sines, because the ratio of the whole quantity to another whole

quantity is the same as the ratio of a half to a half, according to

proposition 19 of Book 2, and it lies in the nature of the thing

itself. 1

The sides of the plane triangle will be the chords of the opposite

angles or of the arcs by half of which the angles are measured.

Thus: If the circle ABC be circumscribed

around the triangle ABC, the side AB will be

the chord of angle ACB; that is, of the arc AB
which measures the angle ACB. The side BC
will be the chord of the angle BAC; that is,

the chord of the arc BC which measures the

angle BAC. Similarly the side AC will be the chord of the angle

ABC; that is, of the arc AC which determines the angle ABC.

' fTo prove this Pitiscus uses the circumscribed circle in the following way.]

434



PITISCUS 435

Hence the side AB has the same ratio to the side BC as the chord

of the angle ACB to the chord of the angle BAC which was to

be Droved.^

Fragment II

When the three sides of an oblique triangle are given, the seg-

ments made by the altitude drawn from the vertex of the greatest

angle are given. ^

Subtract the square of one of the lateral sides of a triangle from

the sum of the squares of the other two. Divide the remainder

by twice the base and you will get the segment between the

altitude and the other lateral side.'

1 [According to Tropfke in his Gescbicbte der Elementar-Matbematik (V, p.

74) there were two methods of proving the Law of Sines: one used by Vieta

(1540-1603) and traced back to Levi Ben Gerson (1288-1344), who was the

first to formulate it in the West; the other to Nasir ed-din al-Ttlst (1201-1274)

and used by Regiomontanus, Pitiscus, and others. This is the method here

given. It is equivalent to the modern method of expressing the sides a, b, c,

as 2r sin A, Ir sin B, 2r sin C respectively.]

2 [In the AABC, AG is ± to BC.

To find CG, Pitiscus describes a circle with a radius AC and uses the

known proportion

BC.BD = BE:BF,
in which BC = a, AC = b, BA = c. Then BD = BA + AD = BA + AC
= c + b. Also, BE = BA - AE = c - AC = c - b, and BF = BC - CF
= a — 2x.

Hence

a:c + b = c — b:a — 2x,

or

c'^ — b^ = a^ — lax;

therefore

2ax = a^ -}- b^ — c^

_ a' + ¥- c"

^ ~
2a

From this he derives the scholium which follows.]

' [From this there is only one step to the general form of the Law of Cosines.

Pitiscus did not make that step, perhaps because he considered it self-

evident; but he used the theorem above given in exactly the same way as we
now use the Law of Cosines; that is, he used it in finding the values of the

angles from the given sides.]
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On BiJRGi's Method of Trisecting an Arc

(Translated from the Latin by Professor Jekuthiel Ginsburg, Yeshiva College,

New York City.)

Jobst BUrgi's (1552-1632) solution of the equation used in the trisection of

an arc was given by Bartholomeus Pitiscus (1561-1613) in his Trigonometria,

(1595; 1612 edition, pages 50-54). Whether Biirgi obtained it from Arabic

sources or discovered it independently is an interesting question that has not as

yet been answered satisfactorily.

The material in the translated "fragments" is interesting on account of the

bearing it has on questions of both algebra and trigonometry. The explana-

tion consists of two fragments, one of which is introductory to the other.

Fragment 1 [p. 38], Problem 3. Given the chord (subtensa)

of an arc less than half the circumference, and the chord of double

the given arc, required to fmd the chord of the triple arc.^

Solution ("rule").—Subtract the square of the chord of the

given arc from the square of the chord of double the arc. The

remainder divide by the chord of the given arc. The quotient will

be the chord of the triple arc.'^. . .

Fragment 2 [p. 50], Problem 6. Given the chord of an arc,

find the chord of a third of the same arc.

Solution.—Take a third of the given chord; add something to

it, and assuming the result to be the required chord compute the

1 In modern notation: given 2 sin a and 2 sin 2a, to fmd 2 sin 3a.

^ To prove this Pitiscus makes use of the fact

that the chords of the three arcs form the sides

and diagonals of an inscribed quadrilateral. If

arc AB = arc BC = arc CD, AB = BC = CB =

chord of given arc. AC = BD = chord of double

the arc, and AD = chord of triple arc. According

to a well-known theorem, AC.BD = AB.CD -\-

AD.BC or

AC^ = AB2 + AD.AB

AC^ -AB^
Hence AD, or the chord of the triple arc, equals

436

AB
Hence the proposition is proved.
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given chord using the method of problem 3. Note the difference

by plus or minus and, repeating the same operation on another

assumed value of the required chord, mark the new difference by

plus or minus. Having done this you will find the truth infallibly

by the Rule of False.

Example.—Let the given arc AD or 30° be taken as 5176381.

Required to find the chord of a third of the arc, namely, of the

arc of 10°.

The given chord = 5176381

One third of it = 1725460

Increased value of the third = 1730000

or = 1740000

or = 1750000

The first assumption is = 1730000

The chord of the triple arc

(30°) computed from this

according to the method
of problem 3 =5138223

But it should be = 5176381

Hence the difference is

= 38158

The The second assumption is = 1740000

The value of the chord of

the triple arc computed

by the method of prob-

lem 3 = 5167320

But it should be = 5176381

Hence the difference is minus 9161

Now according to the Rule of False multiply across: that is,

the first difference by the second assumption and the second

difference by the first assumption. And since they are both

negative subtract the products and you will have the number
to be divided.

The first product = 66394920000

The second product =15675530000

The number to be divided is 50719390000

Also from one of the minus numbers subtract the other and you will get the

divisor.

One of them is 38158

The other is 9061

The divisor is 29097
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The 'performed division will give for the chord AB the number

1743114. On this number perform an operation similar to that

performed on each of the two assumed values, and again there

will be a difference,—but very small, namely 3. Taking a number

slightly greater than 1743114, namely the number 1743115, and

repeating on it the above operation you will find that the chord AD
will be almost equal to the given value 5176381 but in the end it

will be a little greater. Therefore, the chord 1743115 will also

be a little greater but nearer the truth than 1743114, as will appear

from the computation; hence there will not be an appreciable

difference between the given value of AD and the computed one.

Another Method by Algebra. Solution. Divide the given chord

by 3x — x^.^ The quotient will be the chord of a third of the given

arc.

Proof of the Rule. The chord of any arc is equal to three roots

less one cube, the root being equal to the chord of a third of this

arc.

2

This is demonstrated as follows: Let AD be the given chord

of the arc ABCD. It is required to find the chord of AB, BC, or

CD, [each of which is] a third of the arc.

Let X be the chord of the third of the arc.

Hence each of the chords AC and BD of

the double arcs will be liq — 16g,' as has

been demonstrated in the solution of the

preceding problem. Since ABCD is an

inscribed quadrilateral, the product of the

diagonals AC and BD is equal to the sum

of the products of the opposite sides, by proposition 54 of the first

book [of the Trigonometria]. Multiply the diagonals and the

square is 4x^ — x"*.*

Then multiply the side AB by the side CD,^ that is x by x;

x^ is obtained. This, being subtracted from the square [made by]

^ [Pitiscus uses / instead of x, and c for x^. The chord of the lesser arc is

equal to the root of the equation 3x — x^ = AD. In the translation we have

used modern symbols.)

2 [In modem notation, 2 sin 3A = 3(2 sin A) — (2 sin A)^, which reduces to

sin 3A = 3 sin A — 4 sin^ A.)

3 The Pitiscus notation for \/4x^ — x*.

* [Pitiscus here adds in parentheses the following characteristic remark:

"Because to multiply a surd number by itself is nothing else than removing the

sign I" i. e. the radical sign.)

* [Pitiscus retains the coefficient 1, writing 1/ for Ix, Iq for q or x-, etc. In

the translation this coefficient is omitted.)
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the diagonals, that is, 4^^ — x"* leaves 3x^ — x* for the rectangle

(or the product) made by BC and AD. This rectangle 3x'^ — x^

being divided by BC, that is by x, will give as a result

AD = 3x - x\^

Hence 3x — x^y where x is a chord of a third of the arc is equal

to the chord of the given arc.

In consequence of the above, if the chord [k] of the given arc is

equal to 3a: — x^, the root [of the equation 3x — x^ = k] will be

the chord of the third part.^

1 [In modern notation:

AC.BD = AB.CD + AD.BC.
But _____

AC = BD = V4X' - x\

by a previous demonstration

(x = AB = BC = CD.)

Hence

AC.BD = 4x2 _ ^4 ^ j^2 ^ ^^£,^

,x^ _ x4 - a:2

.-. AD = ~ = 3X - x\]
X

2 [This is equivalent, in modern symbols, to saying that

sin 3A = 3 sin A — 4 sin' A.]
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On His Formula

(Translated from the Latin and from the French by

Professor Raymond Clare Archibald, Brown University.)

De Moivre's Formula is usually stated in the form

(cosx + i sinx)" = cosnx + i sinn.v,

where n is any real number. The equivalent of this form was given by
Euler (in 1748, Extract E below) and proved true for all real values of n

(in 1749, Extract F below). The result is not explicitly stated in any of

De Moivre's writings. But it will be observed that in more than one of them
(1707-38, Extracts A-D below) the formula and its application were thor-

oughly familiar to him; and that in passages where it is suggested (1722, 1730)

that certain eliminations shall be performed, on carrying these out we are led

to exactly the formula associated with his name. This was made clear in

Braunmiihl's historical sketch in Bibliotbeca Matbematica, series 3, vol. 2, p.

97-102, and in his Vorlesungeyi iiber Gescbicbte der Trigonometrie, part 2, 1903,

p. 75-78. While Hutton's translations {Pbilosopbical Transactions, abridged,

vols. 5, 6, 8) have been the basis of the translations in Extracts A, B, and D
they have not been slavishly followed as they were carefully compared with

the originals. The original display of formulae and symbolism has been pre-

served except that in such an expression as y.y, y^ has been substituted.

Abraham De Moivre was born in Champagne, France, in 1667, studied

mathematics under Ozanam in Paris, and repaired in 1688 to London where he

spent the remaining 66 years of his life. He was an intimate friend of Newton,

and his notable mathematical publications led to his election not only as a

member of the Royal Society, and of the Berlin Academy of Sciences, but also

as a foreign associate of the Paris Academy of Sciences. Of his Annuity Upon

Lives there were seven editions, five in English (1725, 1743, 1750, 1752, 1756),

one in Italian (1776) much enlarged with notes of Gaeta and Fontana and the

basis of lectures at the University of Pavia, and one in German (1906) by

Czuber. Among his other publications, which display great analytic power,

skill and invention, were Tbe Doctrine oj Chances (three editions, 1718. 1738,

1856), Miscellanea Analytica (1730) which brought about his election to the

Berlin Academy, a number of papers in the Pbilosopbical Transactions, and an

important 8-page pamphlet of 1733 (Approximatio ad summan terminorum

binomii (a + 6)" in seriem expansi, English editions in the last two editions

of Doctrine of Cbances) presenting the first treatment of the probability integral

and essentially of the normal curve. For a facsimile of the original edition of

this pamphlet and for references to other discoveries of De Moivre, see Isis, vol.

8, 1926, p. 671-683. He was one of the commissioners appointed by the Royal

Society in 1712 to arbitrate on the claims of Newton and Leibniz to the

invention of the infinitesimal calculus.
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Miss Gierke has recorded of De Moivre (D.N.B.) that he once said that he

would rather have been Moli^re than Newton; and he knew his works and

those of Rabelais almost by heart. In Pope's Essay on Man one finds (iii,

1.103-104):

Who made the spider parallels design,

Sure as Demoivre, without rule or line?

"/Equationum quarundam Potestatis tertix, quintae, septimae,

novae, & superiorum, ad infinitum usque pergendo, in terminis

finitis, ad imstar Regularum pro Cubicis quae vocantur, CardanI,

Resolutio Analytica," Philosophical Transactions, 1707, no. 309,

vol. 25, p. 2368-2371.

**Tb€ analytic solution of certain equations oj the third, fifth,

seventh, ninth and other higher uneven powers, by rules similar

to those called Cardan s."

"The analytic solution of certain equations of the third, fifth,

seventh, ninth and other higher uneven powers, by rules similar

to those called Cardan's."

Let n denote any number whatever, y an unknown quantity

or root of this equation, and a the absolute known quantity, or

what is called the homogeneum comparationisf^]; let also the

relation between these be expressed by the equation

n2_i n2— 1 n2-9

From the nature of this series it is manifest, that if n be taken

as any odd integer, either positive or negative, then the series will

terminate and the equation become one of those above mentioned,

the root of which is

(1) y = lAfVT+PT^--^—==!=======

VVl+a2-l-^

or (2) y = iA/vT+r^T^ - i\/vT+r2 - a

or (3)

Wl+^^ -

or (4) y = ^ ^ —[21

\^VT+a^ - a \^v^r+^2 ^ a

' ["Homogeneum comparationis" in algebra was a name given by Vieta
(1540-1603) to an equation's constant term, which he placed on the right-

hand side of the equation and all the other terms on the left.]

^ [In the denominator of the second term of the original, the second sign

was — instead of +.]
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For example, let it be required to find the root of the following

equation of the fifth degree, 5y + 20y^ + 16y^ = 4; in this case

n = 5 and a= 4. According to (1) the root will then be

y = §^V17 + 4 '

vVT7 + 4

whose numerical value is readily found. First \/l7 + 4 =
8.1231, whose logarithm is 0.9097164, of which the fifth part is

0.1819433, the number corresponding to which is 1.5203 =

\/y/Yl + 4. Also the arithmetic complement of 0.1819433 is

9.8180567, to which the number 0.6577 = ^,

^
. Therefore

vVl7 + 4

the half difference of these numbers is 0.4313 = y.

It may be here observed that, instead of the general root, it

i
may be sufficient to take y = |-v^2a —5^t~» whenever the number

n is very large in comparison with unity. For example, if the

equation were 5y + 20y3 + 16y5 = 682; then Iog.2a = 3.1348143,

of which the fifth part, 0.6269628 corresponds to the number

4.236. Also its arithmetic complement is 9.3730372 which

corresponds to the number 0.236. The half difference of these

two numbers is 2 = y.

Again, if the terms of the preceding equation be alternately

positive and negative, or which is the same thing, if the series

be as follows:

l_n2 l-n^ 9— n^

ny+ j3^ny' + ^^X-j^ny' +

l_n2 9_n2 25 — n^

2xT^ 4xT^-6x7"y'' "'^- = ^-"'

i(Ify = sin <^, a = sln n4> we have sin n<i> expressed in terms of sin <^, a

result which Newton had already given in a letter of 13 June 1676 {Cotnmer-

cxum Epistolicum J. Collins et Aliorum ed. Biot and Lefort, p. 106), and which

De Moivre derived in an article, "A method of extracting the root of an infinite

equation" in Pbilosopbical Transactions for 1698, no. 240, vol. 20, 1699, p. 190.

This relation was derived as a special case of the following result with which

the article opens: "If az + bz^ + cz^ + dz* -f ez^ etc. = gy + by^ + iy'' +
ky* -\- ly^ etc. then will

. g ,
b -bA^ ,, i - 2bAB - cA^

3 ,

k-bB^ - IbAC - 3cA«B -dA*.y.+
/ - 2bBC - 26AD - ZcAB^ - 3cA'-C - AdA^B - eA^ . ^ „

_ y etc.
a

where A, B, C, D, etc.
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its root will be

(1) y = i\fa4- Va^^+ ^

Va+ Va^^
or (2) y = i Va+ V^^ + i "S/a- V^^,
or (3)

or (4) _ ., _,

It should be here noted that if —7y— is an odd number, the sign

of the root when found must be changed to the contrary sign.

If the equation 5y — 20y^ + 16y* = 6 be proposed, then

n = 5 and a = 6. The root is equal to

\6 + V3S

Or, since 6 + V35 = 11.916 of which the logarithm is 1.0761304

and of which the fifth part is 0.2152561, the arithmetic complement

being 9.7847439. Hence the numbers corresponding to these

logarithms are 1.6415 and 0.6091 respectively whose half sum
1.1253 =y.

But if it happen that a is less than unity then the second form

of the root is rather to be preferred as more convenient for the

purpose. Thus if the equation were

Sy - 20y3 + 16y' - ^
1 '/61 ^ /-375 ^ 1 'fei P375 . , .. ,

are respectively equal to the coefficients of y, y^ y', y^ etc., a result to which

W. Jones refers (in his Synopsis Palmariorum Matbeseos, London, 1706, p. 188)

as a "Theorem" of "that Ingenious Mathematician Mr. De Moivre." In a

review of this book of Jones in Acta Eruditorum, 1707, p. 176; this result is

called "Theorema Moivraeanum," a term assigned to a theorem which does

not necessarily have any connection with trigonometric functions. The terms

De Moivre's Formula, De Moivre's Theorem, applied to the formula we are

considering, do not seem to have come into general use till the early part of the

nineteenth century. Tropfke cites A. L. Crelle, Lebrbucb der Elemente der

Geometrie und derebenen und spbdrischen Trigonometrie, Berlin, vol. 1, 1826, §335

for the use of the former term.]
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means the fifth root of the binomial can be extracted the root will

come out true and possible, although the expression seems to

include an impossibility. Now the fifth root of the binomial

64 + \W ^' 4 + i^-1^' ^^^ ^f t^^ binomial ^ -^^
is J — ^\/— 15 whose semi-sum j = y. But if the extraction can

not be performed, or should seem too difficult, the thing may
always be effected by a table of natural sines in the following

manner.

To the radius 1 let a= ;;r7 =0.95112 be the sine of a certain arc
d4

which therefore will be 72° 23', the fifth part of which (because

n = 5) is 14°28'; thesineofth

equations of higher degree.f^J

n = 5) is 14°28'; the sine of this is 0.24981, nearly =-t- So also for

B

"De Sectione Anguli," P^i/osopibica/ Transactions, 1722, no. 374,

vol. 32. p. 228-230.

"Concerning the section of an angle"

In the beginning of the year 1707, I fell upon a method by which

a given equation of these forms

n^—l n^—9 n^— 25
"^ + 2X3 -^^^ + iXS^y' + "6X7 ^-^'^ '''^- =<"•

l—n^ 9— n^ 25— n^

(where A,B,C, . . .represent the coefficients of the preceding terms)

may have its roots determined in the following manner.

Set a + va^+l = r in the first case and a +-\/a^—l = v in

the second. Then will in the first case

y = Iv V ^; and in the second y = |v v H
—

^7-
s/v V V

* [From this example it is clear that in 1707 De Moivre was in possession of

the formula

^"^sin n<l> + V — l.cos n<f> + Jv^sin n<f> — y/ — l.cos n<t> = sin <f>,

where n is an odd integer. In 1730, as we shall presently see, De Moivre

formulated a relation equivalent to the following:

iv^cos n<^ + V— 1-sin n<^ + Jvcos n<p — V — 1-sin n<p = cos (f>,

where n is any positive integer.]
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These solutions were inserted in the Philosophical Transactions,

No. 309, for the months Jan. Feb. March of that year.

Now by what artifices these formulae were discovered will

clearly appear from the demonstration of the following theorem.

In a unit circle let x denote the versed sine of any arc, and t

that of another; and let the former arc be to the latter as 1 to n.

Then, assuming two equations which may be regarded as known' ^J,

namely

1 - 2z" + 2^" = -2z"f and 1 - 2z + z^ = -2zx,

on eliminating z, there will arise an equation by which the relation

between x and t will be determined.

Corollary I.—If the latter arc be a semicircle, the equations

will be

1 + z" = 0, 1 - 2z + 22 = -2zx,

from which if z be eliminated there will arise an equation by which

will be determined the versed sines of the arcs which are to the

semicircle taken once, cr thrice, or five times, etc. as 1 to n.

Corollary II.—If the latter arc is a circumference, the equations

are

1 - 2" = 0, 1 - 2z + z2 = -2zx,

from which after z is eliminated will arise an equation by which

are determined the versed sines of the arcs, which are to the

circumference, taken once, twice, thrice, four times, etc., as 1

to n.

Corollary III.—If the latter arc is 60 degrees, the equations are

1 - z" + 22" = and 1 - 2z + 2^ = -2zx

from which on eliminating z, will arise an equation which deter-

mines the versed sines of the arcs which are to the arc of 60°,

multiplied by 1,7,13,19,25, etc. or by 5,ll,17,23,29,etc., as 1 to n.

If the latter arc be 120° the equations will be

1 + 2" + z^w = and 1 - 2z + z2 = -2zx,

^ [Let X ~ versed sin
<f>
= 1 — cos <^, t = versed sin n<^ = 1 — cos n<^ then

these equations are 1 — 2cos n^z" + z^" = and 1 — 2 cos ^z + z'' = 0.

Compare quotation C, corollary I. The elimination of z gives

Vcosn^ ± Vcos^n</> — 1 = v cos n<f> ± \/ — l.sin n^
= cos <t> + y/ —l.sin n<f>,

or (cos0 + V — I'Sin ^)" = cos n^ + V — 1-sin n<t>, De Moivre's formula, for

n an odd integer.]
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from which if z be eliminated there will arise an equation, by
which are determined the versed sines of the arcs, which are to

the arcs of 120°, multiplied by 1,4,7,10,13, etc., or by 2,5,8,11,14,

etc. as 1 to n.

C

[A. De Moivre], Miscellanea Analytica, London, 1730, pp. 1-2.

Lemma 1.—// / and x are the cosines of tivo arcs A arid B of a

circle oj radius unity, and if the first arc is to the second as the

number n is to unity then
1
2

" = i"^' + ^^' + ylTfvm
Corollary I.—Set V/+ V/'-l = z; then will z" = / + y/l^^l

orz" — / = -y/l^ — 1, or, squaring both sides z^" — 2/z" + l^ = l^ — I.

Cancelling equal terms on each side and having made the proper

transposition z^" — 2/z'* +1=0. From what was assumed

\/ + V^^ — 1 = z, it follows from the above lemma that

X = |z + -> or z^ — 2xz +1=0.

Corollary II.—If between the two equations 1 — 2/z" + z^" = 0,

1 — 2x2 + z^ = 0, the quantity z be eliminated there will arise

a new equation defining a relation between the cosines / and x,

providing the arc A is less than a quadrant.

Corollary III.—But if the arc A is greater than a quadrant then

its cosine will be — /, from which it results that the equations will

turn out to be 1 + 2/z" + z^" = 0, 1 - 2xz + z^ = 0; and if z

be eliminated between these there will arise a new equation

expressing the relation between the cosines / and x.

Corollary IV.—And in particular if z be eHminated between

the equations 1 + 2/z'* + z^" = 0, 1 — 2xz + z^ = there will

arise a new equation expressing a relation between the cosine

of the arc A (less or greater than a quadrant according as / has

A
the negative or positive sign) and all the cosines of the arcs —

,

C-A C-\-A IC-A 2C+A 3C-A 3C+A • .• u •

, , , , , -, etc., m which series
n n n n n n

of arcs C denotes the entire circumference.'^!

* [That is v^cosA ± i sinA = cos f- i sin =— , k =0,1,2,3,
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"De Reductione Radicalfum ad simpliciores terminos, seu de

cxtrabenda radice quacunque data ex Binomio a + y/-\-b, vel a +
V— ^•" Epistola., Philosophical Transactions, 1739, no.451, vol.40,

p. 463-478.

"On the reduction of radicals to simpler terms, or the extraction

of roots of any binomial a + \/-\-b or a + \/— b. Letter."

[The paper consists almost wholly in the discussion of four problems.

Our quotation is of problems 2-3, p.472-74.1

Problem II.

—

To extract the cube root of the impossible binomial

a + V-b.
Suppose that root to be x + V—y, the cube of which is

x^ + 3x^y/—y — 3xy — yV—y- Now put x^ — 3xy = a, and

3x2\/—y — yV—y = V— b. Then the squares of these will

give two new equations, namely

x^ - 6xV + 9x2y^ = a2

-9xV + 6xV - y' = -6.

Then the difference of these squares is

x^ + 3xV + 3xV + y^ = a2 4- 6;

the cube root ofwhich isx^ +y = \/a^ + 6 = m, say. Hence x^-\-y

= m, ory = m — x^ which value ofy substituted in the equation x^ —
3xy = a gives x^ — Zmx + 3x^ = a, or 4x3 _ 3^^ _ a; which is the

very same equation as has been before deduced from the equation

2x = y/a + \/~6 + v^a — V— &• Nevertheless it does not

follow that in the equation 4x3 — 37?ix = a, the value of x can be

found by the former equation since it consists of two parts each

including the imaginary quantity \/—b; but this will best be

done by means of a table of sines.

Therefore let the cube root be extracted of the binomial 81 +
V-2700. Put a = 81, 6 = 2700; then a^ + 6 = 6561 + 2700 =

9261, the cube root of which is 21, which set equal to m makes

i 3mx = 63x. Hence the equation to be solved will be 4x^ — 63x

^

= 81, which being compared with the equation for the cosines,

namely 4x^ — 3r^x = rV^J gives r^= 2l, hence r= \/21 and there-

a 81 27
"^^^ = 7^ = 21= r

* [If this equation be put in the form 4f-j — 3(-j=-it may be regarded

A A
las equivalent to the trigonometric formula 4 cos' »— 3cos:^ = cos A, if
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27
c = -=-, put the whole circumference equal to C, and take the arcs

To find the circular arc corresponding to the radius ^21 and

27
= -=-, put the w

A C—A C+A
«-, —%— ,

—X— , which will easily be known by a trigonometrical

calculation, especially by using logarithms; then the cosines

of the arcs to the radius V21 will be the three roots of the quantity

x; since y = m — x^, there will therefore be as many values ofy,

and thence a triple value of the cube root of the binomial 81

+ V— 2700, which must now be accommodated to numbersJ^J

27
Make then \/21 to -y- as the tabular radius is to the cosine of

an arc A, which will be nearly 32°42'. Hence the arc C—A will

be 327°18', and C+A 392^42', ofwhich the third parts will be 10°54',

and 109°6', and 130°54'. But now as the first of these is less than

a quadrant, its cosine, that is, the sine of 79°6' ought to be con-

sidered as positive; and both the other two being greater than a

quadrant, their cosines, that is the sines of the arcs 19°6' and 40°54',

must be considered as negative. Now by trigonometrical calcu-

c X A , , ,

- = cos A and - = cos ^. De Moivre identifies the problem of finding the cube

root with that of trisecting an angle.]

^ [In general terms the argument is as follows:

A
c = T cosA,x — rcos^ and by comparing the two cubic equations m = r*,

a = T^c. Therefore r = \/7n, c =— = vmcosA. Thenx = vmcos^r.m 3

/ C-A
x = "V m cos

—

:^
—

,

X = Vrn cos—r— are the three roots of the cubic equation. But since

a = r^c = vm^cosA, and 6 = 7n' — a^ = m'(l — cosM) =m' sinM, .v = vmcosT-(A\ A
1 — cos^y \—m sin:r-. . . Hence on substituting in the

equation \/a+i \/b = x-\-i vV we get

[\/m^(cosA+isinA)] = V^i cosy + i sin^

r-f C-A ^. . C-A\Vm( cos—^
f- I sin

—

-^
— I,

^/-/ C+A ,. . C+A\ 1
Vm( cos—^ h I sin —^— ).
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lation it appears, that these sines, to radius \/21 will be 4.04999

9 3

and -1.4999, and -3.0000, or ;., and "2 and -3. Hence there

will be as many values of the quantity y, namely all those repre-

81 9 .3
sented by m—x'^, namely 21—j-» ^^^ ^^~J* ^^'^ 21—9, that is t,

75 • 5
-T-, 12 and the square roots of which are \\/?>, ;c\/3, 2\/3. There-
4 ^

fore the values of y/— y will be §a/— 3, ^s^V— 3, 2\/— 3. Hence

the values of v^81 + V-2700 are ? + W-3, -\ + ^V-3,

and — 3 + \\/— 'i. And by proceeding in the same manner,

there will be found the three values of VSl — V— 2700, which

are ^
- 1^-3, 2

- W^^ and -3 - ^V-3.

There have been several authors, and among them the eminent

Wallis, who have thoug,ht that those cubic equations which are

referred to the circle, may be solved by the extraction of the cube

pj
root of an imaginary quantity, and of 81 + V— 2700, without

I regard to the table of sines, but that is a mere fiction and a begging

of the question. For on attempting it, the result always recurs back

.1 again to the same question as that first proposed. And the thing

' cannot be done directly, without the help of the table of sines,

especially when the roots are irrational, as has been observed by

many others.

Problem HI.

—

To extract the nth root oj the impossible binomial

a + V-b.
Let that root be x + \/—y; then making v a^ + 6 = m, and

—— =p, n any integer, describe, or conceive to be described,

a circle, the radius of which is \/m, in which take an arc A the

cosine of which is — > and let C be the whole circumference. To

the same radius take the cosines of the arcs —
» > >

n n n

2C-A 2C+A 3C-A 3C+A ^ .„ . u f .u k
> > > ; etc., till the number 01 them be

' [This should be —:z— = p.]



450 SOURCE BOOK IN MATHEMATICS

equal to n. Then all these cosines will be so many values of x ;

and the quantity y will always be m— x^.l^l

E

Euler, Introductio in Analysin Infinitorum, Lausanne, 1748, vol.1,

Chapter 8, "De quantitatibus transcendentibus ex circulo ortis"

["On transcendental quantities derived from the circle,"] p.97-98,

§§132-133; Reprinted in Leonbardi Euleri Opera Omnia, Leipzig,

series 1, vol.8, 1922, p.140-141.

132. Since (sin.z)^ + (cos.z)^ = 1, on decomposing into factors

we get (cos.z + •\/~l-sin.2)(cos.2 — y/—l sin.z) = 1. These

factors, although imaginary are of great use in the combination

and multiplication of arcs. For example, let us seek the product

of these factors

(cos.z + -v/"~Lsin.z)(cos.y + \/—l.sin.y),

we find

cos.y cos.z — sin.y sin.z + V— l-(cos.y sin.z + sin.y cos.z);

but since

cos.y cos.z — sin.y sin.z = cos.(y+z)

and

cos.y sin.z + sin.y cos.z = sin.(y+z)

we obtain the product

(cos.y + V—Lsin.y) (cos.z — V— Lsin.z) = cos.(y + z)

+ \/-l.sin.(y+2).
Similarly

(cos.y — V—l -sin.y) (cos.z — V— Lsin.z) = cos.(y + z)

- V-Lsin. (y+z).
In the same way

(cos.x + V—Lsin.x) (cos.y ± V—Lsin.y) (cos.z + V— Lsin.z)

= cos.(x -jr y -\- z) ± V— Lsin.(x }- y -\- z).

1 [That is,—
I

/ /—;/ A I
• A^\n /—( 2kir±A

, . . 2^7r±A\
(Vm"(cos A + 1 smA)) = Vm( cos + ism 1

k = 0,1,2,. .
.—»— if n is odd; or k = 1,2,. . .^ if n is even,

De Moivre's theorem for any unit fraction.

Practically all of extract D is given by De Moivre in a communication dated

April 29, 1740, in N. Saunderson, Tbe Elements oj Algebra, Cambridge, vol. 2,

1740, p.744-748.]
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133. Hence it follows that

(cos.z + \/—l.sm.zy = cos.2z ± V— l-sin.2z,

and
(cos.z ± V— l-sin.z)3 = cos.3z ± V— l-sin.3z;

i

and in general

(cos.z + \/— I'Sin.z)" = cos.nz ± V— 1-sin.nz.

'I
From these, by virtue of the double signs, we deduce

(cos.z + V— 1-sin.z)" + (cos.z — V— 1-sin.z)"
cos.nz =

2

and
(cos.z + -v/— l«sin.z)" — (cos.z — V— 1-sin.z)"

sin.nz = ^

Developing these binomials into series we get

, , n(n — 1)/ . o/- \o
cos.nz = (cos.z)" Y2— (cos.z)''-^ (sm.z)^

, n(n — l)(n — 2)(n — 3) . x„ . / • m+ -^
12 3 4 — (cos.z)"-'' (sm.z)4

n(n-l)(n-2)(n-3)(n-4)(n-S), „,. . . ,.
, ^

^^ ,
'\ . /) ^'(cos.z"-^) (sm.z)« + etc.

and

^/ \„ 1 • n(n — l)(n— 2) . „_,x / • x,
sm.nz = y(cos.z)"-i sm.z ^

—

^Y^ (cos.z" ^) (sm.z)^

,
n(n — l)(n — 2)(n — 3)(n— 4) , \„ ^ r

- x.;+ -^
^ 2 345

(cos.z) "-5 (sm.z) 5

- etc.t^I

1 [A little later in the chapter Euler gives the formula;

e+vV -1 -f e-^V -1 . 6 + "^-!— e-fV-1
cos.r =

7i
> sm.D = r—

^

7—
;

and
g+rv'-l = cos.t) + \/— l.sin.r,

g— pV-I = cos.f — \/— l.sin.f.

Roger Cotes gave much earlier the equivalent of the formula

log (cos X + i sin x) = i x

(Pbilosopbical Transactions, 1714, vol. 29, 1717, p.32) under the form: S*

quadrantis circuli quilibet arcus, radio CE descriptus, sinum habeat CX»
sinumque complement! ad quadrantem XE: sumendo radium CE, pro Modulo,
arcus erit rationis inter EX + XC\/— 1 & CE mensura ducta in \/— 1.]
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Euler, "Recherches sur les racines fmaglnaires des equations",

Histoire de rAcademie Royale des Sciences et Belles Lettres, Berlin,

vol.5 (1749), 1751, p.222-288. The following extract covers

§79-85, p.265-268.

§79. Problem I.

—

An imaginary quantity being raised to a power

which is any real number, determine the form of the imaginary

which results.

Solution. Suppose a + 6\/— 1 is the imaginary quantity,

and m the real exponent; it is required to determine M and N,

such that

(a + 6V-1)'" = M + NV-1.
Set \/{a^ +6^) = c; c will always be a real positive quantity

since we do not here regard the ambiguity of the sign \/. Further,

let us seek the angle such that its sine is equal to - and cosine ->
c c

here having regard to the nature of the quantities a and 6 if they

are positive or negative. It is certain that one can always find

this angle
<t>

whatever the quantities a and 6 are, provided that

they are real, as we suppose. Now having found this angle

which will be always real, one will at the same time find other

angles whose sine is - and cosine - are the same; namely, on

setting T for the angle of 180°, all the angles (f), 27r+0, 4T-\-<f>,

6ir-\-<f>, 87r+<^, etc. to which one may add —2Tr-\-(t>, — 47r+0,

— 67r+</), — 87r+</>, etc. That being said a + b\/—\ = c(cos</>

+ V~l'Sin 4)) and raising to the proposed power

(a + 6V-1)'" = c'"(cos</) + V-l-sinc/))"'

where c"* will always have a real positive value. In consequence

of the demonstration that

(cos0 + V— l-sin^)"* = cos m4> + V— l-sinm0,

where it is to be remarked that since m is a real quantity, the

angle m</> will be also real and hence also its sine and cosine, we
will have

(a + 6\/— 1)™ = c'"(cos m^+V— 1-sin m<t>).

Or, the power (a + 6\/— 1)" is contained in the form

M + NV-1,
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on setting M=c*^ cos m(^ and N=c"* sinm^ where c = \/ia^-{-b^),

and cos<^ = - and sin0 = -. C.QF.T.I^l

§80. Corollary I.—In the same way that (cos<^ + ^/—l.sm(f>)'^

= cos7n<^+\/~l-sinm(/), is also (cos<^ — \/— l-sin<^)'" = cosm0
— \/—l.s'inm(t>; and hence

(a — 6\/— 1)"" = c"* (cosm0—V— l-sinm<^),

where0 is the same angle as in the preceding case.

§81. Corollary 11.—If the exponent m is negative, since

sin —m<{) = —sin m<f) and cos — m</) - cos m0, then

{cos(j) + \/—l. sin^)""* = cosm</) + V— l-sinmc^

and

(a ± 6\/— 1)""* = c'^Ccosm^ + V— l-sinm0).

§82. Corollary III.— If m is an integer positive or negative the

formula (a + b\/— 1)'" has only a single value; for whatever is

substituted for of all the angles ± 27r + 0, ± 47r + </>, ± 67r + </>,

etc., one always finds the same values for sin m0 and cos m<^.

§83. Corollary IV.—But if the exponent m is a rational number

-, the expression (a + bV""!)*^ will have as many different
p

values as there are units in v. For, on substituting for (j> the angle

one will obtain as many different values for sinm<^ and cosmc^

as the number v contains of units.

§84. Corollary V.—Whence it is clear that if m is an irrational

number, or incommensurable to unity, the expression (a + 6\/~ 1)"*

will have an infinite number of different values, since all the angles

<}>, ±27r + <^, ±47r+</>> ±67r+(/), etc., will furnish different values

for sin m(j) and cos mcp.

§85. Scholium I.—The foundation of the solution of this problem

is that (cos4> + \/—l.sm(f))"' = cosm4>-{-\/—l sinrrKp, whose

truth is proved by known theorems regarding the multiplication

of angles. For having two angles
<f)
and 6,

(cos</)+\/~l-sin0)(cos0+V'— 1-sin^) = cos ((^ + d)

+ V'-l.sin(</>+0),

which is clear by actual multiplication which gives cos(/> cos0 —
sin(^ sin0 + (cos</).sin9 + sin(/).cos0)v'~l' But

cos</).cos& — sin(/).sin^ = cos (0 + 6), and cos<A sin0 + sinc^ cos0 =
sin (<^ + e).

^ [Ce qu'il fallait trouver, which was to be found.]
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Hence one may readily deduce the consequence that

(cos<^ + V— l-sinc/))'" = cos m<^ + V— 1-sin m<^,

when the exponent m is an Integer. All doubt that the same

formula is also true, when m is any number, is removed by differ-

entiation, after having taken logarithms. For, taking logarithms,

there results

mI(cos(/) + V— l-sin(/)) = I(cos m<^+\/— 1 sin m<p).

Treating the angle <^ as a variable quantity we will have

—m d(/> sin0 + m d(/)\/— l.cos<^ _
cos 4> + V— 1-sin ^

—m d<^ sin m<^ + m d<^\/ — 1-cos m<^

cos m<^ + \/— 1-sin m0

On multiplying the numerators by —\/—l, one obtains

m d0(cos (t) + V— 1 • sine/)) _ m d0(cos m0 + V— l.sin m<t>)

cos (j) + V— 1-sin (f>
cos m<^ + V— 1-sin m0

= m d(t>,

which is an identical equation.'^'

1 [This proves that either (cos<^ + \/— l.sin</))"' and cos m<t> + \/— l.sin itk^

are equal for all values of <t> or differ by a constant. For <{> = they are equal.

Hence the proof is completed.]
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On Prosthaphaeresis

(Translated from the Latin by Professor Jekuthiel Ginsburg, Yeshiva College,

New York City.)

In the years immediately preceding the discovery of logarithms, mathema-

ticians made use of a method called prosthaphaeresis to replace the operations

of multiplication and division by addition and subtraction. The method was

based on the equivalent of the formula

cos (A — B) — cos {A + B) =2 sin A sin B

Nicolaus Raymarus Ursus Dithmarsus used it in the solution of spherical

triangles where it is necessary to find the fourth proportional to the sinus

totus (radius), sin A, and sin B. Christopher Clavius (1537-1612) extended

the method to the cases of secants and tangents; in fact he showed how to find

the product of any two numbers by this method, thus in a way anticipating the

theory of logarithms.

In the first fragment translated below, Clavius shows how the product of

two sines may be found by the method of prostaphaeresis. This seems to be

the original essence of the discovery as presented by Raymarus Ursus. It is

applicable only when each of the two factors is less that the sinus totus and

may therefore be considered as the sine of some arc.

In the second fragment Clavius shows how to proceed in the case when one

of the numbers to be multiplied is greater than the sinus totus.

Both fragments are from his Astrolabium (Rome, 1593), Book I, lemma 53.

Fragment I

Let for example it be required to find the declination^ of 17°

45V.

Since it is true that the sinus totus is to the sine of the maximum
declination^ of the point as the sine of the distance of the given

' [The declination is the distance from a point on the celestial sphere to the

equator. (The distance of course is to be measured on the arc of the meridian.)

The point 17°45'7r is a point in the third sign of the zodiac. Since every

sign of the zodiac is 30° and since the first sign begins at the intersection of the

ecliptic with the equator, the distance of the point from that intersection

equals 30° + 30° + 17°45' = 77°4S'.]

^ [The angle formed by the equator and ecliptic]

455
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ecliptical point from the nearest equinoctial point to the sine of

the declination of the same point. ^

Hence, by prosthaphaeresis,

Max. declination 23°30'

Distance from

equinox 77°45'

Complement of greater 12°1S'

Smaller Arc 23°30'

Sum of complement and smaller arc 35°45'. The sine is 3842497

DifF. of complement and smaller arc ll°15^ The sine is 1950903

The sum of the sines 7793400

Half of the sum 3896700 declination 22°56'2

Fragment II

When ratio of the sinus totus to a number less than itself is

equal to the ratio of a number greater than the sinus totus to the

required number^ proceed as follows: The third number, which

is greater than the sinus totus, should be divided by the sinus

totus. The quotient will be the number obtained when seven

1 [Let AB be the arc of the equator, AC an arc of the ecliptic, A the nearest

point of the equinox,—that is, the intersection of the equator with the ecliptic,

^ —C a point in the third sign of the ecliptic whose distance

AC from the equinox is equal to 2 signs plus 17°45', or

77°45', CB the distance of the point C from the equator

ro measured on the arc of the meridian. We see that CB
is perpendicular to AB and triangle ABC is a right spher-

ical triangle. We have then

sin B: sin A = sin AC: sin CB
where

sin B = sin 90° = 1 (sinus totus), A = 23°30'

(this being the known angle of intersection of the ecliptic and equator).

Sin AC = sin 77° 45', and CB is the arc to be computed; hence in modern nota-

l:sin 23°30' = sin 77°45': sin CB,

tion which is adopted for the purposes of prosthaphaeresis.]

* [Explanation. According to a theorem proved by Clavius on p. 179,

l:sin A = sin B: H [sin (90° - A + J5) - sin (90° - A - B)]

where

A = 77°45', 90° - A = 12°15 ', B = 23°30^ 90° - A + B = =23°30' +
12°15' = 3S°45', 90° - A - B = 23°30' - 12°15' = = ITIS'.

Sin (90° - A + B) and sin (90° - A - B) are to be added or subtracted

according as 90° — A is greater or less than B. Hence the required product

of sin 23° 30' by sin 77°45' = H sin 35°45' - ^ sin ITIS'.]

3 [I.e. 10,000,000: A = Bjc where A < 10^ and B > W. The difficulty

here is due to the fact that B cannot be represented as a sine.)
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figures are cut off on the right (ad dexterum). These seven figures

form the remainder. Then the proportion "the sinus totus is to

the smaller number as the residue is to the required number" will

be adapted to the use of prosthaphaeresis if the arcs of the smaller

number and the residue considered as sines are taken from the

table. To the fourth proportional thus found should be added

the product of the smaller number by the quotient of the above

division.^

PiTiscus ON Prosthaphaeresis^

Problem I.—Given a proportion in which three terms are known.

To solve the proportion in which the first term is the radius,

while the second and third terms are

sines, avoiding multiplication and
division.^

Find the sum of the complements of

the arcs corresponding to these and you

will have a right sphf^rical triangle

which fits in the fourth case of spher-

ical triangles which is solvable by prosthaphaeresis alone.

For example, given the proportion:

"radius AE is to sin EF as sin AB is to sin BC."

1 [As an illustration, Clavius considers the product of 3,912,247 by 11,917,537

or the proportion 10': 391,247 = 11,917,535: x, in which the third term,

11,917,535, is greater than 10'. Dividing it by 10' the quotient is 1 and

the remainder 1,917,535. Clavius then considers the auxiliary proportion

10': 391,247 = l,917,535:x. From the tables he finds that 391,247 = sin 23°2',

1,917,535 = sin 11°3'. Hence the proportion becomes

10': sin 23°2' = sin ll°3':x.

He proceeds then as above

10': sin 23°2' = sin 11=3': K[sin (90° - 23°2' + 11°3') - sin (90° - 23°2' -
11° 3')]

which is equivalent to

10': sin 23°2' = sin 11°3': M[sin 78°1' - sin 55°55'],

which gives

X = 749,923.

To this result should be added the product of the second term 391,247 by the

quotient 1.]

* Tngonomelna, 1612 ed., p. 149.

' [I.e., solve 1 : sin A = sin B: X, for x, without using either multiplication or

division.!
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For the given arcs EF, AB in the second and third place find the

complements ED, BE and you will have a triangle BED which is

right-angled at E in which the required quantity BC is the com-

plement of the side DB. This you will find by the fourth axiom

of the spherical triangles without multiplication or division.

Let the side AB = 42°, and

EF = 48°25',

Then
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On Prosthaphaeresis as Applied to Trigonometry

(Translated from the Latin by Professor Jekuthiel Ginsburg, Yeshiva College,

New York City.)

The following fragment is from Christopher Clavius, Astrolabium, (Rome,

1593), pp. 179-180. It contains the proof of the formula

cos {A — B) — cos (A + B) =2 sin A, sin B.

Clavius considers three cases:

1) A + B = 90°,

2) A + B < 90°,

3) A+ B > 90°.

In the first case the formula becomes

sin 2A = 2 sin A cos A.

Clavius credits Nicolaus Raymarus Ursus Dithmarsus with the discovery of

the theorem, but according to A. Braunmiihl (Vorlesungen iiber Gescbicbte der

Trigonometrie p. 173) the latter proved only two of the cases, namely the

second and the third. In any case Clavius was the first to publish the theorem

and the proof in the complete form.

Qavius, as may be seen from his opening note, used the theorem as an intro-

duction to the method of "prosthaphaeresis" which, in the years immediately

preceding Napier's discovery of logarithms, was used by mathematicians like

Raymarus Ursus, Biirgi, Clavius, and others to replace multiplication and
division by the operation of addition and subtraction. The bearing of the

subject upon the theory, if not the invention, of logarithms is apparent. The
translation is as follows:

459
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Lemma LIII.—Three or four years ago Nicolaus Raymarus
Ursus Dithmarsus published a leaflet in which he proposed, among
other things, an ingenious device by means of which he solved

many spherical triangles by prosthaphaeresis^ only. But since

it is usable only when the sines are assumed in a proportion and

when the sinus totus takes the first place, we will attempt here to

make the doctrine more general, so that it will hold not only

for sines, and [not only] when the sinus totus is in the first place,

but also for tangents, secants, versed sines, and other numbers,

no matter whether the sinus totus appears at the beginning or in

the middle, and even when it does not appear at all. These

things are entirely new and full of pleasure and satisfaction [iucundi-

tatis ac voluptatis plena].

Theorem.—The sinus totus is to the sine of any arc as the sine

of another arbitrary arc [sinus alterius cujuspiam arcus] is to a

quantity composed of these two arcs in a way required for the

purpose of prosthaphaeresis. The smaller is to be added to the

complement of the greater and the sine of the sum is to be taken.

^

Then

1. If the minor arc is equal to the complement of the greater

(that is, when the two arcs are together equal to a quadrant),

half of the computed sine will be the required fourth term of the

proportion.^

2. If, however, the smaller arc is less than the complement of

the greater (which happens when the sum of the two arcs is less

than a quadrant of a circle), the smaller arc is subtracted from

the complement of the greater so that we now have the difference

between the same arcs that have been added before, and the sine

of this difference^ is subtracted from the sine of the arc formed

1 [On page 178 Clavius defines prosthaphaeresis as a method in which only

addition and subtraction are used.]

'^ [If the arcs are A and B, then tlie operation will be equivalent to taking sin

(90° - B + A).]

^ [That is, in modem notation

1: sin A = sin B: }i sin (90° - B + A),

1: sin [(90° - B) = sin B: M sin (90° - B + 90° - B),

which reduces to

l:cos B = sin B:}^ sin 2B,

or to

sin 2B = 2 sin B cos B.]

* [I.e., sin (90° - A - B).]
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before. Half of the remainder will be the fourth proportional

required.^

3. If, however, the smaller arc is greater than the complement
of the greater (which takes place when the sum of the arcs is

greater than the quadrant of a circle), the complement of the

greater is subtracted from the lesser arc, so that we again have the

difference between the arcs that have been previously added;

the sine of this difference is to be added to the sine of the arc

previously formed. Half of this sum will be the required fourth

proportional.^

This is the rule of the above-mentioned author, which will be

proven in the following way:

In the first figure we see that EG is the sinus totus. Further,

EG is to GK (sine of arc GD), as Ei (sine of arc ID, or HA4) to a

problematical sine iL. And since the minor arc GD is equal to

[itself], DG which is the complement of the greater arc ID (or if

GD is the greater and ID the smaller, ID = DI, the complement
of the greater arc GD), the fourth proportional required will be

PQ, which is equal to half the sine MP of the arc MD, composed
of the smaller arc DG and of GM, the complement of the greater

arc HM.
In the second and third figures we also have the sinus totus EG is

to GK (sine of arc GD), as Ei (the sine of the arc IN, or HM) is to

the required sine iL. And because in the second figure the smaller

arc GD is less than GN, the complement of the greater arc IN
(or if by chance GD will be greater and IN smaller, the lesser IN
will be smaller than the complement ID of the greater arc GD),

the required sine PQ [which is the fourth proportional to /, sin

A, sin B] will be obtained in the following way: the sine RP of

the difference DN (that is, its equal ME) is to be subtracted from

MP, which is the sine of the arc MD composed of the minor arc

DG and the complement GM of the greater arc HM. The line

* [The proportion will then have the form

1: sin A = sin B: K [sin (90° - A + B) - sin (90° - A - B)]

which is equivalent to

1: sin A = sin B: [K cos {A - B) - cos (A + B)].

2 [In modern notation. If B > 90° - A (which means that A + B > 90°)

we change the way of subtraction, taking B — (90° — A) instead of (90° —
A) - B.]
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PQ will then be half of the remainder PE, just as QR will be half

of the total MR.^
If, perchance, GD is the greater arc and IN the smaller, MP

will nevertheless be the sine of the arc MB, composed of the smaller

arc MH and the complement HB of the greater arc GD.

In the third figure, since the smaller arc IN is greater than ID,

the complement of the greater arc GD (or, if perchance GD will

be the smaller arc and IN the greater, the smaller GD will exceed

the complement GN of the greater arc IN), the required fourth

proportional will be obtained by adding the sine RP of the differ-

ence ND, that is, adding ME = RP to MP, the sine of the arc

MB, which consists of the smaller arc (//M) and HB, the comple-

ment of the greater. The line PQ, which is half of the total line

EP (since QR = }4MR), will be equal to the required line it.

If the arc GD is, perchance, the smaller, and IN the greater, MP
will nevertheless be the sine of arc MD, composed of the lesser

arc GD, and of GM, the complement of the greater arc HM.

^ [In modern notation:

MP = sin MD = sin (DC + GM) = sin {DG + 90° - HM) = cos (DC -

HM). Further, triangles QR — }i^MR, since in the similar triangles MIQ and

MRN we have MI = }4MN.]
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On Conformal Representation

(Translated from the German by Dr. Herbert P. Evans, University of

Wisconsin, Madison, Wis.)

Carl Friedrich Gauss was born at Braunschweig April 23, 1777, and died at

GOttingen February 23, 1855. From 1795 until 1798 he was a student at

Gottingen and during the ten years immediately following this period many
of his great fundamental discoveries in pure mathematics and astronomy were

made. As a recognition of his work in astronomy he was made director of

the Gottingen observatory in 1807, and this position he held until his death.

Almost every field of pure and applied mathematics has been enriched by the

genius of Gauss, and his researches were so far reaching and fundamental that

he is considered as the greatest of German mathematicians. The present

memoir was inspired by a prize problem of the Royal Society of Sciences in

Copenhagen and is entitled: "General Solution of the Problem to so Represent

the Parts of One Given Surface upon another Given Surface that the Repre-

sentation shall be Similar, in its Smallest Parts, to the Surface Represented."

This memoir was written in 1822 and won the prize offered by the Society.

It is found in volume 4, pages 192 to 216, of Gauss's collected works, published

in 1873.

A transformation whereby one surface is represented upon another with

preservation of angles is called today a conformal^ transformation. The earliest

conformal transformation dates back to the Greeks, who were familiar with

the stereographic projection of a sphere upon a plane. Lagrange^ considered

the conformal representation of surfaces of revolution upon a plane, but it

remained for Gauss, in the memoir herein translated, to solve the general

problem of the conformal representation of one surface upon another. The
memoir may be considered as the basis for the theory of conformal representa-

tion and is fundamental to the more modern theory of analytic functions of a

complex variable.

Conformal Representation

General Solution of the Problem to so represent the Parts of

one Given Surface upon another Given Surface that the repre-

sentation shall be Similar, in its smallest Parts, to the Surface

represented.'

' The term comformal was introduced by Gauss subsquently to the present memoir.
2 Collected works (V. 4, pp. 63S-692).

3 [Gauss, Werke, Band 4, p. 193.]
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§1. The nature of a curved surface is specified by an equation

between the coordinates x, y, z associated with every point on

the surface. As a consequence of this equation each of these three

variables can be considered as a function of the other two. It

is more general to introduce two new variables t, u and to repre-

sent each of the variables x, y, z as a function of t and u. By this

means definite values of t and u are, at least in general, associated

with a definite point of the surface, and conversely.

§2. Let the variables X, Y, Z, T, U have the same significance

in reference to a second curved surface as x, y, z, t, u have in refer-

ence to the first.

§3. To represent a first surface upon a second is to lay down a

law, by which to every point of the first there corresponds a

definite point of the second. This will be accomplished by equat-

ing T and U to definite functions of the two variables t and u.

Insofar as the representation is to satisfy certain conditions these

functions can no longer be supposed arbitrary. As thereby

X, Y, Z also become functions of t and u, in addition to the condi-

tions which are prescribed by the nature of the two surfaces, these

functions must satisfy the conditions which are to be fulfilled

in the representation.

§4. The problem of the Royal Society prescribes that the repre-

sentation should be similar in its smallest parts to the surface

represented. First this requirement must be formulated analyti-

cally. By differentiation of the functions which express x, y, z,

X, y, Z in terms of t and u there result the following equations:

dx = adt + a'du,

dy = bdt + h'du,

dz = cdt + c'du,

dX = Adt + A'du,

dY = Bdt + B'du,

dZ = Cdt + Cdu.

The prescribed condition requires, first, that the lengths of all

indefinitely short lines extending from a point in the second surface

and contained therein shall be proportional to the lengths of the

corresponding lines in the first surface, and secondly, that every

angle made between these intersecting lines in the first surface

shall be equal to the angle between the corresponding lines in the
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second surface. A linear element on the first surface may be

written

V{a^ + 62 + c^)dt^ + 2{aa' + 66' + cc')dLdu + (a'^ + b'^ + c'^)du\

and the corresponding linear element of the second surface is

V(A2+B2+0)c/f2^2(AA'+BB'+Ce)(/^(iu+(A'2-fB'2+C2)£/u2.

In order that these two lengths shall be in a given ratio independ-

ently of dt and du it is obvious that the three quantities

a2 + 62 + c\ ao! + 66' + cc\ a"" + 6'^ + c""

must be respectively proportional to the three quantities

A2 + B2 4. C2, AA' + BB' + CC\ A"" + B'^ + C'^.

If the endpoints of a second element on the first surface correspond

to the values

f, u and f + 5f, w + 5u,

then the cosine of the angle which this element makes with the

first element is

(adt + a'du){ja.ht + a' hxi) + (fcrff + h'du){JoU + fc'iu) + (cA + c'du^^cU + c'iu)

V l(adf + a'rfu)»+ (6A + 6'du)2+ (cdf + c'(fu)si ( (a«t + a'«u)2 + (6it+6'5u)2+ (c«t+c'au)»l'

The cosine of the angle between the corresponding elements on the

second surface is given by a similar expression, which is obtained

if only a, 6, c, a', 6', c' are replaced by A, B, C, A', B', C. Obvi-

ously the two expressions become equal if the above mentioned

proportionality exists, and the second condition is therefore

included in the first, which also is clear in itself by a little reflection.

The analytical expression of our problem is, accordingly, that

the equations

A2 + B2 + O ^ AA' + BB' + CC ^ A'^ + B'^ + C"
a' + 62 4- c2 aa' + 66' + cc' a"" + 6'^ + c'^

shall hold. This ratio will be a finite function of t and u which

we will designate by w}. Then m is the ratio by which linear

dimensions on the first surface are increased or diminished in

representing them on the second surface (accordingly as m is

greater or less than unity). In general this ratio will be diff"erent

at diff"erent points; in the special case for which m is a constant,

corresponding finite parts will also be similar, and if moreover

m = 1 there will be complete equality and the one surface is

developable upon the other.
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§5. If for the sake of brevity we will put

(a2 4- 6' + c^)dt^ + 2{aa' + 66' + cc')dt.du

+ (a'2 + 6'2 + c'^)du^ = CO,

it is to be noted that the differential equation w = will allow

two integrations. For since the trinomial w may be broken into

two factors linear in dt and du, either one factor or the other

must vanish, resulting in two different integrations. One integral

will correspond to the equation

= (a^ + 62 + c^)dt + 1
(a'2 + 6'^ + c'^

+ i V(a^ + b' + c'){a''- + 6'- + c") - (aa' + 66' + c'y-}du

(where i for brevity is written in place of \/— 1, since it is readily

seen that the irrational part of the expression must be imaginary)

;

the other integral will correspond to a quite similar equation,

obtained by exchanging — i with i. Consequently if the integral

of the first equation is

p -\- iq = Const.,

where p and q signify real functions of t and u, the other integral

will be
p — iq = Const.

Consequently, by the nature of the case,

(dp + xdq){dp — idq)

or
c/p2 + dq""

must be a factor of w, or

CO = nidp"^ + dq^),

where n will be a finite function of t and u.

We will now designate by 9, the trinomial into which

dX^ + dV + JZ2

changes when for dX, dY, dZ are substituted their values in terms

of T, U, dT, dU, and suppose that as in the foregoing the two

integrals of the equation fi = are

P -\- iQ = Const.,

P — iQ = Const.,

and
n = NidP^ + dQ'),

where P, Q, N are real functions of T and U. These integrations

(aside from the general difficulties of integration) can obviously

be carried out previous to the solution of our main problem.

I
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If now such functions of t, u be substituted for T, U that the

condition of our main problem is satisfied, then Q may be replaced

by m^w and we have

(dP + idQ) {dP - JdQ) ^ rnM
{dp + idq)(dp — idq) N '

It is easily seen however, that the numerator in the left hand side

of this equation can be divisible by the denominator only if either

dP + idQ is divisible by dp + idq

and

dP — idQ Is divisible by dp — idq

or

dP + idQ is divisible by dp — idq

and

dP — idQ is divisible by dp + idq.

In the first case therefore, dP + idQ will vanish if Jp + idq = 0,

or P + iQ will be constant if p + iq is constant, i. e., P + iQ

will be a function only of p + iq; and likewise P — iQ will be a

function only of p — iq. In the other case P -\- iQ will be a func-

tion of p — iq only and P — iQ a. function of p + iq. It is easily

understood that these conclusions also hold conversely; namely
that, if P + iQ, P — iQ are assumed to be functions of p + iq,

p — iq (either respectively or reversely), the finite divisibility of

fl by CO follows and accordingly the required proportionality exists.

Moreover, it is easily seen that if, for example, we put

P + iQ = /(P + iq),

and

P -iQ=r{p- iq),

the nature of the function/' is dependent upon that of/. That is,

if the constant quantities which the latter may perhaps involve

are all real, then/' must be identical with/, in order for real values

of P, Q to correspond to real values of p, q. On the contrary

supposition the function /' may be obtained from / by merely

substituting — i for i therein. Accordingly we have

P = HKp + k) + M/'(P - iq\

iQ = y2lip + iq) - y2r(p - iq),

or, what is the same thing, when the function / is assumed quite

arbitrary (constant imaginary elements included at pleasure),

P is placed equal to the real part and iQ (in the case of the second
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solution — iQ) to the imaginary part of/(p + i^), then by eliminat-

ing T and U they will be expressed as functions of t and u. Thus
the given problem is completely and generally solved.

§6. If p' + iq' represents an arbitrary function of p -\- iq

(where p', q' are real functions of p, q), it is easily seen that also

p' + iq' = Const, and p' — iq' = Const.

represent integrals of the differential equation w = 0; in fact, these

equations are quite the equivalents of

p -\- iq = Const, and p — iq = Const,

respectively. Similarly the integrals

P' + iQ' = Const, and P' - iQ' = Const,

of the differential equation fi = will be the equivalents of

P -{ iQ = Const, and P — iQ = Const.

respectively, if P' + iQ' represents an arbitrary function ofP + iQ

(where P', Q' are real functions of P and Q). From this it is

clear that in the general solution of our problem, which has been

given in the foregoing section, p'q' can take the place of p, q and

P', Q' the place of P, Q, respectively. Although the solution

gains no greater generality by this substitution, yet occasionally

in the application, one form can be more useful than the other.

§7. If the functions which arise from the differentiation of the

arbitrary functions /, /' are designated by (p and <p' respectively,

so that

djiv) = <p{v)dv, dj'iv) = <p'(v)dv,

then as a result of our general solution it follows that

dP -\- idQ , ,
. V dP - idQ ,, . ,

Therefore

-f^
= v(p + ig)- ¥''(p - ig)-

The ratio of magnification is consequently defined by the formula

m = ^ -^ 'dP^'W'''^ + zg) . <^ (P - xq).

§8. We will now illustrate our general solution by means of

several examples,^ whereby the kind of application, as well as the

1 [Only the first example is reproduced here, sections 9-13 of the original

memoir being omitted.]
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nature of several details still to come in for consideration, will best

be brought to light.

First consider two plane surfaces, in which case we may write

X = t, y = u, z =0,
X = T,Y = U,Z = 0.

The differential equation

00 = dt^ + du^ =

gives here the two integrals

t -\- iu = Const., t — iu = Const.,

and likewise the two integrals of the equation

fi = JP + JQ2 =
are as follows:

T -i- iU = Const., T — ill = Const.

The two general solutions of the problem are accordingly

I. T+iU = Jit + iu), T - iU = fit - iu).

II. T+iU = J{t - iu), T - iU = fit + iu).

These results may also be expressed thus: If the characteristic/

designates an arbitrary function, the real part of /(.v + iy) is to

be taken for X, and the imaginary part, with omission of the

factor i, for either y or —Y.
If the notation <p, tp' are used in the sense of §7, and if we put

<p{x + ly) = ^ + iv, <p'{x - iy) = ^ - iv,

where obviously ^ and 77 are to be real functions of x and y, then
in the case of the first solution we have

dX + idV = (^ + ir]){dx + idy),

dX - idV = h - iv)ldx - idy),

and consequently

dX = ^dx — -qdy,

dY = rjdx + ^dy.

Now take

^ = <T cos 7, rj = a sin y
dx == ds . cos g, dy = ds . sin g

dX = dS . cos G, dY = dS . sin G.

thereby defining ds as a linear element in the first plane making
an angle g with the x-axis and dS as the corresponding linear
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element in the second plane making an angle G with the X-axis.

From these equations there results

dS . cos G — ads cos (g + 7),

dS . sin G = ads sin (g + 7),

and if 0- is regarded as positive (which is permissible) it follows that

dS = ads, G = g -\- y

It is thus seen (in agreement with §7) that a represents the ratio

of magnification of the element ds in the representation dS, and

as requisite, is independent of g; also, since 7 is independent^ ofg,

it follows that all linear elements extending from a point in the

first plane are represented by elements in the second plane, which

meet at the same angles, in the same sense, as do the corresponding

elements in the first plane.

If/ is taken to be a linear function, so that J(v) = A + Bv,

where the constant coefficients are of the form

A = a -\- bi, B = c -{- ei

then

<p{v) = B = c -{- ei

and consequently^

a = vc^ + e^ 7 = arc tan -.

c

The ratio of magnification is therefore the same at all points and

the representation is completely similar to the surface represented.^

For every other function / (as one can easily prove) tlie ratio of

magnification will not be constant, and the similarity will therefore

occur only in the smallest parts.

If points in the second plane are prescribed which, in the repre-

sentation, are to correspond with a certain number of given points

in the first plane, then by the common method of interpolation

we can easily find the simplest algebraic function / for which this

condition is satisfied. Namely, if we designate the values of

' [That 7 is independent of g follows from the fact that a and ^, j; are inde-

pendent of g.]

2 [This follows from the fact that, in this case, ^ = c,r) = e, and by definition

a = V^'^T^-l
' [The similarity is called complete if finite parts of the two surfaces are

similar.]
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X -\- iy for the given points by a, b, c, etc., and the corresponding

values of AT + iY by A, B, C etc., then we have to make

ff,A - (i^ - b)(v - c)... {v - a){v - c)... r>

•^^'^ (a-6)(a-c)... •^'^Ib- a){b-c)... '^

jv - a){v - 6)+... ^ ,

^ (c-a)(c-6)+... -^ ^ ^^

which is an algebraic function of v whose order is a unit less than

the number of given points. "^ In the case of only two points, the

function becomes linear and consequently there is complete

similarity.

If the second solution is carried through in the same way we
find that the similarity is reversed, as all elements in the repre-

sentation make the same angles with one another as do the corre-

sponding elements in the original surface but in the reverse sense,

and so that lies to the right which before lay to the left. This

difference is not essential however, and disappears if we take for

the under side in one plane the side before regarded as the upper

side.

§14. It remains to consider more fully one feature occurring

in the general solution. We have shown in §5, that there are

always just two solutions, since either P -\- iQ must be a function

of p + iq, and P — iQ a function of p — ig; or P + iQ must be

a function of p — iq, and P — iQ a function of p + iq. We shall

now show that always in the case of one solution the parts in the

representation are situated similarly as on the surface represented;

in the other solution, on the contrary, they lie in the reverse sense;

at the same time we shall specify the criterion by means of which

this can be settled a priori.

First of all we observe, that of perfect or reversed similarity

there can be discussion only insofar as on each of the two surfaces

two sides are distinguished, one of which is considered as the

upper and the other as the under. Since this in itself is somewhat
arbitrary, the two solutions do not differ at all essentially, and a

reversed similarity becomes perfect as soon as the side on one

surface, considered as the upper side, is taken as the under side.

In our solution this distinction cannot present itself, since the

surfaces were defined only by the coordinates of their points. If

' [In the original memoir an application of this process to geodesy is also

mentioned.]
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one is concerned with this distinction, the nature of the surfaces

must first be specified in another manner which includes this

in itself. For this purpose we shall assume that the nature of the

first surface is defined by the equation ^ = 0, where ^ is a given

one-valued function of x, y, z. At all points of the surface the

value of ^ will thus be zero, and at all points not on the surface

it will have a value difi"erent than zero. By a passage through

the surface, generally speaking, \p will change from positive to

negative or by opposite motion from negative to positive, i. e., on

one side the value of ^ will be positive and on the other negative

:

the first side will be considered as the upper and the other as the

under. Likewise the nature of the second surface is to be similarly

specified by the equation "^ = 0, where '^ is a given one-valued

function of the coordinates X, Y, Z. Differentiation gives

d\p = edx -\- gdy + hdz,

(f^ = Edx + Gc/r + HdZ,

where e, g, b will be functions of x, y, z and E, G, H functions of

X,Y,Z.
Since the considerations through which we attain our aim,

although in themselves not difficult, are yet of a somewhat unusual

kind, we shall take pains to give them the greatest clarity. We
shall assume six intermediate representations in the plane to be

inserted between the two corresponding representations on the

surfaces whose equations are ^ = and ^ = 0, so that eight

different representations come in for consideration, namely the

surfaces:
The corresponding

points of which have

as coordinates:

1. The original in the surface ^ = x, y, z.

2. Representation in the plane x, y, 0.

3. Representation in the plane t, u, 0.

4. Representation in the plane p, q, 0.

5. Representation in the plane P, Q, 0.

6. Representation in the plane T, U, 0.

7. Representation in the plane X, Y, 0.

8. Representation in the surface 4' = X, Y, Z.

We shall now compare these din"erent representations solely

in relation to the relative positions of their infinitesimal linear

elements, disregarding entirely the ratio of their lengths; two

representations will be considered as similar, if two linear elements

extending from a point are such that the one which lies to the right
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in the one surface corresponds to the one which lies to the right

in the other; in the contrary case the linear elements will be said

to be reversely situated. In case of the planes 2-7 the side on

which the third coordinate has a positive value will always be

considered as the upper side; in case of the first and last surfaces,

on the other hand, the distinction between the upper and under

sides depends merely upon the positive or negative values of ^
and ^, as has already been agreed upon.

First of all, it is clear that at every point of the first surface

where one arrives at the upper side by giving z a positive increment,

for X and y unchanged, the representation in 2 will be similar to

that in 1; this will obviously be the case whenever b is positive;

and the contrary will occur when b is negative, in which case the

representation 2 will be reversely situated with respect to 1.

In the same way the representations 7 and 8 will be situated

similarly or reversely, accordingly as H is positive or negative.

In order to compare the representations in 2 and 3 let ds be the

length of an infinitesimal line in the former surface, extending from

the point with coordinates x, y to another with coordinates x + dx,

y -\- dy, and let / denote the angle between this element and the

positive X-axis, the angle increasing in the same sense as we pass

from the x-axis to the y-axis; thus:

dx = ds . cos /, dy = ds . sin /.

In the representation in 3 let da be the length of the line which

corresponds to ds and let X, in the above sense, be the angle it

makes with the f-axis, so that

dt = dff . cos X, du = d<T . sin X.

We have therefore, in the notation of §4,

ds . cos I = dcr . (a cos X + a' sin X),

ds . sin I = da . {b cos X + 6' sin X),

and consequently

, b cos X + 6' sin X
tan I

= r—I

—

J—.—r-.

a cos X + a sm X

If X andy are now considered as fixed and /, X as variable, it follows

by differentiation that

dl ^ ab' - ba' ^
d\ (a cos X + a' sin X)' + (6 cos X + 6' sin X)^

(a6' - 6a')(|)l
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It is thus seen that, accordingly as ab' — ha' is positive or negative,

/ and X will increase simultaneously or change in the opposite

sense, and therefore in the first case the representations 2 and 3

are similarly situated, while in the second case they are reversely

situated.

From the combination of these results with the foregoing it

follows that the representations 1 and 3 are similarly or reversely

situated, accordingly as {ah' — ha')/h is positive or negative.

Since the equation

edx + gdy + hdz =
as also

{ea + gb-h bc)dt + (ea' + gb' + bc')du = 0,

must hold on the surface ^ = 0, irrespective of how the ratio of

dt and du is chosen, we have identically

ea-\- gb + he = and ea' + gb' + he' = 0.

Wherefrom it follows that e, g, h must be respectively proportional

to the quantities he' — eh', ea' — ac', ab' — ha', thus

6c' — eh' _ ea' — ae' _ ah' — ha'

e g h '

We can apply any one of these three expressions, or, on multiplica-

tion by the positive quantity e^ + g^ + h^, the resulting symmetri-

cal expression,

ebc' + gea' + hah' — eeb' — gac' — hha',

as a criterion for the similarity or reversal of position of the parts

in the representations 1 and 3.

Likewise the similarity or reversal of parts in the representations

6 and 8 depends upon the positive or negative value of the quantity

BC - CB' _ CA' - AC ^ AB' - BA'
E G H '

or, if we prefer, upon the sign of the symmetrical quantity

EBC + GCA' + HAB' - ECB' - GAC - HBA'.

The comparison of the representations 3 and 4 is based on quite

similar grounds as that of 2 and 3, and the similar or reverse

situation of the parts depends upon the positive or negative sign

of the quantity

dp dq _ dp dq

dt ' du du' dt'
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Likewise the positive or negative sign of

^_P dQ _ dP dQ
dt' du W df

determines the similar or reverse situation of the parts in the repre-

sentations 5 and 6.

Finally, to compare the representations 4 and 5 the analysis of

§8 may be employed, from which it is clear that these are similar

or reversed in the situation of their smallest parts, accordingly

as the first or second solution is chosen, that is, whether

P + iQ= Kp + iq) and P - iQ = f{p - iq),

or

P + iQ= Kp - iq) and P - iQ = J'(p + iq).

From all this we now conclude that if the representation in the

surface "^ = is not only to be similar in its smallest parts to its

image on the surface i^ = 0, but similar in position as well, atten-

tion must be paid to the number of the four quantities

ab' - ba' dp dq^ _ dp dq ^ ^ _ dP dQ AB' - BA'
h ' dt ' du du'dt' dT'dU WdT' ~H~ '

which have negative signs. If none or an even number of them
have negative signs the first solution must be chosen; if one or

three of them have negative signs, the second solution must be

chosen. For any other choice the similarity is always reversed.

Moreover it can be shown that, if the above four quantities

are designated by r, s, S, R respectively, the equations

s S

always hold, where n and N have the same significance as in §5;

we omit the easily found proof of this theorem here, however, since

this, for our purpose, is not necessary.



STEINER

On Birational Transformations between Two Spaces

(Translated from the German by Professor Arnold Emch, University of

Illinois, Urbana, III.)

Jakob Steiner (1796-1863) was Ix)m in humble circumstances and could not

write before he reached the age of fourteen. Pestalozzi (1746-1827) took him

into his school at Yverdon, Switzerland, at the age of seventeen and inspired

in him a love for mathematics. He went to the University of Heidelberg in

1818 and in 1834 became a professor in the University of Berlin. He was a

prolific writer on geometry. In his classic Systematiscbe Entwickelung der

Abbangikeit geometriscber Gestalten von einander (Berlin, 1832) he established

and discussed (pp. 251-270) the so-called skew projection (Schiefe Projektion)

and its applications. This projection is based upon two fixed planes, (x) and

(x'), and two fixed axes, / and y in space. From every point x in (x) there is,

in general, one transversal through / and y which cuts (x') in a point x'. Thus

to every point in (x) there corresponds a point in (x'). and conversely. To
lines correspond conies, etc. By this construction there is established a

general quadratic transformation between two planes, with distinct real

fundamental points and lines in both planes. On page 295, Steiner indicates

the quadratic transformation between two spaces, and in a footnote he makes

the significant statement quoted below, thus clearly realizing the possibility of

transformations of higher order, including Cremona transformations beyond

the quadratic. For a further discussion see "Selected Topics in Algebraic

Geometry," Bulletin oj tbe National Research Council (Washington, 1928,

Chap. I).

How in this manner other more complex systems of this kind

may be established is easily seen. Namely, by every porism in

which, for example, the relation between two points is such that,

while one of the points describes a line (or a curve), the other

describes a definite curve, such a system arises. .

.
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On the Geometric Transformations of Plane Figures

(Translated from the Italian by E. Amelotti, M.S. University of Illinois,

Urbana, III.)

Luigi Cremona was born in Pavia Dec. 7, 1830, and died in Rome June 10,

1903. In 1860 he became professor of higher geometry in Bologna, in 1866

professor of geometry and graphical statistics at Milan, and in 1873 professor

of higher mathematics and director of engineering schools in Rome.
Synthetic geometry was studied by him with great success. A memoir in

1866 on cubic surfaces secured half of the Steiner prize from Berlin. He
wrote on plane curves, on surfaces, and on birational transformations of plane

and solid space. A Cremona transformation is equivalent to a succession of

quadratic transformations of Magnus's type. Cremona's theory of trans-

formation of curves was extended by him to three dimensions. For further

information concerning the life and works of Cremona the reader is referred to

the Periodico di Matematica per I'Insegnamento Secondario, Ser. 1, Vol. 5-6,

1890-1891; Supplemento, 1901-1902, pp. 113-114; and the History oj Mathe-

matics, by Florian Cajori, New York, 1926 ed.

In modern algebraic geometry such properties of figures are studied as are

invariant under (a) the projective transformation, (6) the Cremona trans-

formation, or (c) the birational transformation. The first clear survey of the

aggregate of Cremona transformations in the plane is contained in the article

here reported. In this and in later memoirs of Cremona the fundamental

properties of such transformations in plane and space are established.

The article here translated is taken from the Giomale di Matematicbe, of

Battaglini, vol. I, ser. 1 (1863), pp. 305-311.

Messrs. Magnus and Schiaparelli, the one in Tome 8 of Crelle's

Journal, the other in a very recent volume of the memoirs of the

Accademia Scientifica di Torino, v^ere seeking for the analytic

expression for the geometric transformation of a plane figure into

another plane figure under the condition that to any point of one

there corresponds only one point of the other, and conversely to

each point of the other only one point of the first {transformation

oJ the first order). And from the above cited authors it seems that

one should conclude that, in the most general situation to the

lines of one figure there corresponds, in the other, conies circum-

scribed about a fixed triangle (real or imaginary), i. e., that the

most general transformation of the first order is that which

Schiaparelli calls conical transformation.
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But it is evident that by applying to a figure a succession of

conical transformations there will result from this composition a

transformation which is still of the first order, even though in it,

to the right lines of the given figure there would correspond in the

transformed plane not conies, but curves of higher order.

Upon the Transjormation oj Plane Figures

I will consider two figures, one located in a plane P, the other in

a plane P', and will suppose that the second was deduced from

the first by means of any law of transformation although in such

manner that to each point of the first figure there correspond only

one of the second, and conversely.

The geometric transformations subject to the conditions above

mentioned are the only ones which I will examine in this account:

and they shall be called "transformations of the first order"' to

distinguish them from others which are determined by different

conditions.

Assuming that the transformation by means of which the

proposed figures are deduced, one from the other, are among those

of the first order the most general, I then ask the question: What
curve of a figure corresponds to right lines of the other?

Let n be the order of the curve w^hich in the plane P' (or P)

corresponds to any line whatsoever of the plane P (or P'). Since

a line of the plane P is determined by two points a, 6, then the two

corresponding points a', 6', of the plane P' are sufficient to deter-

mine the curve which corresponds to the given line. Therefore the

curves of the one figure corresponding to the lines of the other

form a system such that through two arbitrarily given points

only one line passes through them; i.e., those curves form a geo-

metric net of order n (II).

A curve of order n is determined by 3^^ n(n + 3) conditions;

therefore the curve of a figure corresponding to right lines of

another are subjected to }in{n + 3) — 2 = j-Hn — l)(n -f- 4)

common conditions.

Two right lines of the one figure have only one point in common,

a, determined by them. The point a' corresponding to a will

* Schiaparelli: "Sulla Trasformazione Geometrica delle Figure ed in Part i-

colare sulla Trasformazione iperbolica" (Memorie della R. Accademia delle

Scienze di Torino, serie, 2", tomo XXI, Torino 1862).
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belong to the two curves of order n to which the two lines corre-

spond. And since these two curves must determine the point

a', the remaining n^ — 1 intersections must be common to all

the curves of the geometric net above mentioned.

Let Xr be the number of r-ple (multiple points of order r) points

common to these curves; since an r-ple point common to two curves

is equivalent to r^ intersections of the same, then we will have

evidently:

(1) xi + 4x2 + 9x3 + . . . + (n - l)2xn_i = n2 - 1.

The Xi + X2 + Xs + . . . + x„_i points common to the curves of

the net constitute the 3^^(71 — l)(n + 4) conditions which deter-

mine it. If a curve must pass r times through a given point,

that is equivalent to }^4'''{^ +1) conditions;

(2) xi + 3x2 + 6x3 + . . . + 3^ n{n - l)x„_i = Hin - l)(n + 4).

Equations (1) and (2) are evidently the only conditions which

the integral positive numbers xi, xo,..., x„_i must satisfy^ (or

P) corresponds to any line whatsoever of the plane P (or P').

Since a line of the plane P is determined by two points a, b, then

the two corresponding points a', h' of the plane P' are sufficient

to determine the curve which corresponds to the given line.

Therefore the curves of the one figure corresponding to the lines

of the other form a system such that through two arbitrarily given

points only one line passes through them; i. e., those curves form

a geometric net of order n.^

A curve of order n is determined by 3-^ n{n + 3) conditions; there-

fore the curve of a figure corresponding to right lines of another

are subjected to }'2n{n + 3) — 2 = 3^(n — l)(n -f- 4) common
conditions.

Two right lines of the one figure have only one point in common
a, determined by them. The point a' corresponding to a will

belong to the two curves of order n to which the two lines corre-

spond. And since these two curves must determine the point

a', the remaining n^ — 1 intersections must be common to all the

curves of the geometric net above mentioned.

^ [Cremona then inserts a footnote explaining how it is that one does not

obtain new equations when one considers the curves which in the plane P'

correspond to curves of a given order ;u in the plane P.]

"See my "Introduzione ad una teoria geometrica delle curve piane, Page
71."



480 SOURCE BOOK IN MATHEMATICS

Let Xr be the number of r-ple (multiple points of order r) points

common to these curves; since an r-ple point common to two curves

is equivalent to r^ intersections of the same then we will have
evidently:

(1) xi + 4x2 + 9x3 +. . .+ (n - l)2x„_i = n2 - 1

The Xi + X2 + X3 + . . . + x„_i points common to the curves

r T • I (^ ~ 1)(^ + 4) ... T • I I

ot the net constitute the -^ conditions which deter-

mine it. If a curve must pass r times through a given point,

that is equivalent to ^

—

- conditions; therefore

Examples.—For n = 2, the equations (1) and (2) reduce to the

single equation Xi = 3; i. e., to the lines of a figure there will

correspond in the other curves of second order circumscribed

about a fixed triangle.

This is the aforesaid "Conical Transformation" considered by

Steiner/ by Magnus,^ and by Schiaparelli.^

For n = 3, one has, from (1) and (2),

xi = 4, X2 = 1;

{. e., to the right lines of the one figure there correspond in the

other curves of third order all having a double and four simple

points in common.

For n = 4, (1) and (2) become

xi + 4x2 + 9x3 = 15,

Xi + 3x2 + 6x3 = 12,

which admit the two solutions

First: xi = 3, X2 = 3, X3 = 0;

Second: xi = 6, X2 = 0, X3 = 1;

etc.

On eliminating Xi from the equations (1) and (2) one obtains

the following:

(3) ., + 3x, + . . . + <" - '

f - ^>
x„- = <" -

'f
- ^)

from which one sees that Xn-i can not have other than one of these

two values:

Xn-l = 1, x„_i =

1 Systematiscbe Entwickelung, u.s.w., Berlin, 1832, page 251. [See page 476.J

^ Crelle's Journal, t. 8, page 51.

' Loco citato.
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and that in the case Xn-i = 1 one necessarily has:

X2 = 0, X3 = 0, . . . , Xn-2 =

and by virtue of (1) Xi = 2(n — 1)

I propose to prove that the transformation corresponding to

these values of Xu xz,..., x„_i is, for an arbitrary value of n,

geometrically possible.

Let it be supposed that the two figures be located in two distinct

planes P, P', in such way that to each point of the first plane there

corresponds a unique point of the second, and conversely. I will

imagine two directrix curves such that through an arbitrary point

of space it will be possible to pass only one line to meet both, and

I will consider as correspondents the points in which this line meets

the planes P, P'.

Let p and q be the orders of the two directrix curves and r

the number of their common points. Assuming an arbitrary

point of the space as the vertex of two cones, the directrices

of which are the above given curves the orders of these two cones

will be p, q and therefore they will have p.q common generators.

Included among these are the lines which unite with the r

points common to the two directrix curves, and the remaining

pq — r generators common to the two cones will be, consequently,

the right lines that from can be drawn to meet both the one and

the other directrix curve. But the lines endowed with such

property we wish reduced to only one; therefore it must be true

that

(4) pq - r = I

Furthermore to any line R situated in one of the planes P, P',

there will correspond in the other a curve of order n; i. e., a variable

line which meets constantly the line R and the two directrix

curves of order p, q must generate a warped surface of order n.

One seeks therefore the order of the surface generated by a variable

line which cuts three given directrices, the first of which is a line

R, and the other two of order p, q have r points in common. The
number of the Hnes which meet three given lines and a curve of

order p is 2p : this being the number of points common to the curve

of order p and to the hyperboloid which has as directrices the three

given lines. This amounts to saying that 2p is the order of a

warped surface the directrices of which are two curves and a curve

of order p. This surface is met by the curve of order q in l.p.q

— r points not situated on the curve of order p.
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Therefore the order of the warped surface which has for direc-

trices a line and curves of order p, q, having r common points, is

2pq — r. Therefore we must have:

(5) 2pq - r = n

From the equations (4) and (5) one gets

(6) p.q = n — 1, r = n — 2

Let it be supposed that the line R is in plane P, and consider the

corresponding curve of order n in plane P', i. e., the intersection

of this plane with the warped surface of order 2p.q — r previously

mentioned. The curve of which one is dealing will have:

p multiple points of order q; they are the intersections of the

plane P' with the directrix curve of order p (in fact from each point

of this curve it is possible to draw q lines to meet the other directrix

curves and the line R, or in other words the directrix curve of

order p is multiple of order q on the warped surface)

;

q multiple points of order p, and they are the intersections of

the plane P' with the directrix curve of order q (because analogously

this one is multiple of order p on the warped surface)

;

p.q simple points of intersection of the right line common to

the planes P', P, with the lines which from the points where the

directrix of order p cuts the plane P, go to the points where the

other directrix cuts the same plane.

These p -{- q -\- pq points do not vary, as R varies, i. e., they

are points common to all the curves of order n, of plane P',

corresponding to the lines of plane P. Therefore we will have:

Xi = p.q, Xp = q, Xq = p.

and the other x's will be equal to zero; thus the equations (1)

and (2) give, having regard to the first of (6)

:

p -^ q = n

And this one combined with the first of (6) gives as a result

p = n — l,q = \

This signifies that of the two directrices, one will be a curve of

order n — 1 and the other a line which will have n — 2 points in

common. This condition can be verified by a line and a plane

curve of order n — 1 (not situated in the same plane) provided

that the latter have a multiple point of order n — 2, and the

directrix passes through this multiple point.
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Also, the directrix of order n — 1 can be a twisted curve;

because, for example, on the surface of an hyperboloid one can

describe^ a twisted curve K of order n — 1 which will be met by

each of the generators of same system in n — 2 points (and in

consequence by each generator of the other system in only one

point). We can therefore assume such twisted curve and a

generator D of the first system as directrices of the transformation.

In this transformation, to each point a of the plane P there

corresponds one and only one point a' of the plane P', and con-

versely, which point a' one determines thus. The plane drawn

through the point a and through the line D meets the curve K
in only one point outside of the line D. This point joined to a

gives a line which meets the plane P' in the required point a'.

If i^ is any line in plane P, the warped surface (of order n) which

has as directrices the lines K, D, R, cuts the plane P' in the curve

(of order n) corresponding to R. All the curves which analogously

correspond to lines have in common a multiple point of order

n — 1 and 2(n — 1) simple points, i. e., First, the point in which

D meets the plane P'; Second, the n — 1 points in which the plane

P' is met by the directrix K; Third, the n — 1 points in which the

line of intersection of P, P' is met by the lines which unite the

point common to the line D and the plane P with points common
to the curve K and the same plane P.

In other words: The warped surface analogous to that one the

directrices of which are K, D, R, all have in common : First, The
directrix D (multiple of order n — 1, and thus equivalent to

(n — 1)2 common lines); Second, The curvilinear (simple) directrix

K; Third, n — 1 generators (simple) situated in the plane P.

All these curves taken together are equivalent to a curve of order

(n4-l)^ + 2(n — 1). Therefore two warped surfaces (of order

n) determined by two lines R, S, in the plane P, will have also in

common a line; which evidently unites the point a, of intersection

of R, S with the corresponding point a', common to the two curves

which in the plane P' correspond to the lines R, S.

If the line R goes through the point d in which point D meets

the plane P it is evident that the relative ruled surface decomposes

into a cone which has its vertex at d and as directrix the curve K^

and into the plane which contains the lines D, R.

If the line passes through one of the points k common to the

plane P and curve K, the relative ruled surface decomposes into

^Comptes rendus de I' Academic de France, 24 Juin, 1861.
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the plane which contains the point k and the line D, and into the

warped surface of order n — 2, having directrices K, D, R.

If the line R passes through two of the points k, the relative

ruled surface will decompose into two planes and into a warped

surface of order n — 2.

And it is also very easy to see that any curve C, of order n,

given in the plane P, gives rise to a warped surface of order /in,

for which D is multiple of order /i(n — 1) and K is multiple of

order /x. Therefore to the curve C there will correspond in the

plane P' a curve of order fxn, having: First; A multiple point of

order /x(n — 1) upon D; Second; n — 1 multiple points of order ju,

upon K; Third; n — 1 multiple points of order fx, upon the line

which is a common intersection of P, P'.

Applying to the aforesaid things the principle of duality we will

obtain two figures: one composed of lines and planes passing

through the point 0; the other of lines and planes passing through

another point 0'; and the two figures will have such relations to

each other, that to each plane of one there will correspond only

one plane of the other and conversely; and to the lines of any one

of the figures there will correspond in the other a conical surface

of class n, having in common xi, X2, . . . , x„_i tangent planes simple

and multiple. The numbers X\, X2, ..., Xn-i will be connected

by the same equations (1) and (2).

In particular then, to deduce one figure from the other we can

assume as directrices a fixed line D and a developable surface K
of class n — 1, which has n — 2 tangent planes passing through

D. Then, given any plane tt through which cuts D in a point a;

through this point there passes (other than the n — 2 planes

through D) only one tangent plane which will cut x along a certain

line. The plane ir' determined by it and the point 0' is the corre-

spondent of T.

Cutting then the two figures with two planes P and P' respect-

ively, we will obtain in these, two figures such that to each right

line of one there will correspond a single right line in the other

and conversely; but to a point of the one of the two planes there

will correspond in the other a curve of class n, having a certain

number of fixed, simple and multiple tangent lines.



LIE

On a Class of Geometric Transformations

(Translated from the Norwegian by Professor Martin A. Nordgaard, St. Olaf

College, Northfield, Minn.)

Marius Sophus Lie (Dec. 17, 1842-Feb. 18, 1899) was the most prominent

Scandinavian mathematician of his time. He lived for a time in France, but

at the age of thirty became professor of mathematics at Christiania (Oslo)

and from 1886 to 1898 he held a similar position at Leipzig. Of his style of

discourse Klein has this to say:

"To fully understand the mathematical genius of Sophus Lie, one must not

turn to the books recently published by him in collaboration with Dr. Engel,

but to his earlier memoirs, 'vritten during the first years of his scientific career.

There Lie shows himself the true geometer that he is, while in his later publica-

tions, finding that he was but imperfectly understood by the mathematicians

accustomed to the analytical point of view, he adopted a very general analytical

form of treatment that is not always easy to follow."^

Lie's earliest writings, when his ideas, as Klein says, were still in their

"nascent" stage, possess a vividness and a happy directness of expression that

is not always noticeable in his later exposition.

It was in 1869-1870, while still a young man, that he made the remarkable

discovery of a contact transformation by which a sphere can be made to corre-

spond to a right line. He communicated the results of his discovery to the

Christiania Academy of Sciences in July and October, 1870, in a memoir
entitled "Over en Classe geometriske Transformationer." The memoir is

published in the society's Proceedings for 1871, pp. 67-109; the translation of

which is here presented. It is because of a general impression that the German
version was lacking in the force of the original that it was decided to present

the memoir through a direct translation from the Norwegian instead of relying

upon the one later published in Berlin.

INTRODUCTION^

The rapid development of geometry in the present century has

been closely related to and dependent on the philosophic views

' Felix Klein, in his lecture on Mathematics, at the Evanston Colloquium, 1893. Mac*
millan. New York.

^ The most important points of view in this memoir were communicated to

the Christiania Academy of Sciences in July and October, 1870. Compare a
note by Mr. Klein and myself in the Berlin Academy's Monatsbericbt for Dec.

IS, 1870.

485



486 SOURCE BOOK IN MATHEMATICS

of the nature of Cartesian geometry,—views which have been set

forth in their most general form by Pliicker in his earlier works.

Those who have penetrated into the spirit of Pliicker's works
find nothing essentially new in the idea that one may employ as

element in the geometry of space any curve involving three para-

meters. Since no one, as far as I know, has put this suggestion

into effect, the reason is probably that no resultant advantages

have seemed likely.

I was led to a general study of this theory by discovering that

through a very remarkable representation^ the theory of principal

tangent curves can be led back to the theory of curves of curvature.

Following Pliicker's plan I shall discuss the system of equations

Fi(x,y, z, X,Y,Z) = 0, F2{x,y, z, X, Y, Z) =

which, in a sense that will be explained later, defines a general

reciprocal relation between two spaces. If, as a special case, the

two equations are linear with respect to each system of variables,

we obtain a representation in which to the points of one space

there correspond in the other the lines of a Pliicker complex of

lines. The simplest one of the class of transformations derived

in this manner is the well-known Ampere transformation, which

by this method appears in a new light. I am now making a

special study of the method of this representation; for on this I

base a fundamental relation between the Pliicker line geometry and a

space geometry in which the element is the sphere^—a very important

relation, it seems to me.

While occupied with this paper I have been continually exchang-

ing opinions and views with Pliicker's pupil. Dr. Felix Klein.

To him I am indebted for many of the ideas here expressed; for

some of them I may not even be able to give the reference.

Let me also remark that this paper has several points of contact

with my works on the imaginaries of plane geometry. The reason

for my not bringing out this dependence in the present discussion

is partly that this relation is to some extent fortuitous, and partly

* [Lie uses the word "afbildnlng" which literallym eans picturing or imaging.

Since these are uncommon forms in English, we shall use the word "representa-

tion" which has been used by later students of the theory. Its graphical

connotation is inadequate, however, and we shall use the forms "image" and

"imaged" for the words "billede" and "afbildes," consistently used by Lie in

his earliest memoirs.

The excessive use of itah'cs is as in the original. It has been thought best to

follow Lie's usage as serving to show his points of emphasis.]
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that I do not wish to deviate from the customary language of

mathematics.*

PART I

Concerning a New Space Reciprocity

§1

Reciprocity between Two Planes or between Two Spaces

1. The Poncelet-Gergonne theory of reciprocity can be derived

for the field of plane geometry from the equation

X(aix 4- 6iy + ci) -I- Yia2X + b^y -{- cj) + {azx + 6^ + C3) =
(1)

or from the equivalent equation

xia.X + 02^ + 03) + y(brX + 63^ + 63) + (c,X + C2Y + C3) = 0,

provided that (x, y) and (X, Y) are interpreted as Cartesian point

coordinates for two planes.

For if we apply the expression conjugate to two points {x, y)
and (X, Y) whose coordinate values satisfy equation (1), we may
say that the points {X, Y) conjugate to a given point (x, y) form

a right line which we may interpret as corresponding to the given

point.

Since all points of a given right line have a common conjugate

point in the other plane, their corresponding right lines pass

through this common point.

Thus the two planes are imaged, the one on the other, by equation

(1) in such a way that, mutually, to the points of one plane correspond

the right lines of the other To the points of a given right line X

correspond the right lines that pass through X's image point.

But this is exactly what constitutes the principle of the Poncelet-

Gergonne theory of reciprocity.

Now consider in one plane a multilateral whose vertices are pi,

P2, ...Pn, and in the other plane the polygon whose sides 5i,

S2,... Sn correspond to these points. From what has been said

it follows also that the vertices S1S2, S2Sz,- . .5„_i5„, of the latter

*The theories set forth in this memoir have induced Mr. Klein, in a note

just made public (Gesellschaft d. Wissensch. zu GSttingen, March 4, 1870), to

carry Pliicker's ideas one step forward; for he has demonstrated that the

Plucker line geometry (or, in my representation, the corresponding sphere

geometry) illustrates the metric geometry of four variables.
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multilateral are image points of the sides pip2, P2P3,. . -Pn-iPn of

the given polygon, and that the two polygons are thus in a recipro-

cal relation to one another.

By the process of limits we may pass to considering two curves

c and C which correspond in such a way that the tangents of one

are imaged as the points of the other. Two such curves are said

to be reciprocal to one another in respect to equation (1).

2. Plucker^ has based a generalization of this theory on the

interpretation of the general equation

F(x,y,X,Y)=0. (2)

The points {X, Y) [or (x, y)] conjugate to a given point (x, y)

[or {X, Y)] now form a curve C [or c] which is represented by equa-

tion (2), provided (x, y) [or {X, ¥)] be taken as parameters while

(X, Y) [or (x, y)] be taken as current coordinates.

Thus, by means of equation (2) the two planes are imaged, the

one on the other, in such a way that to the two points in one corre-

spond one-to-one the curves of a certain curve net in the other.

Reasoning as before, we see that to the points of a given curve

c [or C] there correspond curves C [or c] which pass through the

image point of the given curve.

To a polygon of curves c(ci, C2, . . .c„) correspond n points Pi,

P2, ..-Pn, which lie in pairs on the curves C(PiP2, P2P3, ••

P„_iP„), whose image points are vertices of the given curvilinear

polygon. Here also we come at length to the consideration of

curves c and S in the two planes, which are so related that to the

points of the one correspond the curves c[or C] that envelope the

other. This reciprocal relation, however, is generally not com-

plete, for adjoined forms appear, as a rule.

3. Plucker^ bases the general reciprocity between two spaces on

the interpretation of the general equation

F(x, y, z, X,Y,Z) = 0.

IfF is linear with respect to each system of variables, the Poncelet-

Gergonne reciprocity between the two spaces is obtained.

In this memoir, especially in Part One of the same, I aim to make

a study oj a new space reciprocity to be thought oj as coordinate with

the Pluckerian, and defined by the equations

F,(x,y,z,X,Y,Z) =0,
F2(x, y, z, X,Y,Z) = 0,

^ Analytiscb-geometriscbe Entwickelungen. T. I. Zweite Abth.

' Though I cannot give any reference, I think I am correct in ascribing this

reciprocity to PlUcker.
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where {x, y, z) and (X, Y, Z) are to be interpreted as point coordinates

Jar the two spaces r and R.

§2

A Space Curve Involving Three Parameters May Be Selected as

Element for the Geometry of Space

4. A transformation of geometric propositions which is based

on the Poncelet-Gergonne or the Plucker reciprocity may be

studied from a higher point of view, as was stressed by Gergonne
and Plucker. This view-point will be described here, as it applies

also to our new reciprocity.

Cartesian analytic geometry translates any geometric theorem

into an algebraic one and effects that the geometry of the plane

becomes a physical^ representation of the algebra of two variables

and likewise that the geometry of space becomes an interpretation

of the algebra of three variable quantities.

Plucker has called our attention to the fact that the Cartesian

analytic geometry is encumbered by a two-fold arbitrariness.

Descartes represents a system of values for the variables x and

y by a point in the plane; as ordinarily expressed, he has chosen

the point as element for the geometry of the plane, whereas one could

with equal validity employ for this purpose the right line or any
curve whatsoever depending on two parameters. In respect

to the plane we may therefore look upon the transformation based

on the Poncelet-Gergonne reciprocity as consisting of changing

from the point to the right line as element, and in the same sense

the Plucker reciprocity of the plane consists in introducing a curve

involving two parameters as element for the geometry of the plane.

Furthermore, Descartes represents a system of quantities {x, y)

by that point in the plane whose distances from the given axes are

equal to x and y; from an infinite number of possible coordinate

systems he has chosen a particular one.

The progress made by geometry in the 19th century has been

made possible largely because this two-fold arbitrariness in the

Cartesian analytic geometry has been clearly recognized as such;

the next step should be an effort to utilize these truths still further.

5. The new theories advanced in the following pages are based

on the fact that any space curve involving three parameters may be

* [Lie uses the word "sanselig," affecting the senses, material. We could

have translated the word with "visual," but that word often refers to graphical

representation in analytic geometry.]
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selected as element for the geometry of space. If we recall, for

example, that the equations for a right line in space contain four

essential constants, we readily see that the right lines satisfying

one given condition can be employed as elements for a geometry

of space which, like our conventional geometry, gives a physical

representation of the algebra of three variables.

This, however, causes a certain system of lines,

—

a Plucker

complex of lines—to be singled out, and for this reason it is evident

that a particular representation of this kind can have only a

limited applicability. However, if it is a question of a study oj

space relative to a given comphx oj lines it may prove very advan-

tageous to choose the right lines of this complex as space element.

In metrical geometry the infinitely distant imaginary circle and,

hence, the right lines intersecting it are singled out, and we might

therefore have some reason a priori to suppose that in dealing with

certain metrical problems, it would be advantageous to introduce these

right lines as elements.

It should be noted that when we as an illustration stated that

it is possible to choose the right lines of a line complex as space

element, then this is something different—something more

particular, if you please—from the ideas that are the basis of

Pliicker's last work, Neue Geometric des Raumes, gegriindet auf

die Betrachtung der geraden Linie als Raum-Element. Early in his

studies Plucker had observed that it is possible to set up a repre-

sentation for an algebra which comprises any number of variables

by introducing as element a figure depending on the necessary

number of parameters. He emphasized^ particuarly that since

the space line has four coordinates, one may, by choosing it as

space element, obtain a geometry for which space has four

dimensions.

§3

The Curve Complex. A New Geometric Interpretation of Partial

Differential Equations of the First Order. The Principal

Tangent Curves of a Line Complex.

6. Plucker employs the expression line complex to designate the

assemblage of right lines which satisfy one given condition and

which therefore depend on three undetermined parameters.

> Geometric des Raumes. Art. 258. (1846.)



LIE 491

Analogously I shall define a curve complex to mean any system of

space curves c, whose equations

Ji{x, y, z, a, b, c) = 0, /aCx, y, z, a, 6, c) = (3)

contain three essential constants.

By differentiating (3) with respect to x, y, z and eliminating

a, b, c between the two new and the original equations, we obtain

a result in the form

J{x, y, z, dx, dy, dz) = (4)

If we interpret x, y, z as parameters and dx, dy, dz as direction

cosines, then by equation (4) every point in space will be associ-

ated with a cone, namely the assemblage of the tangents to the

complex curves c which pass through the point in question. These

cones I shall call elementary complex cones. I shall also use the

expression elementary complex directions to indicate any line ele-

ment {dx, dy, dz) belonging to a complex curve c. The assemblage

oj the elementary complex directions corresponding to a point Jorm
the elementary complex cone associated with the point.

To a given system (3), or, if we choose, to a given complex of

curves there corresponds a definite equation/ = 0; but an equation

/ = may, on the other hand, be derived from an infinite number of

systems (3).

For, if we choose any relation of the form

\P{x, y, z, dx, dy, dz, a) = 0,

where a denotes a constant, and represent by

^i(x, y, z, a, iS, 7) = 0, (piiX, Y, Z, a, /3, 7) =

the integral of the simultaneous system

/ == 0, ^ = 0,

then it is clear that if we differentiate (pi = 0, <p2 = with respect

to X, y, z and eliminate a, /3, 7 we obtain the result/ = 0.

Every curve of this new complex

<Pl = 0, (P2 =

is enveloped by the curves c, inasmuch as its elements are severally

complex-directions.

7. According to Monge a partial differential equation of the

first order in x, y, z is equivalent to the following problem: To
find the most general surface which at every one of its points
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touches a cone associated with that point, the general equation of

the cone in plane coordinates being represented by the given partial

differential equation.

Lagrange and Monge have reduced this problem to the deter-

mination of a certain complex of curves, the so-called characteristic

curves, by proving that if we unite into one surface a family of

characteristic curves, each of which intersects the curve immedi-

ately preceding, an integral surface is always formed.

Note that the equation

/(x, y, z, dx, dy, dz) = 0,

determined by the characteristic curves as stated above, is of

equal value with the partial differential equation itself, for both

of these equations are the analytical definition of the same triple

infinity of cones.

8. A more general geometric interpretation of partial differential

equations of the first order in x, y, z may be obtained by showing that

the problem of finding the most general surface which at everyone

of its points has a three-point contact with a curve of a given curve

complex finds its analytical expression in a partial differential

equation of the first order; granted, that the curve in question does not lie

wholly on the surface. Furthermore, if f(x, y, z, dx, dy, dz) =
is the equation determined by the characteristic curves, then will

every curve complex whose equations satisfy / = stand in the given

geometric relation to the given partial differential equation.

Consider that we have given a complex of curves c which satisfy

the equation / = and express analytically the requirement that

the surface z = F(x, y) have a three-point contact with a curve c

at every one of its points, without excluding the possibility of even

a closer contact. This gives us for the determination of z a partial

differential equation of the second order (82 = 0).^ But every

surface generated by an infinity of c's obviously satisfies the

equation 82 = and therefore its general integral includes two

arbitrary functions. By means of analytical considerations that

are in essence very simple, though formally somewhat extensive,

I wish to prove that the first order differential equation 5i = 0,

which corresponds to / = 0, satisfies 82 = 0. Obviously 5i =0
is not, in general, contained in the general integral mentioned;

consequently 5i = is a singular integral of 82 = 0.

1 52 = has the form A{rt - s«) + Br + Cs + D( + £ = 0. Compare

a paper by Boole in Crelle's Journal. Vol. 61.
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The equation /(x, y, z, dx, c/y, cfz) = gives by differentiation,

j'Jx + J'ydy + /'.(/z + j',J^x + /',,c/V + i'd^dh = 0, (6)

in which dx, dy, dz, d^x, d^y, dh are considered as belonging to any

curve that satisfies / = 0. Equation (6) holds, specifically, for

the characteristic curves of 5i = 0, and if we distinguish these by
a subscript, we obtain:

J'.^dxi + . . J'dT.d^Xi + . . . =

Here I shall remark that every curve which touches any of the

integral surfaces (/ = of 5i = 0, satisfies the equation

(7)

and furthermore that every curve which has a three-point con-

tact with U = also satisfies the relation:

^>-)--(f>-- = o- (8)

From this it is seen that every characteristic curve which lies in

U = satisfies both (7) and (8).

But U = touches at every one of its points the associated

cone of the system / = 0, and therefore the following equations

hold:

u _ dU „ _ dU ., dU

where p indicates an unknown proportionaHty factor. Thus
the subscripted equation (8) is transformed into the following:

dHJ

dxx^
{dx,y+...] + [f'a.,d'x,+...] = 0.

Now we know that

Consequently

~d^U

dxi^
+ = Afc + ...I

or, by omitting the now unnecessary subscripts:

[d^U
dx^ + \-'^ c/x +
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Since

the following equation holds:

\dU,,
,

dU,,
,
dU,,

,

d'U,, ., ,
,

= /xf/x + J\dy + /'.(fz + fjj'x + /'.,cfV + /',,c/2z,

whose left and right-hand members vanish simultaneously.

Our exposition shows that every curve which satisfies / = and

which touches a characteristic curve lying on U = has a three-point

contact with this surface; consequently, di = is a singular integral

of 82 = 0.

Now we shall prove that 82 = has no other singular integral.

For, let every point on an integral surface / of §2 = have

associated with it a direction, namely, the tangent of the corre-

sponding c of three-point contact. Assuming that / is not gen-

erated by a family of c's, there will pass through every point of /

two coincident curves c, both tangent to the surface at the point

in question. But / is consequently touched at each of its points

by the corresponding elementary complex cone; / satisfies the

equation 5i = 0.

9. Corollary. The determination of the most general surface

which at each of its points has a principal tangent not lying on the

surface belonging to a given line complex depends on the solution of a

first-order partial differential equation whose characteristic curves

are enveloped by the lines of the complex. In this case these curves

appear as principal tangent curves on the integral surfaces.

We shall give an independent geometric proof for this corollary.

The partial differential equation whose characteristic curves

are enveloped by the lines of a given line complex is, according to

Monge's theory, the analytical expression of the following problem:

To find the most general surface which at every one of its points

touches the complex cone corresponding to the point. But if the

tangents to a curve belong to a line complex, then is the osculation

plane of the same the tangent plane of the corresponding complex

cone. Thus the osculation planes of our characteristic curves

are tangent planes for all integral surfaces that contain these

curves. This might require a few additional words of explanation,

but it would be largely a repetition of what has been said before.
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Accordingly, every complex of lines determines a complex of

curves which are enveloped by the lines of the line complex and

which possesses this property: they are principal tangent curves

on every surface generated by a system of these curves, every

curve intersecting the one immediately preceding. This complex

of curves we shall call the principal tangent curves of the line complex.

I am indebted to Mr. Klein for the statement that the congru-

ence of right lines which Pliicker calls the singular lines of a line

complex belongs to the aforementioned complex of curves. If

the given complex is formed by the tangents of a surface [or by
the right lines which cut a curve], then are severally the lines of

this line complex singular lines and, hence, principal tangent

curves.

The Equations Fi(x, y, z, X, Y, Z) = 0, F2(x, y, z, X, Y, Z) = 0,

Determine a Reciprocity Between Two Spaces.^

10. We shall now begin the study of the space reciprocity

determined by the equations

Fi(x, y, z, X, y, Z) = ,Q.

F,ix, y, z, X, y, Z) = ^""^

where (x, y, z) and (X, Y, Z) are considered point coordinates

in two spaces r and R.^

If we use the expression conjugate about two points the values

of whose coordinates (x, y, z) and (X, Y, Z) fulfill the relations

(9), we may say that the points (X, Y, Z) conjugate to a given

point (x, y, z) form a curve C which is represented by (9), provided

X, y, z are interpreted as parameters and X, Y, Z as current

coordinates.

To the points of the space r, therefore, correspond one-to-one

the curves C of a certain curve complex in R, and there is likewise

in r a complex of curves c holding a similar relation to the points

ofK.

Thus, by equations (9) the two spaces are imaged, the one in the

other, in such a way that to the points in each of the two spaces there

correspond one-to-one the curves of a certain complex in the other.

As a point describes a complex curve, the complex curve corresponding

' Compare this article with §1.

2 Whatever pertains to space r we generally designate by small letters, and
whatever refers to space R by capital letters.
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to the point will turn^ about the image point oj the described complex
curve.

11. We may now prove that the equations (9) determine a

general reciprocity between figures in the two spaces and,

specifically, between curves that are enveloped by the complex
curves c and C.

When two curves of one complex have a common point (which
obviously is not the case in general), their image points lie on a

complex curve. Note, specifically, that two infinitely near

complex curves which intersect are imaged as two points whose
infinitely small connecting line is an elementary complex direction.

Consider in r a curve o", enveloped by curves c, and all the curves

C which correspond to the points of tr. According to our analysis

above, two consecutive C's will intersect, and therefore their

aggregate will determine an envelope curve S.

It is also evident that as a point moves along S, the correspond-

ing c will envelope a curve <r* and it can be shown that a* is precisely

the original given curve a.

For, consider on the one hand a curvilinear polygon formed by
the complex curves Ci, d, €3, . . .c„, whose vertices are C1C2, C2C3, . . .

Cn-iCn, and on the other hand the image points Pi, P2, . . .P„ of the

curves c. Manifestly these lie in pairs P1P2, P2P3, . . .Pn-iPn on

the complex curves C, namely, on those curves which correspond

to the vertices of the given polygon. The new polygon in R and

the given polygon are therefore in complete reciprocal relation

to one another.

By passing to the limit we obtain in the two spaces curves that are

enveloped by the complex curves c and C, and which are so reciprocally

related that to the points oj one correspond the complex curves which

envelope the other.

Therefore a curve enveloped by complex curves is imaged in a

two-fold sense as another curve likewise enveloped by complex

curves. We say the latter is reciprocal to the given curve relative

to the system of equations (9). Notice also that the elementary

complex directions {dx, dy, dz), (dX, dY, dZ) arrange themselves

in pairs as reciprocals, and thus that two curved lines, tangent to

one another and enveloped by complex curves, are imaged in the

other space as curves bearing the same relation to one another.

'The expression "turn" is in-so-far unfortunate as we, of course, mean a

turning accompanied with a change of form.
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12. There are other space forms between which equations (9)

determine a correspondence, which, however, is not generally a

complete reciprocity.

Thus, the points of a given surface J are iynaged in R as a double

infinity of curves C, that is, a congruence of curves whose focal surface^

is F. Similarly, there corresponds to the points of F a congruence

of curves c, whose focal surface, as we shall see later, contains f as a

reducible part.

The elementary complex cones whose vertices lie in the surface

/ intersect the corresponding tangent planes of the surface in n

right lines (n designating the order of the complex cones) and
determine n elementary complex directions at every point of /.

The continuous succession of these directions form a family of

curves n-ply covering the plane /. The curves are one and all

enveloped by complex curves c. The geometric locus of the reciprocal

curves of this family of curves, or, if we choose, the assemblage of the

image points of the c's that are tangent to f, jorm the focal surface F.

To prove this we recall that two infinitely near and intersecting

curves C are imaged as two points whose infinitely small connecting

line is an elementary complex direction. From a point po on the

surface / proceeds n complex directions. Hence Co, the image

curve of Po, is intersected in n points by neighboring C's belonging

to the curve congruence discussed above. The intersection points

are the n points that correspond to the n complex curves c which

touch the surface / at the point po. Thus the points of F are the

image of the c's that touch /.

Since the position of / in space r is general, a curve c which

touches / at some one point will in general not have any other

points of contact with the surface. But all these c's form a con-

gruence in which every c touches the focal system in N points,

—

A^ indicating the order of the elementary complex cones in R.

Therefore, as was stated above, the focal system of the congruence

is broken up into / and a surface (p, to which every c is tangent in

(N — I) points.

Accordingly, in order that the correspondence between surfaces

in r and R determined by equations (9) shall be a complete reciproc-

^ In analogy with the terminology applied to congruencies of lines I shall

take the focal surface of this congruence of curves to mean the geometrical

locus of the intersection points of the infinitely near curves C. If we think of a

curve congruence as defined by a linear partial differential equation, then its

focal surface is what we ordinarily call the singular integral of the differential

equation.
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ity, it is necessary and sufficient that both n and N be equal to

unity. The reciprocal relation is geiierally incomplete, inasmuch

as analogous operations on the one band carry J into F, and on the

other hand F into the sum of J and cp.

The above observations are also valid if/, and consequently F,

are surface elements; if/ is infinitely small in one direction, the

same holds for F.

Finally, consider a curve k not enveloped by complex curves c,

together with the surface F, formed by all the C's that correspond

to the points of k. The points of a C change into the curves c

that pass through the image point of C. Hence, to the points

of F correspond the assemblage of curves c intersecting k. Thus

there is a two-fold relation of dependence between k and F.

The equations (9), which picture the two spaces in one another

mutually, accordingly carry given space forms into new ones which

hold a reciprocal relation to the given forms and therefore serve

to transform geometrical theorems and problems. We shall later

make important applications of this principle of transformation

to a special form of equations (9).

§5

The Transformation of Partial Differential Equations

13. Legendre^ was the first to give a general method for trans-

forming, in the language of modern geometry, a partial diflferentiai

equation in point coordinates x, y, z into a differential equation in

plane coordinates t, u, v, or (we might also say) in point coordinates

t, u, V for a space related reciprocally to the given space.

In a similar manner, if we introduce the curves c as element for

the space r it is possible to transform a partial differential equation

in X, y, z into a differential equation in the coordinates X, Y, Z of the

new space element. In this we may interpret X, Y, Z as point

coordinates for the space R,—an interpretation which will be

prominent in our presentation.

Let there be given any partial differential equation of the first

order in x, y, z, and all the surfaces xp which represent its so-called

"integral complet," bearing in mind that every other integral

surface / may be represented as an envelope of a singly infinite

set of ^*s.

^ CompsiTe Pliicker, Geometrie des Raumes. (1846.) §2.



LIE 499

Consider, in addition, all surfaces ^ and 4> in space R that

correspond to the surfaces rp and /. We shall prove that every

F is the envelope surface of a singly infinite set of '^'s, that accord-

ingly the surfaces F satisfy a partial differential equation of the

first order for which all ^'s form an "integral complet."

For, if in r there be given two surfaces possessing a common
surface element, they will be imaged in R as surfaces that touch

one another; and surfaces possessing infinitely many surface

elements in common are changed into surfaces that are tangent

along a curve in the manner of the given surface.

Assuming this, let us consider an integral surface /o and the

singly infinite set of ^o's tangent to/o along a characteristic curve;

and, finally, the corresponding surfaces Fq and ^. It is clear that

Fo has contact with every ^ along a curve and, hence, that Fo is the

enveloping surface of all the "^o's.

14. Of special interest is the case there the partial differential

equation that is transformed is precisely the one determined by

the complex curves c (cf. §3). In this case it may be shown that

the corresponding differential equation in X, Y, Z is broken up

into two equations, of which one is precisely the one that corresponds

to the complex curves C.

For, let there be given an integral surface / of the given differ-

ential equation in x, y, z, and all the elementary complex cones

corresponding to the points of /. By §4, these cones determine,

at every point of /, n complex directions, of which in this case two

are coincident; hence the family of curves that are enveloped by

the complex curves c and lie on the surface /, which we discussed

in §4, is broken up into the characteristic curves of/ and a curve

system that covers / (n — 2)-foId.

Thus the curve congruence in R corresponding to the points of

/ has a focal system which is separated into two surfaces, of which

one, which we shall call $, is tangent to every c at two coincident

points, while to the other there are (n — 2) points of contact. Thus

the surfaces $ satisfy the partial differential equation which, according

to the theorem in §3, is determined by the complex curves C.

Noting that ^ is the geometric locus of the reciprocal curves of

the characteristic curves of /, we see that two integral surfaces

f\ and /2, tangent to one another along a characteristic curve k,

are transformed into two surfaces <^i and $2 that are tangent to

one another along the reciprocal curve of fe; for fe is enveloped by

complex curves c.



500 SOURCE BOOK IN MATHEMATICS

The characteristic curves of the two partial differential equations

which, according to §3, are determined by the curve complexes c and

C, are reciprocal curves relative to the system oj equations (9).

15. The proposition just stated gives the following general

method for transforming partial differential equations of the first

order.

Determine by the usual methods the equation

J(x, y, z, dx, dy, dz) =

which the characteristic curves of the given partial differential

equation satisfy. Then select a relation of the form

^(x, y, z, dx, dy, dz, X) = 0,

where X denotes a constant. Let the simultaneous system

/ = 0, ^ = 0,

be integrated in the form

Fi(x, y, z, X,Y,Z)= 0, F^{x, y, z, X, Y, Z) = 0,

where Y and Z are the constants of integration. By differentia-

tion and elimination we obtain a relation of the form

Fz{X, Y, Z, dZ, dY, dZ) = 0,

which we interpret to be the equation of the characteristic curves

of a partial differential equation

F,(^X, Y, Z, ^, jy)
= 0.

Our former discussions show that F4 = 0, derived from F3 =

by the usual processes, and the given partial differential equation

are mutually dependent in such a manner that if one is integrable,

so is the other.

From this we may draw general conclusions concerning the

reducing to lower degree of first order partial differential equations

defined by a complex of curves of a given order. Every first-

order partial differential equation defined by a line complex (§3),

for example, may be transformed into a partial differential equation

of the second degree.^

We may likewise transform every partial differential equation

defined by a complex of conies into a differential equation of degree

302

* This reduction depends on the fact that every line of a line congruence

touches the focal system in two points. (§4, 12.)

2 The number 30 results from the product of 6 by (6 - 1) ; 6 is the number of

points in which the focal system of a congruence of conies has contact with each

conic.
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§6

Concerning the Most General Transformation Which Change Surfaces

Mutually Tangent into Similarly Situated Surfaces

16. In the study of partial differential equations an important

role is played by transformations expressible in the form

X = Fi(.v, y, z,p,q), Y = Fzix, y, z, p, q),

Z = Fs(x, y, z, p, q).

As usual, p and q indicate the partial derivatives -y- > -i- ; P and Q
ax ay

likewise stand for ^y and jy-

In the following we shall consider the case^ where the functions

Fi, F2, and F3 are chosen such that P and Q also depend only on

X, y, z, p, q. Thus:

P = Fi{x, y, z,p,q);Q= Fi,(x, y, z, p, q).

Assuming that no relation between X, Y, Z, P, Q can be derived

from the above five equations, we shall show that each of the

quantities x, y, z, p, q are also expressible as functions of X, Y, Z,

P,Q.

If we think of x, y, z and X, Y, Z as point coordinates for r

and R, we may say that by a transformation of this kind there is

defined a correspondence between the surface elements of the two

spaces,—in fact, the most general correspondence. We shall show
that these transformations divide into two distinct, coordinate classes,

of which one corresponds to the Plucker reciprocity, while the other

corresponds to the reciprocity which I have set up in this memoir.

Eliminating p, q, P, and Q in the five equations

X = Fu Y = F2, Z = F,, P = F„ Q = F,

two essentially difi"erent results may come about. We shall

either obtain only one equation in x, y, z, X, Y, Z, or there will

be two relations obtaining among the quantities. (The existence

of three mutually independent equations involving the point

coordinates of the two spaces assumes that the transformation in

question is a point transformation.)

But we know that the equation F(x, y, z, X, Y, Z) = always

defines a reciprocal correspondence between the surface elements

*Cf. Du Bois-Reymond, Partielle Differential Gleicbungen. §§75-81.
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of the two spaces. I have likewise shown in the preceding pages

that the system

Fi(x, y, z, X, Y, Z) = 0, F^ix, y, z, X, Y, Z) =

always determines a transformation which changes mutually

tangent surfaces into similarly situated surfaces.

My statement is therefore proved.

Let me at this time call attention to a remarkable property of

these transformations: they change any differential equation of

the form

A(rt - 52) + Br + Cs + Df + £ = 0,

in which A, B, C, D are dependent only on x, y, z, p, q, into an

equation of the same form. Consequently, if the given equation

has a general first integral, so does the resulting equation (Cf.

Boole's paper in Crelle's Journal, Vol. 61).

PART II

The PlIjcker Line Geometry May Be Transformed into

A Sphere Geometry

§7

The Two Curve Complexes are Line Complexes

17. Let us assume that these equations, which image the two

spaces in one another, are linear in each system of variables:

h^2)

(10)

= X{aix + byy + Ciz + di) + Y(a2X + 62y + C2Z + ^2)

+ Ziasx + bsy + C3Z + c/3) + (04 + . • • /

= X(aix + /3iy + 7iZ + 5i) + Yia^x + ^^y + 72Z + ^2) +
Ziasx + ^^y + ysz + 53) + (a4-v + /Jiy + 74Z + 54).

Then clearly the points of the other space which are conjugate

to a given point will form a right line. The two curve complexes

are Plucker line complexes.^ It follows that the equations (10)

define a correspondence between r and R which possesses the

following characteristic properties:

(o) To the points in each space correspond one-to-one the lines of a

line complex in the other.

* Regarding the theory of line complexes I assume the reader's acquaintance

with these two works: Plucker, Neue Geometrie des Raumes, gegriindet auj, etc.

...(1868-69); Klein, "Zur Theorie der Complexc," Matb. Annalen, Vol. II.

i
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(6) As a point describes a complex line, the corresponding line in

the other space turns about the image point oj the described line.

(c) Curves enveloped by the lines of the two complexes arrange

themselves in pairs, as reciprocals, in such a way that the tangents

oj each one correspond to the points of the other.

(d) With a surface J in space r there is associated in a two-fold

sense a surface F in R. On the one hand F is the focal surface of

the line congruence of which f is the image; on the other, the points of

F correspond to those tangents of f which belong to the line complex

in r.

(e) On f and F all curves arrange themselves as pairs of conjugates

in such a way that to the points of a curve on f [or F] corresponds in

the other space a line surface which contains the conjugate curve and

is tangent to F or f along the curve.

(/) To a curve on f enveloped by the lines of the line complex there

corresponds conjugately a curve on F also enveloped by complex

lines, and these curves are reciprocal in the sense defined in (c).

Each of the equations (10) determine an anharmonic corre-

spondence between points and planes in the two spaces. Conse-

quently each of our line complexes may be defined as the aggregate

of the lines of intersection of planes in anharmonic relation, or as

the connecting lines of points in anharmonic relation. But

according to Reye the second-degree complex thus defined is

identical with a certain line system discussed by Binet. Binet

was the first to look upon this system as the aggregate of the

stationary axes of revolution of a material body. It has since

been studied by several mathematicians, notably Chasles and

Reye.

If we particularize the constants in equations (10), we either

give the two complexes a special position or we particularize the

complexes themselves. As to the special positions complexes

assume, they may, for example, coincide; and Mr. Reye has

discussed this case in his Geometrie der Lage (1868), Part Second,

where he also gives the propositions stated in (a) and (6). As

regards the particularized complexes, I shall not enter into a

discussion of all the possible special cases, but will emphasize two

of the most important degenerations:^

'Lie, "Reprasentation der Imaginaeren," in the proceedings of the Christi-

ania Academy of Sciences (Christiania Videnskabs-Selskab) for February and

August, 1869. The space representation there discussed in §§17 and 27-29

is identical with the one discussed here. In §25 I emphasize expressly the

first of the two degenerations discussed here.
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(1) Both complexes may be special and linear. This case gives

us the well-known transformation of Ampere. We may therefore

consider this transformation as based on our introducing as space

element the assemblage of right lines intersecting a given line,

instead of the point.

(2) One complex may degenerate into the assemblage of right

lines that intersect a given conic. In that case the other complex

will be a general linear complex. I may mention here that Mr.

Noether {Gotting. Nachr., 1869) has, on occasions, given a repre-

sentation of the linear complex in a point space which is identical

with the one under discussion. But the conception that erery

space contains a complex whose lines are imaged as the points

of the other space, which is fundamental for our purpose, is not

touched upon in Mr. Noether's brief presentation.—This is the

degeneration of which we shall make a study in the following

article. We assume that the fundamental conic is the infinitely

distant imaginary circle.

18. We have seen that the two curve complexes are line com-

plexes if the equations of representation are linear in each system

of variables. This leads us to investigate whether this sufficient

condition is necessary.

If one complex is a general line complex, the elementary com-

plex cones of the corresponding curve complex must be resolved

into cones of the second degree. The proof (cf. §4, 12) of this

lies in the fact that the lines of a line congruence touch the focal

surface in two points. If one complex is a special line complex,

then the elementary complex cones of the corresponding curve

complex in the other space will resolve into plane sheaves.

Thus, if both complexes are to be line complexes the elementary

complex cones of both spaces must be resolved into second and

first degree cones. But if the cones of a line complex may be

continually resolved, the complex is itself reducible.^ We have

therefore proved that if two line complexes are imaged in one

another as described in the previous article, it follows that either

both are of the second degree, or one is a special complex of the

second degree and the other linear, or they are both special linear

complexes. All three cases are represented by equations (10),

and we shall indicate how one may know that equations (10)

define the most general representation of two line complexes upon one

another.

* I know of no proof for this assertion, but I have been told that it is reliable.

However, the conclusions based on it are not essential for what follows.
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If both complexes are of the second degree it can be shown that

the surface of singularity can not be a curved surface.

For through each point of this surface there pass two plane

sheaves whose lines are imaged in the other space as the points

of one right line. From this follows that all of the lines of one sheaf

correspond to one and the same point in the other space.

But the assemblage of lines which have not independent images

cannot form a complex; they can only, at best, form a congruence

or a number of congruences. Since, however, the assemblage of

plane sheaves of rays which proceed from each of all the points

of a curved surface of necessity forms a complex, our assertion

that the surface of singularity cannot be a curved surface is proved.

If two complexes of the second degree are imaged upon one

another—in which case none of them may be a special complex—

,

the surface of singularity for each will consist of planes, and conse-

quently both line systems are of the kind first studied by Binet.

If a second-degree complex and a linear complex are imaged

upon one another, one might in advance conceive of two possible

cases: (1) the second degree complex might be formed by all the

lines intersecting a conic,—and such a case does exist, according

to the above discussion; (2) the second degree complex might

consist of all the tangents to a second degree surface. Through
considerations having something in common with those I shall

use in §12 I have shown that this case does not exist. For if it

did, I might deduce, from the fact that a linear complex can be

changed into itself by a triple infinity of linear, inter-permutable

transformations, that the same would hold for the second degree

surface. Which, however, is not so.

§8

Reciprocity between a Linear Complex and the Assemblage oj Right

Lines Which Intersect the Infinitely Distant Imaginary Circle

19. In what follows we shall make a closer study of the system

of equations

:

- ^Zz = X - 2^(X + iY)

^iX-iY)^==y-^Z,

= V-i (11)
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This is linear in respect to both systems of variables and therefore,

according to §7, it determines a correspondence between two line

complexes. We shall first derive the equations of these complexes

in Pliicker line coordinates.

Pliicker gives the equations of the right line in the form

rz = X — p, sz = Y — ff.

where the five quantities r, p, s, c, {ra — sp) are considered line

coordinates. Therefore, if we regard X, Y, Z as parameters,

equations (11) represent the system of right lines whose coordi-

nates satisfy these relations:

r = -^Z, p = j^(X + iY),

s = l^iX-iY). . = J^Z.

These by the elimination of X, Y, Z, give as the equation of our

complex

XMcr + 5r = 0. (12)

Thus the line complex in the space r is a linear complex. It is,

furthermore, a general linear complex and contains, as we notice,

the infinitely distant right line of the xy-plane.

To determine the line complex in R we replace the system (11)

by the equivalent equations

/XA B
I :=rf^Z

—
\1B l\Az

\z = X - (ax + B^Y

Comparing these with the equations of the right line in R,

RZ = X - P, SZ = Y - -2, (13)

we have

R = TdZ - ^sT^r' P = Ax + B->
IB 2\Az z

The equation of the line complex in jR is then found to be

K2 + 52 + 1 = 0. (14)
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But by (13),

r, _dX ^ dY
^-dZ' ^ = dZ'

and consequently we may write (14) in the form

dX^ 4- dY^ + dZ^ = 0. (15)

From which we see that the line complex in R is formed by the

imaginary right lines whose length equals zero, or, if we choose,

by the lines which intersect the infinitely distant imaginary circle.

By equations (11) the two spaces are imaged, the one in the other,

in such a way that to the points of r there correspond in R the imagi-

nary right lines whose length is zero, while the points oj R are imaged

as the lines of the linear complex (12).

It should be noted that as a point moves along a line of this linear

complex, the corresponding right line in R describes an infinitesimal

sphere,—a point sphere.

20. According to the general theory of reciprocal curves

developed in §4, if we know a curve whose tangents belong to one

of our line complexes, it is possible to fmd by simple operations

the image curve that is enveloped by the lines of the other com-

plex. Lagrange made a study of the general determination of

space curves whose length is equal to zero, whose tangents there-

fore possess the same property. He found the general equation

of these curves. Therefore, according to the analysis above,

it is also possible to set up general formulas for the curves whose

tangents belong to a linear complex.

So as not to digress from our aim we shall refrain from taking

up in detail the simple geometric relations that exist between the

reciprocal curves of the two spaces.^

We must now somewhat modify our previous observations

concerning the correspondence between surfaces in the two

spaces, inasmuch as all the congruencies of right lines which

intersect the infinitely distant circle possess a common focal

curve—namely, the circle itself—, and inasmuch as the right

lines of a line congruence touch the focal surface at only two points.

For let there be given a surface F in R and let/ be the geometric

locus of the points in r that correspond to the tangents to F of

' If the given curve of length zero has a cusp, the corresponding curve in the

linear complex has a stationary tangent. In general stationary tangents appear

as ordinary singularities, if curves are regarded as formed by lines, that is, as

enveloped by lines of a given line complex.
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length zero. Then, conversely, F is also the complete geometric

locus of the image points of the right lines in the linear complex

(12) which are tangent to J.

On the other hand, if we have given a surface <p in a. general

position in r, the instance is hke the ordinary case; for then the

right Hnes of the linear complex (12) which touch <p also envelope

another surface
\f/,

the so-called reciprocal polar of <p relative to

(12)..

This system of lines is imaged in K as a surface $, which clearly

is the focal surface for two congruences,—one being the assemblage

of right lines of length zero which correspond to the points of <p,

and the other, the assemblage of the lines having the same relation

to the points of i/'.

The tangents of length zero of ^ consequently resolve into two

systems; or, we may say, the geodetic curves of length zero of $
form two distinct families.

In passing I wish to remark that the determination of the curves

which are enveloped by the right lines of a congruence belonging to a

linear complex may be reduced, according to our general theory, to

finding on the image surface F the geodetic curves whose length is

zero. For these curves are mutually reciprocal (17, /) relative to

the system (11).

21. Later we shall find use one or two times for the following

two propositions:

a. A surface F of the nth order, ivhicb includes the infinitely distant

imaginary circle as a p-Jold line, is the image of a congruence whose

order and, consequently, whose class is (n — p)A

For, an imaginary line of zero length intersects F in (n — p)

points of the finite space; hence there are always (n — p) lines in

the image congruence which pass through a given point, or which

lie in a given plane in space r.

6. A curve C oj the nth order which intersects the infinitely distant

circle in p points is imaged in r as a line surface oj order {In — p).

For, a right line of the linear complex (12) intersects this line

surface in as many points, numerically, as there are common
points (not infinitely distant) between the curve C and an infini-

tesimal sphere.

' Let me here state a proposition which is well-known to every mathema-
tician who works with line geometry, but which is not stated explicitly any-

where, as far as I know: For a congruence belonging to a linear complex, the

order is always numerically equal to the class.
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§9

The Pliicker Line Geometry May Be Transformed into a Sphere

Geometry

22. In this section we shall give the basis for a fundamental

relation that exists between the Pliicker line geometry and a geometry

whose element is the sphere.

For equations (11) transform the right lines of space r into the

spheres of space R, and in a two-fold sense (12).

On the one hand the right lines of the complex (12) which inter-

sect a given line h, and hence also its reciprocal polar k relative to

(12), are imaged as the points of a sphere, according to the propo-

sition in (21, b); on the other hand the points of /i and h are

changed into the right line generatrices of this sphere.

We arrive at the relations that obtain between the line coordi-

nates of /i and k and the coordinate of the center X', Y', Z', and

the radius H' of the image sphere, by the following analytic

observations:

Let the equations of the line /i [or /2] be

rz = X — p, sz = y — a.

Also recall that the right Hnes of the linear complex (12) may be

represented by the equations

-m^' = ^ - ta'-^ + '^

±(X - iiOz = y - jLz.

It is clear that if we eliminate x, y, z between these four equations

we have the relation which expresses the condition that the right

lines intersect h. By so doing we arrive at the following relation

between the parameters X, Y, Z of these lines, or, if we choose,

between the coordinates of the image points:

'
-\- [X - (Ap -{- Bs)V + [Y- i(Bs - Ap)Y-(--^1

A\ff-{-~r
A

(16)

The immediate interpretation of this equation confirms the

above statements and gives, in addition, the following formulas:

X' = Ap + Bs, iY' -= Ap- Bs,

T = XA<r - fr, +//' = XA<r + fr,
^^^^

\ X
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or the equivalent formulas:

P = ^iX' + iV). s = 5^(X' - iY'),

^^^^

(We may without loss omit the primes on the sphere coordinates

X', Y', Z', H'y since, in our conception, the points of space R are

spheres of radius zero.)

Formulas (17) and (18) show that a right line in r is imaged as a

uniquely defined sphere in R, while to a given sphere there correspond

i?i r two lines

{X, Y,Z,-hH) and (.Y, Y, Z, - H),

which are reciprocal polars relative to the linear complex

H = = XAcT + fr. (12)
A

If H is set equal to zero, formulas (17) and (18) express clearly

that the right lines of the complex (12) and the point spheres of

space R are of one set in a one-to-one relation.

A plane—that is, a sphere with infinitely large radius—is

imaged as two right lines (/i and k) which intersect the infinitely

distant right line of the xy-plane. It follows that the points of

/i and h are the images of the imaginary lines in the given plane

which pass through its infinitely distant circle points.

As a particular case we note that to a plane which touches the

infinitely distant imaginary circle there corresponds a line of the

complex H = parallel to the .vy-plane.

23. Two intersecting right lines U and Xi, are imaged as spheres

in a position oj tangency.

For the polars of h and Xi relative to H = also intersect one

another and consequently the spheres have two common genera-

trices. But second-degree surfaces whose curves of intersection

consist of a conic and two right lines touch one another in three

points, the double points of the curve of the section. The image

spheres of h and Xi, therefore, have three points of contact of

which two, imaginary and infinitely distant, in common parlance,

do not enter into our discussion.

The analytic proof of our theorem follows.

The condition that the two right lines

riz = X — pu r^z = x — pi

S\z = y — <Tu S2Z = y — o-z
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intersect is expressed by the equation

(ri - r2)(o-i - a) — (pi - p2)(5i - Si) = 0.

This, by aid of (18), gives

(Xi - x^r + (Yi - Y.r + (Zi - Z2)2 + (iHi - ny = o,

which proves our proposition.

Our theorem shows that the assemblage of right hnes which

intersect a given line is imaged as the totahty of all the spheres

which touch a given sphere. Consequently the image of the

special linear complex is known.

Conversely, to two spheres that are tangent to one another

there correspond two pairs of lines so situated that every line in

one pair intersects a line in the other.

24. The representation^ oj the general linear complex. The
general linear complex is represented by the equation

(ra — ps) -\- mr -\- na -^ pp -\- qs -\- t = 0. (19)

Equations (18) and (19) give us, as the equation of the corre-

sponding "linear complex of spheres"

(X2 -\-Y^ + Z'-H^)-{-MX-\-NY-hPZ+QH-^T = O.^

In this equation M, N, P, Q, T denote constants that depend

upon m, n, p, q, t, while X, Y, Z, H are understood to be (non-

homogeneous) sphere coordinates.

It is easy to see that the last equation determines all the spheres

that intersect at a constant the image sphere of the linear congru-

ence common to the complexes (19) and H = 0.

If the simultaneous invariant of these complexes is equal to

zero, or if, to use Klein's expression, the two complexes are in

involution, then the constant angle is a right angle.

To spheres that intersect a given sphere at a constant angle there

correspond in r the right lines oj two linear complexes which are

reciprocal polars relative to H = 0.

We note particularly that the spheres which intersect a given sphere

orthogonally are imaged as the right lines of a linear complex in

involution with H = 0.

^ [Lie uses the word "afbildning," meaning, literally, picture or image.]

* This equation may be put in the form

{X - Xo)^ + (y - Yo)' + (z- Zoy + an - iH.y = o,

where Xo, Yq, Zq, Ho, Co are understood to be non-homogeneous coordinates of

the linear complex. Mr. Klein has called to my attention the fact that the

sphere (Xo, Yo, Zo, Ho) is the image of the axis of this Hnear complex.
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Let there be given a linear complex whose equation is of the form

ar -h bs + cp -\- dc -\- e = 0. (20)

The corresponding relation between X, Y, Z, H is also linear, and

hence the linear sphere complex is formed by all the spheres which

intersect a given plane at a given constant angle.

This might also have been deduced from the fact that the com-

plex (20) contains the infinitely distant right line of the xy-plane,

and that therefore the congruence common to it andH = possesses

directrices that intersect this line.

If the complexes (20) and H — are in involution, then the lines

of (20) are imaged as the totality of spheres that intersect a given

plane orthogonally, or, what amounts to the same thing, as the

spheres whose centers lie in a given plane.

The four complexes

X = = Ap-\- Bs, Z = = \A<r -^r,
A

iY = = Ap- Bs, H = = \A(T + ?^r,
A

are obviously in involution by pairs. They also contain as a

common line the infinitely distant hne of the xy-plane.

Thus, the special linear complex {Constant = 0), formed by all

the lines parallel to the xy-plane, in conjunction with the Jour general

linear complexes X = 0, Y = 0, Z = 0, H — 0, forms a system

which we may regard as a degeneration of Mr. Klein s six funda-

mental complexes. In analogy with our use of X, Y, Z, H as non-

homogeneous coordinates for a geometry of four dimensions, with the

sphere as element introduced above, we may also use these quantities

as non-homogeneous line coordinates.

It is interesting to notice that the linear complexes whose equa-

tion is
D

H = XA<r + :rr = constant,
A

and which, according to the form of the equation, are tangent to

one another in a special linear congruence, the directrices of which

unite in the infinitely distant line of the xy-plane, are imaged as a

family of sphere complexes characterized by the property that

all their spheres have equal radii.

25. Various Representations. A surface / and all its tangent

lines at a given point are imaged as a surface F and all the spheres

that are tangent to it at a given point.
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A line on / is imaged as a sphere which is tangent to F along a

curve

If / is a line surface, then F is a sphere envelope,—a tubular

surface.

If, particularly, / is a second degree surface and, hence, contains

two systems of right line generatrices, then we may interpret F
as a sphere envelope in two ways. It is clear that in this manner
we obtain the most general surface possessing this property {the

cyelide).

A developable surface changes into the envelope surface of a

family of spheres in which two consecutive spheres are tangent to

one another throughout,—that is, into an imaginary line surface

whose generatrices intersect the infinitely distant imaginary circle.

These line surfaces, we know, are precisely the ones characterized

by Monge as possessing only one system of curves of curvature.

26. An immediate consequence of Pliicker's conception is that

if /i = and /2 = are the equations of two linear complexes,

then the equation h + )u/2 = 0, where fx is a. parameter, represents

a family of linear complexes that include a common linear con-

gruence. The principle of representation which we employ
transforms this theorem into the following:

The spheres K which intersect two given spheres Si and S2 at given

angles Vi and Vo hold the same relation to infinitely many spheres S.

Corresponding to the two directrices oj the line congruence are two

spheres S, to tvhicb all the spheres K are tangent.

The variable line complex h -\- nh = intersects the complex

// = in a linear congruence whose directrices describe a second-

degree surface, namely, the section of the three complexes h = 0,

/2 = 0, H = 0. Consequently the spheres 5 envelope a cyclide.

In this instance the cyclide degenerates into a circle along which

the different spheres 5 intersect.

We wish to call attention to the fact that our sphere representa-

tion enables us to derive from intersecting discontinuous groups

of lines corresponding groups of spheres, and conversely. As an

instance, we may apply the well-known theory concerning the

twenty-seven right lines of a third-degree surface to prove the

existence of groups of twenty-seven spheres, of which each one is

tangent to ten of the others.

Conversely, piles of spheres present lines of a linear complex

arranged in peculiar, discontinuous arrays.
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§10

Transforming Problems Concerning Spheres into Problems of Lines

27. In this section we shall solve a few simple and famihar

problems concerning spheres by considering the corresponding

line problems that result from our principle of transformation.

Problem I.—How many spheres are tangeyit to Jour given spheres?

The four spheres are transformed into four pairs of lines (/i,

Xi), (h, X2), (h, Xs), {li, \i). The corresponding problem of lines

is, therefore, to find the lines that intersect four lines selected from

the eight in such a way that each pair furnishes one line.

Lines / and X may be arranged in sixteen different groups of

four, in such a way that each group contains only one line from

each pair; thus:

UI2I3I4, X1X2X3X4

/1/2/3X4, X1X2X3/4

But these sixteen groups are also formed in pairs by lines that are

reciprocal polars in respect to H = 0. Consequently the pairs

of transversals (ti, fo) (ri, ts) of two related groups are also one

another's polars in respect to H = 0. The last-mentioned four

lines are therefore imaged as two spheres, and consequently there

exist sixteen spheres arranged in eight pairs, which are tangent

to four given spheres.

Problem 11.—How many spheres intersect Jour given spheres at

Jour given angles?

The spheres which intersect a given sphere at a fixed angle are

imaged as those right lines of two linear complexes which are

mutually reciprocal polars in respect to H = 0. We must there-

fore observe four pairs of complexes, (/i, Xi), (/o, X2), {h, X3),

(/4, X4), and the problem now is, to find those lines which belong

to four of these complexes and are selected in such a way that one

is taken from each pair.

Four linear complexes have two common lines. Therefore, if we

follow the same procedure as was used in the preceding problem, we

shall obtain as the solution sixteen spheres arranged in eight pairs.

Our problem is simplified if one or more of the given angles are

right angles; for then the spheres orthogonal to a given sphere are

imaged as the lines of one complex, which is in involution with

H = (Article 24). If all angles are right angles, the question

is, how many lines are common to four linear complexes in involu-
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tion with H — 0. Two such lines are mutually reciprocal polars

in respect to H = 0, and consequently there is only one sphere

which intersects Jour given spheres orthogonally.

Problem III.—To construct the spheres which intersect Jive given

spheres at a Jixed angle.

Our principle of transformation changes this problem into the

following: To find the linear complexes which contain one line

from each of five given pairs (/i, Xi) . . . {h, X5),

These ten lines may be arranged in thirty-two different groups

of five in a way such that every group contains one line of each,

thus:

{lihhhh), (X1X2X3X4X5)

Note that these groups are mutually reciprocal polars by pairs

in respect to H = 0. Every group gives a line complex and in

all we obtain thirty-two linear complexes conjugate in pairs-

These are imaged as sixteen linear sphere complexes. The sixteen

spheres which are severally intersected at a constant angle by the

spheres of these systems are the solutions of our problem.

Two groups of lines, as (/i, k, X3, X4, U) and (Xi, /o, X^, X4, h)
contain four common lines. It follows that the two corresponding

linear complexes intersect in a linear congruence whose directrices

di and (^2 are the transversals of these four lines.

But the complex H = intersects this congruence along a

second degree surface which is the image of a circle, namely, the

section circle of two of the spheres wanted, as also of the image

spheres of di and ^2. The latter spheres may be defined by saying

they are tangent to four out of five given spheres; hence, by the

aid of the construction just described, we may determine a number

of circles on any of the spheres wanted.

On each oj the sixteen spheres which intersect Jive given spheres at a

constant angle we may construct Jive circles, provided we can coyistruct

the spheres that are tangent to Jour given spheres.

§11

The Relation between the Theory oJ Curves oJ Curvature and the

Theory oJ Principal Tangent Curves

28. The transformation discussed in the previous sections

acquires a peculiar interest on account of the following, in my
opinion, very important theorem:
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To the curves of curvature of a given surface F in space R there

correspond in space r line surfaces which touch the imaged surface

f along principal tangent curves.

The tangents of the surface / are transformed into spheres that

touch F, and the thought lies near that to the principal tangents

of f there correspond the principal spheres of F. This also proves

to be the case.

For / is cut by a principal tangent in three coincident points,

and this shows that three consecutive generatrices of the image

sphere of the principal tangent touch F. But such a sphere cuts

F along a curve which has a cusp in the contact point of the two,

and this is precisely a characteristic of principal spheres.

Note, furthermore, that the direction of this cusp is tangent to

a curve of curvature. It is then seen that two consecutive points

of a principal tangent curve on / are imaged as two lines which

touch F at consecutive points of the same curve of curvature.

Therefore, to the principal tangent curves of f, considered as formed

by points, there correspond imaginary line surfaces that touch F
along curves of curvature.

But curves on / and F arrange themselves in pairs of conjugate

curves in such a way (Article 17, e) that the points of one form the

image of lines that touch the other surface at points of the conju-

gate curve. This proves our theorem.

The following two illustrations may be regarded as verifications

of this proposition.

A sphere in jR is the image of a linear congruence, of which the

two directrices are to be considered the focal surface. We know
that every curve on a sphere is a curve of curvature. Moreover,

the directrices appear as principal tangent curves on every line

surface belonging to a linear congruence.—An hyperboloid / in

space r presents in K a surface which in two ways may be regarded

as a sphere envelope. But the line surfaces in the complex H =
which touch / along its principal tangent curves, that is, along its

right line generatrices, are themselves surfaces of the second degree.

Consequently the curves of curvature of the cyclide F are circles.

An interesting corollary resulting from our theorem is the

following:

Kummer's surface of order and class four has algebraic principal

tangent curves of order sixteen, and these form the complete contact

section betiveen this surface and line surfaces of order eight.
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For, Kummer's surface is the focal surface of the general line

congruence of order and class two which is imaged (provided it

belongs to H = 0) as a fourth degree surface containing the

infinitely distant circle twice (Article 21, 6).

Now, Darboux and Moutard^ have demonstrated that the lines

of curvature of the last-mentioned surface are curves of order

eight, cutting the infinitely distant imaginary circle in eight points.

Hence, these Hnes are imaged as line surfaces of order eight

(Article 21, b).

If we recall that the generatrices of these line surfaces are double

tangents to the Kummer surface, we shall perceive the correctness

of the proposition.

-

It is clear that the degenerations of the Kummer surface, as,

for example, the wave surface, the Pliicker complex plane, the Steiyier

surface of order four and class three,^ a line surface of the fourth

degree, the line surface of the third degree, also have algebraic

principal tangent curves.

29. Mr. Darboux has proved that we can generally determine

a line of curvature in finite space on any surface, the curve of

contact with the imaginary developable, which simultaneously is

circumscribed about the given surface and the infinitely distant

imaginary circle.

In consequence of which we can generally point out one principal

tangent curve on the focal plane of a congruence of a linear complex,

this curve being the geometric locus of points for which the tangent

plane is also the plane associated ivith the li^iear complex.

For the infinitely small spheres which are tangent to F consist

of the points of F and of the above-described imaginary develop)-

able. Consequently the right hnes of the complex H = that

are tangent to the image surface / divide into two systems,—one,

a system of double tangents, and the other, the assemblage of

lines which are tangent to / in the points of a certain curve. But
this curve, being the image of an imaginary line surface which

touches F along a curve of curvature, is one of the principal

tangent curves of/.

This determination of a principal tangent curve becomes

illusory, however, if the focal plane—or, more correctly, a reducible

part of it— , and not the congruence, is given arbitrarily. For on

^ Comptes rendus (1864).

* Klein and Lie, in Berliner Monatsbericbt, Dec. 15, 1870.

' Clebsch has determined the principal tangent curves,of the Steiner surface.
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a surface there is ordinarily only a finite number of points at

which the tangent plane is also the plane associated, through a

given linear complex, with that point.

It is of iiiterest to note that a line surface whose genetrices belong

to a linear complex contains a singly infinite set of points for each

of which the tangent plane is also the plane associated, through the

linear complex, with that poiyit. The assemblage of these points

forms a principal tangent curve, determinable by simple operations,—
differentiation and elimiyiation.

Now, Mr. Clebsch has demonstrated that if one principal

tangent curve is known on a line surface, the others may be found

by quadrature.

The determination of the principal tangent curves on a line surface

belonging to a linear complex depends only on quadrature.

Applying our principle of transformation to the statement

quoted from Clebsch as well as to its corollary proposition we
arrive at the following theorems:

// on a tubular surface (sphere envelope) a non-circular curve of

curvature is known, the others may be found by quadrature.

A singly infinite set of spheres which intersect a given sphere S at

a constant angle envelope a tubular surface on which one curve of

curvature can be given and the others obtained by quadrature.

That a curve of curvature can be found on the tubular surface

is apparent also from the fact that the tubular surface intersects 5
at a constant angle. This curve of intersection must be one of

the curves of curvature of the tubular surface, according to a certain

well-known proposition. This proposition states: If two surfaces

intersect at a constant angle, and the intersection curve is a line

of curvature on one surface it is also such a line on the other.

But on a sphere every curve is a line of curvature.

§12

The Correspondence between the Transformations of the Two Spaces

30. We may, as stated in Article 16, express our transformations

by means of five equations which in the two groups (x, y, z, p, q)

(X, Y, Z, P, Q) determine any quantity in one as a function of

quantities in the other. If one of the two spaces, r, for example,

undergoes a transformation, in which surfaces that are tangent

are changed into similar surfaces, the corresponding transformation
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of the other space will possess the same property. For, the trans-

formation of r may be expressed by five equations in xi, yi, Zi, pi,

qi, and xo, ya, Z2, P2, 92,—the subscripts 1 and 2 refer to the two

states of r—and these relations are changed by the aid of the repre-

sentation equation in x, y, z, p, q and X, Y, Z, P, Q, into relations

in Xi, Yu Zi, Pi, Qi and J^2, Y2, Z2, P2, Q2. Ths proves our

assertion.

If we limit ourselves to linear transformations of r, we find among
the corresponding transformations ofK the following: all movements

(translational, rotational, and helicoidal), the transformation oj

similarity, the transformation by reciprocal radii, the parallel

transformation^ {transferring from one surface to a parallel surface),

a reciprocal transformation studied by Mr. Bonnet.^ All of these,

since they correspond to linear transformations in r, possess the

property that they change curves of curvature into curves of

curvature. We shall now prove that to the general linear trans-

formation of r there corresponds the most general transformation of

R in which lines of curvature are covaria7it curves.

31. In the first place, consider the linear point transformations

of r to which correspond linear point transformations of P. It

is clear that here we meet only with those transformations of R
in which the infinitely distant imaginary circle remains unchanged;

but these we do obtain.

For such a linear point transformation of P carries, on the one

hand, right lines intersecting the circle into similar right lines,

and, on the other hand, spheres into spheres. Thus the corre-

sponding transformation of r is at one and the same time both a

point and a line transformation,—that is, a linear point transforma-

tion. Which was to be proved.

The general linear transformation of P which does not displace

the infinitely distant circle includes seven constants; and it can

be built up by translations and rotations in conjunction with the

similarity transformation. The corresponding transformation

of r, which obviously also involves seven constants, may be

characterized by saying that it carries a hnear complex H =
and a certain one of its lines (the infinitely distant line of the xy-

plane) into itself. We could also define this transformation by

saying that it carries a special linear congruence into itself.

1 Bonnet's "dilation."

.
^ Comptes rendus. Several times in the 1850's.
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The linear point transformation of r corresponding to a transla-

tion of R may be determined analytically. A translation is

expressed by these equations:

X^=^X2 + A; Y^=Y2-hB; Z, = Z, -\- C; H, = H..

These equations and formulas (17) give the relations

ri = r2 + a; 51 = 52 + b; pi = P2 + c; (Ti = o-o + d.

Substituting these expressions in the equations of a right line,

riZi — A'l — pi, SiZi = yi — <ri,

we obtain, as the definition of the required transformation of r,

the following:

zi = Z2; xi = X2 + az2 + c; yi = y2 + 622 + d.

It is likewise an easy matter to determine analytically the

transformation of r corresponding to a similarity transformation

of R. For, by applying (17), the equations

Xi = mXo', Y\ = wii 2; Zi = mZ^'y Hi = mH^

give the relations

Ti = mr2; Pi = mp2; Si = 77152; ci = 77kt2.

These relations define a Hnear transformation of r which may also

be expressed by the equations

zi = Z2; Xi = 771x2; yi = 77iy2.

But these last equations define a linear point transformation which

may be characterized by saying that in it the points of two right

lines remain stationary.

By geometric considerations we shall show that rotations of R
are also changed into transformations of the kind just described.

Let A be the axis of rotation and M and N the two points of the

imaginary circle that are not displaced by the rotation. It is

clear that all the imaginary lines which intersect A and pass

through M and N keep their position during the rotation. It

follows that the same obtains for the Image points of these lines,

which form two right lines parallel to the Ay-plane.

32. Transformation of the space R by reciprocal radii carries

points into points, spheres Into spheres and, finally, right lines

of length zero into similar lines. The corresponding transforma-

tion of r Is therefore a linear point transformation which carries

the complex H = into Itself. If we note further that in the
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transformation by reciprocal radii the points and right line

generatrices of a certain sphere keep their position, it is clear that

the corresponding reciprocal point transformation will not displace

the points of the two right lines.

Mr. Klein^ has called attention to the fact that the transforma-

tion just mentioned may be thought of as consisting of two trans-

formations relative to two linear complexes in involution. In

this case, H = is one complex; the other is the one that corre-

sponds to the assemblage of spheres which intersect orthogonally

the fundamental sphere of the given reciprocal radii transformation.

From which it is clear that to a surface F which Is carried into

itself by a reciprocal radii transformation, there corresponds in

space r a congruence belonging to H = 0, which Is its own recipro-

cal polar in respect to a linear complex in involution with H = 0.

The focal surface (J) of the congruence in question is thus its own
reciprocal polar in respect to both the linear complexes. Conse-

quently the totality of the double tangents of/ is generally broken

up into three congruences, two of which belong to H = and to

the complex in involution with H = 0.

33. Now consider, on the one hand, all line transformations of

r by which right lines that intersect one another are changed into

similar lines^ and, on the other, the corresponding transformations

of R which possess the property that they change spheres into

spheres and spheres that are tangent Into similarly places spheres.

This line transformation changes the assemblage of tangents

to a surface /i into the totality of tangents to another surface /o.

Particularly, the principal tangents of /i change into the principal

tangents of /o,—this irrespective of whether the line transforma-

tion considered is a point transformation or a point-plane

transformation.

By the corresponding transformation of R the triple infinity of

spheres that touch a surface Fi is changed into the totality of

spheres which have a similar relation to F2; and, specifically, the

principal spheres of F2. From this it follows that there is a corre-

spondence between the lines of curvature of Fi and F2, In the sense

that if in a relation 4>iXu Yi, Zi, Pi, Qi) = 0, valid along a line

of curvature for Fi, we substitute for Xi, Yi, Zi, Pi, Qi the values

' "Zur Theorie ," in Matb. Annalen, Vol. II.

^ We must here consider two essentially different cases; for lines that are

concurrent may be changed either into similarly placed lines or into lines that

are coplanar.
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X2, Y2, Z2, P2, Q2, we obtain an equation which is valid for one of

the curves of curvature of Fo.

I shall now prove that every'- transformation oj R oj the form

^ -,/„ ^ „ JZ2 dZ.d^Z^ _^+"Z2 \
Ai - t,\^X2, Y2, Z2,

jj^^> dYo'dX^- •dX^-dY^-)

Y, = F^^X., Y2,Z,,
dXo-dY2^)

/ £/'"+"Z2 \
Zi = F,\^X2, Y., Z2.

dXr"^dY?)

which changes the lines oj curvature oj any given surface into lines

of curvature of the new surface, corresponds, by my representation,

to a linear transformation of r.

The proof of this reduces at once to showing that if a transforma-

tion of r changes the principal tangent curves of any surface into

principal tangent curves of the transformed surface, then inter-

secting right lines are changed by the same transformation into

similarly situated lines.

To begin with, the transformation in question must change right

lines into right lines; because the right line is the only curve which

is a principal tangent curve for every surface containing same.

Furthermore, that to right lines that intersect correspond right

lines in the same relative position may be deduced from the fact

that the developable surface is the only line surface so constituted

that through each of its points passes only one principal tangent

curve. Our transformation, therefore, changes developable

surfaces into developable surfaces.

Hence, our statement is proved.

It may be remarked that, corresponding to the two essentially

different kinds of linear transformations there exist two distinct

classes of transformations for which curves of curvature are covariant

curves.

If among the aforementioned transformations of R we choose

those that are point transformations, we obtain the most general

point transformation of R in which lines of curvature are covariant

curves, a problem first solved by Liouville. That conformity is

preserved even in the smallest parts is due to the fact that infini-

tesimal spheres carry into infinitesimal spheres.

The parallel transformation is known to carry lines of curvature

into lines of curvature, and it is in reaHty easy to verify that the

corresponding transformation of r is a linear point transformation.
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For the equations

Xi = X2; Yi = Y2', Z\ = Z2; Hi = Ho -{- A

are transformed (compare with our observations on translation

in article 31) into relations of the form

Zi = Z2; 'V'l = xo -\- az2 + b; yi = yo + czo + d.

34. Mr. Bonnet has frequently discussed a transformation

which he defines by the equations

Z2 = iZ2\/l + P2^ + q2^; xi = X2 + P2Z2; yi = ys + 9222,

where the two subscripts refer to the given and to the transformed

surface.

He proves that this transformation is a reciprocal one, in the

sense that if apphed twice it leads back to the given surface; that

it transforms lines of curvature into lines of curvature; that, finally,

if Hi and Ho indicate radii of curvature at corresponding points

and if f 1 and fo are z-ordinates of the corresponding centers of

curvature, these relations come about:

fi = I'Ho, Hi = -{^2 («)

Bonnet's transformation is the image oj a transformation of r in

respect to the linear complex Z + iH = 0. This we shall prove.

If we recall that X = 0, Y=0, Z = 0, H = are in involution

by pairs, we shall find that the coordinates of two right lines which

are mutually polars in respect to Z + iH = satisfy these

relations:

X, = X2; Yi = Y2; Zi = iHo; Hi = -iZ2. (^)

But if X, Y, Z, H are interpreted as sphere coordinates, these

formulas determine a relation by pairs among all the spheres of

the space, precisely the same as the transformation of Bonnet.

For the principal spheres of a surface Fi are by this changed into

the principal spheres of surface F2, and herein we recognize Bon-

net's formulas (a). Moreover, if we think of Fi as generated by

point spheres, then the equations (fi) define F2 as an envelope of

spheres whose centers lie in the plane Z = 0; for Z2 = 0, since

Hi = 0. This leads exactly to the geometric construction given

by Mr. Bonnet.



MOBIUS, CAYLEY, CAUCHY, SYLVESTER, AND
CLIFFORD

On Geometry of Four or More Dimensions

(Selections and translations made by Professor Henry P. Manning, Brown
University, Providence, R. I.)

AJI references to a geometry of more than three dimensions before 1827 are

in the form of single sentences pointing out that we cannot go beyond a certain

point in some process because there is no space of more than three dimensions,

or mentioning something that would be true if there were such a space. For

the next fifty or sixty years the subject is treated more positively, but still in

a fragmentary way, single features being developed to be used in some memoir
on a different subject. The following selections are from some of the more

interesting of those memoirs which of themselves, and because of the standing

of the authors in the mathematical world, were to have apparently the chief

influence in the further growth of this subject. The first article, by MObius, is

from Der barycentriscbe Calcul (Leipzig, 1827), a work from which other extracts

have been made on pages 670-677 for another purpose. A brief biographical

note accompanies that translation.

534
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On Higher Space^

§139, page 181. If, given two figures, to each point of one

corresponds a point of the other so that the distance between any

two points of one is equal to the distance between the corresponding

points of the other, then the figures are said to be equal and similar.

§140, pages 182-183. Problem,—To construct a system of n
points which is equal and similar to a given system oj n points.

Solution. Let A, B, C, D,. . ., be the points of the given system,

and A', B', C, D',. . ., the corresponding points of the system to

be constructed. We have to distinguish three cases according

as the points of the first set lie on a line, or in a plane, or in space.

Finally, if the given system lies in space, then A' is entirely

arbitrary, B' is an arbitrary point of the spherical surface which

has A' for center and AB for radius, C is an arbitrary point of

the circle in which the two spherical surfaces drawn from A' with

AC as radius and from B' with BC as radius intersect, and D'

is one of the two points in which the three spherical surfaces

drawn from A' with AD, from B' with BD, and from C with CD
as radii intersect. In the same way as D' will also each of the

remaining points, for example, E', be found, only that of the two

common intersections of the spherical surfaces drawn from A',

B', C'y with AE, BE, CE as radii, that one is taken which hes on

the same side or on the opposite side of the plane A'B'C as D',

according as the one or the other is the case with the corresponding

points in the given system.

For the determination of A' therefore no distance is required,

for the determination of B' one, for the determination ofC two, and

for the determination of each of the remaining n — 3 points three.

Therefore in all

1 + 2 +3(71 - 3) = 3n - 6

distances are required.

Remark.—Thus only for the point D', and for none of the remain-

ing points, are we free to choose between the two intersections

' (From Der barycentriscbe Calcul, Leipzig, 1827, part 2, Chapter 1.)

525
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on the three spherical surfaces falling on opposite sides of the

plane A'B'C These two intersections are distinguished from

each other in this way, that looking from one the order of the

points A', B', C is from right to left, but from the other from left

to right, or, as also we can express it, that the former point lies

on the left, the latter on the right of the plane A'B'C. Now
according as we choose for D' the one or the other of these two

points, so also will the order formed be the same or different from

that in which the point D appears from the points A, B, C. In

both cases are the systems A, B, C, D, . . ., and A', B', C, D', . .

.

indeed equal and similar, but only in the first case can they be

brought into coincidence.

It seems remarkable that solid figures can have equality and

similarity without having coincidence, while alwaj^s, on the con-

trary, with figures in a plane or systems of points on a line equality

and similarity are bound with coincidence. The reason may be

looked for in this, that beyond the solid space of three dimensions

there is no other, none of four dimensions. If there were no

solid space, but all space relations were contained in a single

plane, then would it be even as little possible to bring into coinci-

dence two equal and similar triangles in which corresponding

vertices lie in opposite orders. Only in this way can we accom-

plish this, namely by letting one triangle make a half revolution

around one of its sides or some other line in its plane, until it comes

into the plane again. Then with it and the other triangle will the

order of the corresponding vertices be the same, and it can be made
to coincide with the other by a movement in the plane without

any further assistance from solid space.

The same is true of two systems of points A, B,. . . and A', B',. . .

on one and the same straight line. If the directions of AB and

A'B' are opposite, then in no way can a coincidence of correspond-

ing points be brought about by a movement of one system along

the line, but only through a half revolution of one system in a

plane going through the line.

For the coincidence of two equal and similar systems, A, B, C,

D, . . .and A', B', C, D',. . .in space of three dimensions, in which

the points D, E,. . . and D', E',. . . lie on opposite sides of the planes

ABC and A'B'C, it will be necessary, we must conclude from

analogy, that we should be able to let one system make a half

revolution in a space of four dimensions. But since such a space

cannot be thought, so is also coincidence in this case impossible.
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On Higher Space

Arthur Cayley (1821-1895) was Sadlerian professor of mathematics at

Cambridge. He wrote memoirs on nearly all branches of mathematics and,

in particular created the theory of invariants. The extract is from his memoir,

written in French, "On some Theorems of Geometry of Position," Crclle's

Journal, vol. 31, 1846, pp. 213-227; Mathematical Papers, vol. I, Number SO,

pp. 317-328.

In taking for what is given any system of points and lines we
can draw through pairs of given points new lines, or find new
points, namely, the points of intersection of pairs of given lines,

and so on. We obtain m this way a new system of points and

Hnes, which can have the property that several of the points are

situated on the same hne or several of the lines pass through the

same point, which gives rise to so many theorems of the geometry

of position. We have already studied the theory of several of

these systems; for example, that of four points, of six points

situated by twos on three hnes which meet in a point, of six points

three by three on two hnes, or, more generally, of six points on a

conic (this last case that of the mystic hexagram of Pascal, is not

yet exhausted, we shall return to it in what follows), and also

some systems in space. However, there exist systems more

general than those which have been examined, and whose

properties can be perceived in a manner almost intuitive, and

which, I beheve, are new.

Commence with the case most simple. Imagine a number ?z

of points situated in any manner in space, which we will designate

by 1, 2, 3,. . .n. Let us pass lines through all the combinations

of two points, and planes through ail the combinations of three

points. Then cut these hnes and planes by any plane, the Hnes

in points and the planes in hnes. Let a/S be the point which corre-

sponds to the hne drawn through the two points a and /3, let ^y
be the point which corresponds to that drawn through /3 and y
and so on. Further let a^y be the hne which corresponds to the

plane passed through the three points a, /3, and 7, etc. It is clear

that the three points a/S, ay, and ^y will be situated on the line

527
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a^y. Then, representing by N2, N3, . . the numbers of the com-

binations of n letters 2 at a time, 3 at a time, etc., we have the

following theorem.

Theorem I.

—

We can Jorm a system of N2 points situated 3 at a

time on N3 lines, to wit, representing the points by 12, 13, 23, etc.,

and the lines by 123, etc., the points 12, 13, 23, will be situated on

the line 123, and so on.

For n = 3 and n = 4 this is all very simple; we have three points

on a line, or 6 points, 3 at a time, on 4 lines. There results no

geometrical property. For n = 5 we have 10 points, 3 at a time

on as many lines, to wit the pomts

12 13 14 15 23 24 25 34 35 45,

and the lines

123 124 125 134 135 145 234 235 245 345.

The points 12, 13, 14, 23, 24, 34 are the angles of an arbitrary

quadrilateral,^ the point 15 is entirely arbitrary, the point 25 is

situated on the Hne passing through the points 12 and 15, but its

position on this line is arbitrary. We will determine then the

points 35 and 45, 35 as the point of intersection of the line passing

through 13 and 15 and the line passing through 23 and 25, that is, of

the lines 135 and 235, and the point 45 as the point of intersection

of the lines 145 and 245. The points 35 and 45 will have the

geometrical property of being in a line with 34, or all three will be

in the same line 345.

Page 217.

The general theorem, Theorem I, can be considered as the

expression of an analytical fact, which ought equally well to hold

in considering four coordinates instead of three. Here a geometri-

cal interpretation holds which is appHed to the points in space.

We can, in fact, without having recourse to any metaphysical

notion in regard to the possibihty of a space of four dimensions,

reason as follows (all of this can also be translated into language

purely analytical): In supposing four dimensions of space it is

necessary to consider lines determined by two points, balj-planes

determined by three points, and planes^ determined by four points

^ It is necessary always to have regard to the difference between quadri-

lateral and quadrangle. Each quadrilateral has four sides and six angles;

each quadrangle has four angles and six sides.

^ [His plane is what we call a hyf>erplane and his half-plane is an ordinary

plane, and so he has to distinguish between a plane and an ordinary plane.]
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(two planes intersect in a half-plane, etc.). Ordinary space can

be considered as a plane, and it will cut a plane in an ordinary

plane, a half-plane in an ordinary Hne and a Hne in an ordinary

point. All this being granted, let us consider a number, n, of

points, combining them by two, three, and four, in lines, haif-

planes, and planes, and then cut the system by space considered as a

plane. We obtain the following theorem of geometry of three

dimensions:

Theorem VII.

—

We can form a system of N2 potJits, situated 3

by 3 in N3 lines which themselves are situated 4 6y 4 in N4 planes.

Representing the points by 12, 13, etc., the points situated in the same

line are 12, 13, 23, and lines being represented by 123, etc., as before,

the lines 123, 124, 134, 234 are situated in the same plane, 1234.

In cutting this figure by a plane we obtain the following theorem

of plane geometry:

Theorem VIII.

—

We can form a system of N3 points situated

4 6y 4 on N4 lines. The points oughi to be represented by the notation

123, etc., and the lines by 1234, etc. Then 123, 124, 134, 234 are

in the same line designated by 1234.
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On Higher Space

When Louis Phillippe came to the throne Augustin Louis Cauchy (1789-

1857), was unwilling to take the oath required by the government and for

a while was in exile in Switzerland and Italy, but he returned to Paris in

1838 and finally became professor at the Ecole Polytechnique. For a further

biographical note see page 635. The article here translated is his "Memoir on

Analytic Loci, Comptes Rendxis, vol. XXIV, p. 885 (May 24, 1847); Complete

Works, first series, vol. X, Paris, 1897, p. 292. It is one of a collection of

memoirs on radical polynomials, a radical polynomial being a polynomial

a + 0P + yp^ + . . . 7?p""^

where p is a primitive root of the equation

x» = 1.

Consider several variables, x, y, z,. . . and various explicit func-

tions, u, V, tv,. . . of these variables. To each system of values of

the variables x, y, z, . . . will generally correspond determined

values of the functions u, v, w,. . . Moreover, if the variables

are in number only two or three they can be thought of as repre-

senting the rectangular coordinates of a point situated in a plane

or in space, and therefore each system of values of the variables

can be thought of as corresponding to a determined point. Finally,

if the variables x, y or x, y, z are subject to certain conditions

represented by certain inequalities, the different systems of values

of X, y, z for which the conditions are satisfied will correspond to

different points of a certain locus, and the lines or surfaces which

limit this locus in the plane in question or in space will be repre-

sented by the equations into which the given inequalities are

transformed when in them we replace the sign < or > by the

sign =.

Conceive now that the number of variables x, y, z, . . . becomes

greater than three. Then each system of values of x, y, z, . . . will

determine what we shall call an analytical point of which these

variables are the coordinates, and to this point will correspond a

certain value of each function of .v, y, z, . . . Further, if the variables

are subject to conditions represented by inequalities, the systems

of values of x, y, z, . . . for which these conditions are satisfied will
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correspond to analytical points, which together will form what we

shall call an analytical locus. Moreover, this locus will be limited

by analytical envelopes whose equations will be those to which

the given inequalities are reduced when in them we replace the

sign < or > by the sign =

.

We shall also call analytical line a system of analytical points

whose coordinates are expressed by aid of given linear functions

of one of them. Finally, the distance of two analytical points

will be the square root of the sum of the squares of the differences

between the corresponding coordinates of these two points.

The consideration of analytical points and loci furnishes the

means of clearing up a great many delicate questions, and especially

those which refer to the theory of radical polynomials.
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On Higher Space

James Joseph Sylvester (1814-1897) was barred from certain honors

in England because he was a Jew. He was professor at the University Col-

lege, London, and at the Royal Military Academy in Woolwich. For a short

time he taught at the University of Virginia. When the Johns Hopkins

University was started he went there to take the lead in the advance of higher

mathematics in this country. In 1883 he returned to England and became

Savilian professor of geometry at Oxford. The article quoted is "On the

Center of Gravity of a Truncated Triangular pyramid, and on the Principles of

Barycentric Perspective." It appeared in the Philosophical Magazine, vol.

XXVI, 1863, pp. 167-183; Collected Mathematical Papers, vol. II, Cambridge,

1908, pp. 342-357.

There Is a well-known geometrical construction for finding the

center of gravity of a plane quadrilateral which may be described

as follows.

Let the Intersection of the two diagonals (say Q) be called the

cross-center, and the Intersection of the lines bisecting opposite

sides (say 0) the mid-center (which, it may be observed, is the

center of gravity of the four angles viewed as equal weights),

then the center of gravity Is in the line joining these two centers

produced past the latter (the mid-center), and at a distance from

it equal to one-third of the distance between the two centers.

In a word, If G be the center of gravity of the quadrilateral, QOG
will be In a right line and OG = ^iQO.
The frustum of a pyramid Is the nearest analogue In space to a

quadrilateral In a phme since the latter may be regarded as the

frustum of a triangle. The analogy, however. Is not perfect,

inasmuch as a quadrilateral may be regarded as a frustum of

cither of two triangles, but the pyramid to which a given frustum

belongs is determinate. Hence a priori reasonable doubts might

have been entertained as to the possibility of extending to the

pyramidal frustum the geometrical method of centering the plane

quadrilateral. The investigation subjoined dispels this doubt,

and will be found to lead to the perfect satisfaction, under a

somewhat unexpected form, of the hoped-for analogy.
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Let abc and a$y be the two triangular faces, and aa, 6/3, and cy

the edges of the quadrilateral faces of a pyramidal frustuni-

Then this frustum may be resolved in six different ways into three

different pyramids as shown in the annexed double triad of

schemes.

a
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those of these centers themselves, these quasi-images of the

centers in question will have for their coordinates

0, 2^,27,

2a, 0, 27,

2a, 26, 0.

These points are, accordingly, the centers of the lines ^7, 7a, and

ab, respectively.

And a similar conclusion will apply to each of the six schemes.

Hence, using in general (p, q) to mean the middle of the line pq,

and by the collocation of the symbols for three points understand-

ing the plane passing through them, it is clear

1. That the six planes

(0, 7) (7. a) (a, b) (7, a) (a, b) (6, c) (a, /3) (^, c) (c, a)

(7, P) (^, a) (a, c) (a, 7) (t, b) (6, a) (/3, a) (a, c) (c, b)

will meet in a single point which may be called the cross-center,

being the true analogue of the intersection of the two diagonals of

a quadrilateral figure in the plane.

2. That if we join this cross-center (say Q) with the mid-

center, and produce QO to G, making OG = }iQO, G will be the

center of the frustum abca^y.^

It may be satisfactory to some of my readers to have a direct

verification of the above.

Let then

. _ a^bc — a^fiy p _ ab^c — q:j827 ^ _ abc^ — a/37^

abc — a&y
'

ahc — a^y
'

abc — afiy

A moment's reflection will serve to show that A, B, C are the

coordinates of the center of the frustum.

^

' [The three centers of the three tetrahedrons He in a plane through the

center G. Drawing lines from tiicse three points and G to the mid-center 0,

and laying off on these lines produced beyond any given multiples of these

lines, we shall have three points corresponding to the three given points and a

fourth point Q corresponding to G, all lying in a plane parallel to the first plane.

We can do this for any three of the six planes through G and get planes whose

intersection will be Q, and then from Q and we can get G by reversing the

process. If we take the multiplier to be 2, the three new points will be very

simple as pointed out in the footnote.)

2 (These expressions can be obtained, for example, by considering the frustum

as the difference of two pyramids with a common vertex at the origin.)
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Again, the first three of the six planes last referred to will be

found to have for their equations, respectively,

^yx 4- yay + abz = 2ay{b + /3),

bcx + yay + abz = 2ba{c + 7),

jScx + cay -\- ol^z — 2c,8(a + a).

The determinant

The determinant
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that above cited, which may be expressed in general terms by aid

of a simple definition. Agree to understand by the opposite to a

point L on a limited line AB a point M such that L and M are at

equal distances from the center of AB but on opposite sides of it.

Then we may affirm that the center of a quadrilateral is the

center of the triangle whose apices are the intersection of its two

diagonals (that is, the cross-center) and the opposites of that

intersection on these two diagonals, respectively. So now, if we
agree to understand by opposite points on a limited triangle two

points on a line with the center of the triangle and at equal distances

from it on opposite sides, and bear in mind that the cross-center

of a pyramidal frustum is the intersection of either of two distinct

ternary systems of triangles which may be called the two systems

of cross-triangles,^ we may affirm that the center of a pyram-

idal frustum is the center of a pyramid whose apices are

its cross-center, and the opposites of that center on the three

components of either of its systems of cross-planes. This is

easily seen, for if we take the first of the two systems, their

respective centers will be

4a 26 + 2/3 4t 4a 46 2c + 27 2a + 2a: 4^ 4c

T' 3 ' 3 ' 3
'

3
' 3 ' 3 ' 3

'
3

Thus the three opposites to the cross-center whose coordinates are

- 2A + 2(a + a), -2B 4 2(6 + 0), -IC + 2(c + 7),

will have for their x coordinates^

2a
\ -I A 1 1

2a; ^ , 2a 2a ^ .

-^ 2a + 2A; -2a + -3- + 2A; —;. j -\- 2A;

for their y coordinates

^6 _ 23 + 2B; -26 + f + IB; -?^ -^- + IB;

and for their z coordinates

y - 27 + 2C; -2c + ^ + 2C; -y - -^^ + 2C;

' From the description given previously, it will be seen that a cross-triangle

of the frustum is one which has its apices at the centers of cither diagonal of any

quadrilateral face and of the two edges conterminous but not in tiie same face

with that diagonal.

* These are not arranged so that the three coordinates of a point are in a

column. There is a certain cyclical shifting in the second and third lines.

If we think of the nine coordinates in the arrangement here as forming a

determinant, we get the coordinates of the three opposites separately by

taidng the three negative diagonals.
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and consequently the center of the pyramid whose apices are the

cross-center and its three opposites will be A, B, C, that is, will be

the center of gravity of the frustum, as was to be shown.

^

It is clear that these results may be extended to space of higher

dimensions. Thus in the corresponding figure in space of four

dimensions bounded by the hyperplanar quadrilaterals- abed

and a^yS, which will admit of being divided into four hyperpyra-

mids in 24 different ways, all corresponding to the type

a b c d a

b c d a ^

c d a ^ y
d a ^ y 8,

1 I at one time supposed that a, b, c, a, /3, y, formed two systems of diagonal

planes, and that there were thus two cross-centers, and dreamed a dream of the

construction for the center of gravity of the pyramidal frustum based upon
this analogy, inserted (it is true as a conjecture only) in the Quarterly Journal

oj Mathematics, but the nature of things is ever more wonderful than the

imagination of men's minds, and her secrets may be won, but cannot be

snatched from her. Who could have imagined d priori that for the purposes of

this theory a diagonal of a quadrilateral was to be viewed as a line drawn
through two opposite angles of the figure regarded, not as themselves, but as

their own center of gravity. Some of my readers may remember a single case

of a similar autometamorphism which occurred to myself in an algebraical

inquiry, in which I was enabled to construct the canonical form of a six-

degreed binary quantic from an analogy based on the same for a four-degreed

one, by considering the square of a certain function which occurs in the known
form as consisting of two factors, one the function itself, the other a function

morphologically derived from, but happening for that particular case to coin-

cide with the function. The parallelism is rendered more striking from the

fact of 4 and 6 being the numbers concerned in each system of analogies,

those numbers referring to degrees in one theory and to angular points in the

other. It is far from improbable that they have their origin in some common
principle, and that so in like manner the parallelism will be found to extend in

general to any quantic of degree 2n, and the corresponding barycentric theory

of the figure with 2n apices (n of them in one hyperplane and n in another),

which is the problem of a hyperpyramid in space of n dimensions. The proba-

bility of this being so is heightened by the fact of the barycentric theory admit-

ting, as is hereafter shown, of a descriptive generalization, descriptive proper-

ties being (as is well known) in the closest connection with the theory of

invariants. Much remains to be done in fixing the canonic forms of the higher

even-degreed quantics, and this part of their theory may hereafter be found to

draw important suggestions from the hypergeometry above referred to, if the

supposed alliance have a foundation in fact.

^ [This word should be tetrahedrons.]
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there will be a cross-center given by the intersection of any four

|

out of 24 hyperplanes resoluble into six sets of four each/

—

one such set of four being given in the scheme subjoined, where in

general pqr means the point which is the center of (p, q, r) and the

collocation of four points means the hyperplane passing through

them, namely,

^y8 y8a 6ab abc,^

y8a bab abc bca,

5a/3 a0c ficd cdb,

a^y ^yd yda dac.

The mid-center will mean the center of the eight angles a, 6, c, d,

a, /3, 7, 5, regarded as of equal weight, and to find the center of

the hyper-pyramidal frustum we may either produce the line

joining the cross-center with the mid-center through the latter

and measure off three-fifths of the distance of the joining line on

the part produced (as in the preceding cases we measured off two-

fourths and one-third of the analogous distance) or we may take

the four opposites of the cross-center on the four components of

any one of the six systems of hyperplanar tetrahedrons of which

it is the intersection, and find the center of the hyperpyramid so

formed. The point determined by either construction will be

the center of gravity of the hyperpyramidal frustum in question.

And so for space of any number of dimensions. It will of course be

seen that a general theorem of determinants' is contained in

1 [The second, third, and fourth of a set may be obtained from the first by

taking the cylical permutations of the Roman letters with the same permuta-

tions of the Greek letters.]

2 [The last letters of these four lines should be c, d, a, h.\

2 We learn indirectly from this how to represent under the form of determi-

nants of the ith order, and that in a certain number of ways, the general

expressions

{hk. . .k - \i\i. . .\iY-^

and

lMhh--li -X2X3...Xi)(/i4.../i - Xi\,. . .XiY-"

a strange conclusion to be able to draw incidentally from a hyper-theory of

center of gravity I Thus, for example, on taking i = 4 wc shall find

bed cda dafi a/Jy

^yb cda dal3 ajiy _ / i j _ a x\s

byS yda dab abt

bed c5a SalS abc
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the assertion that for space of n dimensions there will be ?i! quasi-

planes all intersecting in the same point, as also in the general

relation connecting this point (the cross-center) with the mid-

center and center of gravity, of each of which it is easy to assign

the value of the coordinates in the general case.

And again

adibc + 0+ 0y)
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On Higher Space

William Kingdon Clifford (1848-1879), was professor of mathematics and

mechanics in University College, London from 1871 to the time of his death.

The following article is his solution of a "Problem in Probability," in the

Educational Times, January, 1866, Problem 1878, proposed by himself. A
line oj length a is broken up into pieces at random; prove that (1) the chance that

they cannot be made into a polygon oj n sides is n2^~"; and (2) the chance that the

a"
sum oj the squares described on them does not exceed -,—^—rr is

Mn-l r(n) 1

\n- - n) r{3^(n + 1)1' nVi

Solution by the proposer. November, 1866; reprinted in Mathematical

Questions with Solutions, vol. VI, London, 1866, pp. 83-87; also in Mathemati-

cal Papers, London, 1882, pp. 601-607.

1. Let US define as follows. A point is taken at random on a

(finite or infinite) straight line when the chance that the point hes

on a finite portion of the line varies as the length of that portion.

And a line is broken up at random when the points of division are

taken at random.

Now the n pieces will always be capable of forming a polygon

except when one of them is greater than the sum of all the rest,

that is, greater than half the line. The first part of the question

may therefore be stated thus: n — 1 points are taken at random

on a finite line; to find the chance that some one of the intervals shall

be greater than half the line.

4. Third Solutio7i.—To make this clear I will state first the

previously known analogous solutions in the cases where n = 3

and n = 4. When the line is divided into three pieces, call them

X, y, and z, and take their lengths for the coordinates of a point

P in geometry of three dimensions. Then, since

X -\- y -{- z '^ a (1)

and X, y, and z are all positive, the point P must be somewhere on

the surface of the equilateral triangle determined on the plane (1)

by the coordinate planes. Now consider those points on the
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triangle for which x > ^a. These are cut off by the plane

X = Ha, and it is easy to see that this plane cuts off from one
corner of the triangle a similar triangle of half the linear dimen-
sions, and therefore of one-fourth the area. Now there are three

corners cut off. Their joint area is therefore three-fourths of

the area of the triangle, and the chance required is accordingly %.
When the line is divided into four pieces, take the first three

pieces as the coordinates of a point in space. Then we have
X + y + z < a and x, y, and z all positive. So the point must
lie within the content of the tetrahedron bounded by the plane

X -{- y + z = a and the coordinate planes. Now if x + y -\- z

< Ha the fourth piece must be greater than 3^a. The points

for which this is the case are cut off by the plane x -{- y -\- z = 3^a
and it is easily seen as before that this plane cuts off from one
corner of the tetrahedron a similar tetrahedron of half the linear

dimensions, and therefore of one eighth the volume. So also the

plane x = H^ cuts off from another corner a similar tetrahedron

of half the linear dimensions. Since therefore there are four

corners cut off, their joint volume is four-eighths or one-half of

the volume of the tetrahedron, and the chance required is accord-

ingly H.
5. Now consider the analogous case in geometry of n dimensions.

Corresponding to a closed area and a closed volume we have some-

thing which I shall call a confine. Corresponding to a triangle

and to a tetrahedron there is a confine with n + 1 corners or

vertices which I shall call a prime confine^ as being the simplest

form of confine. A prime confine has also n + 1 faces, each of

which is, not a plane, but a prime confine of n — 1 dimensions.

Any two vertices may be joined by a straight line, which is an edge

of the confine. Through each vertex pass n edges. A prime

confine may be regular, which it is when any three vertices form

an equilateral triangle; or rectangular, which it is when the edges

through some one vertex are all equal and at right angles to one

another.

To solve the question for general values of 7i we may adopt as a

type either of the geometrical solutions given for the cases n = 3

and n = 4. First take the lengths of the n pieces for the coordi-

nates of a point in geometry of n dimensions. Then, since their

sum is a and they are all positive, the point must lie within a

' [The term now commonly used is simplex. In space of four dimensions

tiiis is a pentabedroid.]
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certain regular prime confine of n — 1 dimensions. The supposi-

tion that a certain piece is greater than 3''^a cuts off from one

corner of the confine a similar confine of half the hnear dimensions

and therefore of 2^~" times the content. As there are n corners*

their joint content is n2^~" times the content of the confine. The
chance required is consequently n2^~". Or take the lengths of the

first n — 1 pieces as the coordinates of a point in geometry of n — 1

dimensions. The point will then lie within a certain rectangular

confine of n — 1 dimensions, and the investigation proceeds as

before, the n corners being cut ofi" in the same manner.

6. It will be seen that this third solution involves in a geometrical

form the assumption of which some sort of proof was given in the

first solution. Let us make this extension of our fundamental

definition:—A point is taken at random in a (finite or infinite)

space of n dimensions when the chance that the point Hes in a

finite portion of the space varies as the content of that portion.

The assumption is that when the lengths of the pieces into which

a line is broken up are taken as coordinates of a point, then if the

line is broken up at random the point is taken at random and

vice-versa. The proof of this assumption may be shown to involve

a geometrical proposition equivalent to the integration by parts

of the differential in Art. 3.^

Making this assumption, we may solve the second part of the

question by the method of the third solution of the first part. I

will first state the previously known analogous solution of the

case where n = 3. The question in this case is, // a line oj length

a be broken into three pieces at random find the chance that the sum
oj the squares of these pieces shall be less than y^a"^. Take the lengths

of the three pieces for coordinates x, y, and z of a point P in

geometry of three dimensions. Then, as before, the point must

lie somewhere in the area of the equilateral triangle determined

on the plane x -\- y -\- z = a by the coordinate planes. But if

also the sum of the squares of the pieces is less than a certain

quantity m^ then the point P must lie within a certain circle

* [The assumption of which "some sort of a proof was given in the first

solution " is that the chance that the rth piece reckoning from one end of the

line shall be greater than ]/^a is equal to the chance that the (r + l)th piece

sha I be greater than ^^a. In the second solution (Art. 3) the chance that the

rth piece shall be greater than }'^a is proved equal to the integral

(n - 1)!

(n -r)\{r - 2)!Jo \a) \2 a) a]

I
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determined on the plane x -\- y -{ z ~ a by the sphere x^ + y-

4-2^ = m^. Now in the case where m^ = }/^a^ this circle is the

circle inscribed in the equilateral triangle, so that the question

reduces itself to this one :

—

To find in terms of an equilateral triangle the area of its inscribed

circle.

Now let us go a little further and consider the case in which

n = 4. Here we shall have to take a point P in geometry of four

dimensions. The point must lie somewhere in the regular tetra-

hedron determined on the hyperplane x-{-y-\-z-\-w = a by
the coordinate hyperplanes. If also the sum of the squares of the

pieces is less than a certain quantity m^ then the point P must lie

within a certain sphere determined on the hyperplane x -{ y
-\- z -{- IV = a by the quasi-sphere x^ -{- y^ -}- z^ -\- w^ = m^. In

the particular case where m is the perpendicular from the vertex

on the base of a rectangular tetrahedron each of whose equal edges

is of length a, or m' = 3^^a^ this sphere is the sphere inscribed in

the regular tetrahedron. ^ The question is therefore reduced to

this one:

—

"^

To find in terms of a regular tetrahedron the volume of its inscribed

sphere.

Now a similar reduction holds in the general case; namely, the

question can always be reduced to this one:

—

To find in terms of a regular prime confine of n — I dimensions

the content of its inscribed quasi-sphere.

This question I proceed to solve.

7. Let n — 1 = p. The perpendicular from any vertex on the

oppositeface of a regular prime confine in p dimensions

m" (edge).

For let be the vertex in question, OA, OB,. . .the p edges

through 0. Draw through each vertex A a space of p — 1

dimensions parallel to the face opposite to A. The p spaces thus

drawn will intersect in a point P such that OP is the diagonal of

a confine analogous to a parallelogram and to a parallelepiped.

Then OP is p times the perpendicular from on the opposite

1 [Each face of the regular tetrahedron is the base of a rectangular tetrahe-

dron formed with its vertices and the origin, and the perpendicular from the

origin upon this face will be the radius of a hypersphere which is tangent to

the face, and so intersects the hyperplane of the tetrahedron in the inscribed

sphere.]
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face of the regular confine; for the perpendicular is the projection

of one edge at a certain angle, while OP is the projection at the

same angle of a broken line consisting of p edges. ^

We have also^

0P2 = OA"" -h 0B^ + 0O + ...+ 20A.0B cos AOB +...
= S.0A2 + i:.OA.OB [since cos AOB = H, etc.]

= [p + y2P(p - 1)].0A2 = lApip + l).OA\

OP^ p -f 1
therefore (perpendicular) ^ = —— = — .(edge) 2.

If the confine were rectangular, or all the angles at right angles,

we should have cos AOB = 0, etc., and so

1
"-

(perpendicular) 2 = -(edge)^ =
p n — V

which proves that the question does always reduce itself to the

one now under consideration.

The content of a regular prime confine in p dimensions whose edge

is a is^

p!\ 2- J

Suppose this formula true for p — 1 dimensions; that is, let

^-'
(p - l)!V2--7

Now, content of confine = - X perpendicular X content of face.

or

^' p\ 2p )
"'-' A 2' )

Hence the formula, if true for one value of p, is true for the next.

It can be immediately verified in the case of p = 1. Therefore

it is generally true.

The radius of the inscribed quasi-spbere p = -p^—7—;

—

tttu-
{2p(p + 1)}^^^

1 (The perpendicular produced to p times its length will give us OP. In

fact, if we take the edges through for a system of oblique axes the coordinates

of P will all be equal and the line OP must make equal angles with the axes.]

^ (See Salmon's Geometry oj Three Dimensions, fourth edition, Dublin,

1882, p. 11.]

3 (The edge in our case is a y/l, but the ratio of the inscribed quasisphere

does not depend on the length of the edge.]
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We can divide the regular confine into p + 1 equal confines,

each having the center of the inscribed quasi-sphere for vertex,

and the content of one of these = — X content of face. But the
P

sum of them all is equal to the content of the whole confine.

Hence (p + l)p = perpendicular of confine^

P =

The content oj the quasi-sphere = pp

i2p(p+l)r^

For it is the value of /// . . .dx dy dz. . ., the integral being so taken

as to give to the variables all values consistent with the condition

that x^ + y^ + z^ + . . . is not greater than p^ (see Todhunter's

Integral Calculus, Art.^ 271). Let Cp denote this content.

Then

" ^ nViP + 1) (2p^ + ipY"-^ ' TQ4P + 1)'

Therefore

C, I T Y' r(p + i) 1

'p \p' + P/Vp \p' + pf ny2P + 1) (p + 1)^^

Restore n — 1 for p and we get the answer to the question,

namely,

/ T
Y''"

"
'' r(n) l_

\n'-nj "rjHCn+l)} '

n'^^'

8. The following are applications of the same method.

// a line be broken up at random into n pieces, the chance of an

assigned two oj them {the pth and qth from one end) being together

greater than half the line is n2^~".

If n pieces be cut off at random, one Jrom each oj n equal lines, the

chance that the pieces cannot be made into a polygon is j- ^.

' [Two confines having the same base are to each other as their altitudes]

^ fin some editions at least (4th and 7th) this is Art. 275.]



IV. FIELD OF PROBABILITY

Fermat and Pascal on Probability

(Translated from the French by Professor Vera Sanford, Western Reserve

University, Cleveland, Ohio.)

Italian writers of the fifteenth and sixteenth centuries, notably Pacioli

(1494), Tartaglia (1556), and Cardan (1545), had discussed the problem of

the division of a stake between two players whose game was interrupted

before its close. The problem was proposed to Pascal and Fermat, probably

in 1654, by the Chevalier de Mere, a gambler who is said to have had unusual

ability "even for the mathematics." The correspondence which ensued

between Fermat and Pascal, was fundamental in the development of modern

concepts of probability, and it is unfortunate that the introductory letter from

Pascal to Fermat is no longer extant. The one here translated, written in

1654, appears in the CEuvres de Fermat (ed. Tannery and Henry, Vol. II, pp.

288-314, Paris, 1894) and serves to show the nature of the problem. For a

biographical sketch of Fermat, see page 213; of Pascal, page 67. See also

pages 165, 213, 214, and 326.

Monsieur,

If I undertake to make a point with a single die in eight throws,

and if we agree after the money is put at stake, that I shall not

cast the first throw, it is necessary by my theory that I take 3^

of the total sum to be impartial because of the aforesaid first

throw.

And if we agree after that that I shall not play the second throw,

I should, for my share, take the sixth of the remainder that is

5/^6 of the total.

If, after that, we agree that I shall not play the third throw, I

should to recoup myself, take 3^ of the remainder which is ^^^^g

of the total.

And if subsequently, we agree again that I shall not cast the

fourth throw, I should take 3^ of the remainder or ^^^^296 of

the total, and I agree with you that that is the value of the fourth

throw supposing that one has already made the preceding plays.

But you proposed in the last example in your letter (I quote your

very terms) that if I undertake to find the six in eight throws and

if I have thrown three times without getting it, and if my opponent

546
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proposes that I should not play the fourth time, and if he wishes

me to be justly treated, it is proper that I have ^^^^gge of the

entire sum of our wagers.

This, however, is not true by my theory. For in this case, the

three first throws having gained nothing for the player who holds

the die, the total sum thus remaining at stake, he who holds the

die and who agrees to not play his fourth throw should take 3^
as his reward.

And if he has played four throws without finding the desired

point and if they agree that he shall not play the fifth time, he will,

nevertheless, have }-q of the total for his share. Since the whole

sum stays in play it not only follows from the theory, but it is

indeed common sense that each throw should be of equal value.

I urge you therefore (to write me) that I may know whether we
agree in the theory, as I believe (we do), or whether we differ only

in its application.

I am, most heartily, etc.,

Fermat.

Pascal to Fermat

Wednesday, July 29, 1654

Monsieur,

—

1. Impatience has seized me as well as it has you, and although

I am still abed, I cannot refrain from telling you that I received

your letter in regard to the problem of the points^ yesterday eve-

ning from the hands of M. Carcavi, and that I admire it more than

I can tell you. I do not have the leisure to write at length, but,

in a word, you have found the two divisions of the points and of

the dice with perfect justice. I am thoroughly satisfied as I can

no longer doubt that I was wrong, seeing the admirable accord in

which I find myself with you.

I admire your method for the problem of the points even more
than that of the dice. I have seen solutions of the problem of the

dice by several persons, as M. le chevalier de Mere, who proposed

the question to me, and by M. Roberval also. M. de Mere has

^ [The editors of these letters note that the word parti means the division of

the stake between the players in the case when the game is abandoned before

its completion. Parti des des means that the man who holds the die agrees to

throw a certain number in a given number of trials. For clarity, in this trans-

lation, the first of these cases will be called the problem of the points, a term

which has had a certain acceptance in the histories of mathematics, while the

second may by analogy be called the problem of the dice.]
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never been able to find the just value of the problem of the points

nor has he been able to find a method of deriving it, so that I

found myself the only one who knew this proportion.

2. Your method is very sound and it is the first one that came
to my mind in these researches, but because the trouble of these

combinations was excessive, I found an abridgment and indeed

another method that is much shorter and more neat, which I

should like to tell you here in a few words; for I should like to

open my heart to you henceforth if I may, so great is the pleasure

I have had in our agreement. I plainly see that the truth is the

same at Toulouse and at Paris.

This is the way I go about it to know the value of each of the

shares when two gamblers play, for example, in three throws

and when each has put 32 pistoles at stake:

Let us suppose that the first of them has two (points) and the

other one. They now play one throw of which the chances are

such that if the first wins, he will win the entire wager that is at

stake, that is to say 64 pistoles. If the other wins, they will be

two to two and in consequence, if they wish to separate, it follows

that each will take back his wager that is to say 32 pistoles.

Consider then. Monsieur, that if the first wins, 64 will belong

to him. If he loses, 32 will belong to him. Then if they do not

wish to play this point, and separate without doing it, the first

should say "I am sure of 32 pistoles, for even a loss gives them to

me. As for the 32 others, perhaps I will have them and perhaps

you will have them, the risk is equal. Therefore let us divide the

32 pistoles in half, and give me the 32 of which I am certain besides."

He will then have 48 pistoles and the other will have 16.

Now let us suppose that the first has two points and the other

none, and that they are beginning to play for a point. The chances

are such that if the first wins, he will win all of the wager, 64

pistoles. If the other wins, behold they have come back to the

preceding case in which the first has two points and the other one.

But we have already shown that in this case 48 pistoles will

belong to the one who has two points. Therefore if they do not

wish to play this point, he should say, "If I win, I shall gain all,

that is 64. If I lose, 48 will legitimately belong to me. Therefore

give me the 48 that are certain to be mine, even if I lose, and let

us divide the other 16 in half because there is as much chance that

you will gain them as that I will." Thus he will have 48 and 8,

which is 56 pistoles.
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Let us now suppose that the first has but 07ie point and the

other none. You see, Monsieur, that if they begin a new throw,

the chances are such that if the first wins, he will have two points

to none, and dividing by the preceding case, 56 will belong to him.

If he loses, they will be point for point, and 32 pistoles will belong

to him. He should therefore say, "If you do not wish to play,

give me the 32 pistoles of which I am certain, and let us divide

the rest of the 56 in half. From 56 take 32, and 24 remains.

Then divide 24 in half, you take 12 and I take 12 which with 32

will make 44.

By these means, you see, by simple subtractions that for the

first throw, he will have 12 pistoles from the other; for the second,

12 more; and for the last 8.

But not to make this more mysterious, inasmuch as you wish

to see everything in the open, and as I have no other object than

to see whether I am wTong, the value (I mean the value of the stake

of the other player only) of the last play of two is double that of

the last play of three and four times that of the last play of Jour

and eight times that of the last play of five, etc.

3. But the ratio of the first plaj-s is not so simple to find. This

therefore is the method, for I wish to disguise nothing, and here is

the problem of which I have considered so many cases, as indeed

I was pleased to do: Being given any number of throws that one

wishes, io find the value of the first.

For example, let the given number of throws be 8. Take the

first eight even numbers and the first eight uneven numbers as:

2, 4, 6, 8, 10, 12, 14, 16

and

1, 3, 5, 7, 9, 11, 13, 15.

Multiply the even numbers in this way: the first by the second,

their product by the third, their product by the fourth, their

product by the fifth, etc.; multiply the odd numbers in the same
way: the first by the second, their product by the third, etc.

The last product of the even numbers is the denominator and the

last product of the odd numbers is the numerator of the fraction

that expresses the value of the first throw of eight. That is to

say that if each one plays the number of pistoles expressed by the

product of the even numbers, there will belong to him [who

forfeits the throw] the amount of the other's wager expressed by
the product of the odd numbers. This may be proved, but with
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much difficulty by combinations such as you have imagined, and

I have not been able to prove it by this other method which I am
about to tell you, but only by that of combinations. Here are

the theorems which lead up to this which are properly arithmetic

propositions regarding combinations, of which I have found so

many beautiful properties:

4. If from any number of letters, as 8 for example,

A, B, C, D, E, F, G, H,

you take all the possible combinations of 4 letters and then all

possible combinations of 5 letters, and then of 6, and then of 7,

of 8, etc., and thus you would take all possible combinations, I

say that if you add together half the combinations of 4 with each

of the higher combinations, the sum will be the number equal to

the number of the quaternary progression beginning with 2 which

is half of the entire number.

For example, and I shall say it in Latin for the French is good

for nothing:

If any number whatever of letters, for example 8,

A, B, C, D, E, F, G, H,

be summed in all possible combinations, by fours, fives, sixes, up

to eights, I say, if you add half of the combinations by fours, that

is 35 (half of 70) to all the combinations by fives, that is 56, and all

the combinations by sixes, namely 28, and all the combinations

by sevens, namely 8, and ail the combinations by eights namely

1, the sum is the fourth number of the quaternary progression

whose first term is 2. I say the fourth number for 4 is half of 8.

The numbers of the quaternary progressions whose first term

is 2 are

2, 8, 32, 128, 512, etc.,

of which 2 is the first, 8 the second, 32 the third, and 128 the

fourth. Of these, the 128 equals:

+ 35 half of the combinations of 4 letters

+ 56 the combinations of 5 letters

4- 28 the combinations of 6 letters

4- 8 the combinations of 7 letters

+ 1 the combinations of 8 letters.

5. That is the first theorem, which is purely arithmetic. The

other concerns the theory of the points and is as follows:
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It is necessary to say first: if one (player) has one point out of 5,

for example, and if he thus lacks 4, the game will infallibly be

decided in 8 throws, which is double 4.

The value of the first throw of 5 in the wager of the other is the

fraction which has for its numerator the half of the combinations

of 4 things out of 8 (I take 4 because it is equal to the number of

points that he lacks, and 8 because it is double the 4) and for the

denominator this same numerator plus all the higher combinations.

Thus if I have one point out of 5, ^^^28 of the wager of my
opponent belongs to me. That is to say, if he had wagered 128

pistoles, I would take 35 of them and leave him the rest, 93.

But this fraction ^^{28 is the same as ^^^i84, which is made
by the multiplication of the even numbers for the denominator

and the multiplication of the odd numbers for the numerator.

You will see all of this without a doubt, if you will give yourself

a little trouble, and for that reason I have found it unnecessary

to discuss it further with you.

6. I shall send you, nevertheless, one of my old Tables; I have
not the leisure to copy it, and I shall refer to it.

You will see here as always, that the value of the first throw is

equal to that of the second, a thing which may easily be proved by
combinations.

You will see likewise that the numbers of the first line are always

increasing; those of the second do the same; those of the third the

same.

But after that, those of the fourth line diminish; those of the

fifth etc. This is odd.

If each wagers 256 on

•?r
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6

throws
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If each wagers 256 on
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First six
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I proposed the lemma which every one accepts, that the sum
of as many numbers as one wishes of the continuous progression

from unity as

1. 2, 3. 4,

being taken by twos is equal to the last term 4 multiplied into the

next greater, 5. That is to say that the sum of the integers^ in

A being taken by twos is equal to the product

AX{A + 1).

I now come to my theorem

:

If one be subtracted from the difference of the cubes of any two
consecutive numbers, the result is six times all the numbers
contained in the root of the lesser number.

Let the two roots R and 5 differ by unity. I say that

jR3 _ 53 _ J js equal to six times the sum of the numbers contained
in S.

Let 5 be called A, then K is A + L Therefore the cube of the

root K or A + 1 is

A3 + 3A2 + 3A + P.

The cube of 5, or A, is A^, and the difference of these is R^ — S^;

therefore, if unity be subtracted, 3A^ + 3A is equal to R^ — S^
— I. But by the lemma, double the sum of the numbers con-

tained in A or 5 is equal to A X (A + 1); that is, to A^ + A.

Therefore, six times the sum of the numbers in A is equal to

3A3 + 3A. But 3A3 + 3A is equal to R^ - S^ - I. Therefore

jR3 _ 53 _ I jg equal to six times the sum of the numbers con-

tained in A or 5. Quod erat demonstrandum. No one has caused

me any difficulty in regard to the above, but they have told me
that they did not do so for the reason that everyone is accustomed

to this method today. As for myself, I mean that without doing

me a favor, people should admit this to be an excellent type of

proof. I await your comment, however, with all deference. All

that I have proved in arithmetic is of this nature.

9. Here are two further difficulties: I have proved a plane

theorem making use of the cube of one line compared with the

cube of another. I mean that this is purely geometric and in the

greatest rigor. By these means I solved the problem: "Any
four planes, any four points, and any four spheres being given,

to find a sphere which, touching the given spheres, passes through

M" • • des nombres contenus dans A."]
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the given points, and leaves on the planes segments in which given

angles may be inscribed;"^ and this one: "Any three circles, any

three points, and any three lines being given, to find a circle which

touches the circles and the points and leaves on the lines an arc

in which a given angle may be inscribed."

I solved these problems in a plane, using nothing in the con-

struction but circles and straight lines, but in the proof I made
use of solid loci,^—of parabolas, or hyperbolas. Nevertheless,

inasmuch as the construction is in a plane, I maintain that my
solution is plane, and that it should pass as such.

This is a poor recognition of the honor which you have done me
in putting up with my discourse which has been plaguing you so

long. I never thought I should say two words to you and if I

were to tell you what I have uppermost in my heart,—which is

that the better I know you the more I honor and admire you,

—

and if you were to see to what degree that is, you would allot a

place in your friendship for him who is. Monsieur, your etc.

Pascal to Fermat

Monday, August 24, 1654

Monsieur,

1. I was not able to tell you my entire thoughts regarding the

problem of the points by the last post,^ and at the same time, I

have a certain reluctance at doing it for fear lest this admirable

harmony which obtains between us and which is so dear to me
should begin to flag, for I am afraid that we may have different

opinions on this subject. I wish to lay my whole reasoning before

you, and to have you do me the favor to set me straight if I am
in error or to indorse me if I am correct. I ask you this in all

faith and sincerity for I am not certain even that you will be on

my side.

When there are but two players, your theory which proceeds by

combinations is very just. But when there are three, I believe

I have a proof that it is unjust that you should proceed in any

other manner than the one I have. But the method which I

have disclosed to you and which I have used universally is common
to all imaginable conditions of all distributions of points, in the

place of that of combinations (which I do not use except in partic-

i["
, . .capable d'angles donn6s."]

^ [A common name for conies.]

'["...par I'ordinaire passe." Cf. the English expression, by the "last

ordinary."]
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ular cases when it is shorter than the general method), a method
which is good only in isolated cases and not good for others.

I am sure that I can make it understood, but it requires a few
words from me and a little patience from you.

2. This is the method of procedure when there are two players:

If two players, playing in several throws, find themselves in such

a state that the first lacks two points and the second three of gaining

the stake, you say it is necessary to see in how many points the

game will be absolutely decided.

It is convenient to suppose that this will be in Jour points, from
which you conclude that it is necessary to see how many ways the

four points may be distributed between the two players and to

see how many combinations there are to make the first win and
how many to make the second win, and to divide the stake accord-

ing to that proportion. I could scarcely understand this reasoning

if I had not known it myself before; but you also have written

it in your discussion. Then to see how many ways four points

may be distributed between two players, it is necessary to imagine

that they play with dice with two faces (since there are but two
players), as heads and tails, and that they throw four of these

dice (because they play in four throws). Now it is necessary to

see how many ways these dice may fall. That is easy to calculate.

There can be sixteen, which is the second power oi Jour; that is to

say, the square. Now imagine that one of the faces is marked a,

favorable to the first player. And suppose the other is marked 6,

favorable to the second. Then these four dice can fall according

to one of these sixteen arrangements:

a
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3. On this point, Monsieur, I tell you that this division for the

two players founded on combinations is very equitable and good,

but that if there are more than two players, it is not always just

and I shall tell you the reason for this difference. I communicated

your method to [some of] our gentlemen, on which M. de Roberval

made me this objection:

That it is wrong to base the method of division on the supposi-

tion that they are playing in Jour throws seeing that when one

lacks two points and the other three, there is no necessity that they

play Jour throws since it may happen that they play but two or

three, or in truth perhaps Jour.

Since he does not see why one should pretend to make a just

division on the assumed condition that one plays Jour throws, in

view of the fact that the natural terms of the game are that they

do not throw the dice after one of the players has w^on; and that at

least if this is not false, it should be proved. Consequently he

suspects that we have committed a paralogism.

I replied to him that I did not found my reasoning so much on

this method of combinations, which in truth is not in place on this

occasion, as on my universal method from which nothing escapes

and which carries its proof with itself. This finds precisely the

same division as does the method of combinations. Furthermore,

I showed him the truth of the divisions between two players by

combinations in this way: Is it not true that if two gamblers

finding according to the conditions of the hypothesis that one lacks

two points and the other three, mutually agree that they shall play

four complete plays, that is to say, that they shall throw four two-

faced dice all at once,—is it not true, I say, that if they are pre-

vented from playing the four throws, the division should be as we

have said according to the combinations favorable to each? He
agreed with this and this is indeed proved. But he denied that

the same thing follows when they are not obliged to play the four

throws. I therefore replied as follows:

It is not clear that the same gamblers, not being constrained to

play the four throws, but wishing to quit the game before one of

them has attained his score, can without loss or gain be obliged

to play the whole four plays, and that this agreement in no way

changes their condition? For if the first gains the two first points

of four, will he who has won refuse to play two throws more, seeing

that if he wins he will not win more and if he loses he will not win

less? For the two points which the other wins are not sufficient

I



PERMAT AND PASCAL 557

for him since he lacks three, and there are not enough [points] in

four throws for each to make the number which he lacks.

It certainly is convenient to consider that it is absolutely equal

and indifferent to each whether they play in the natural way of

the game, which is to finish as soon as one has his score, or whether

they play the entire four throws. Therefore, since these two
conditions are equal and indifferent, the division should be ahke
for each. But since it is just when they are obliged to play the

four throws as I have shown, it is therefore just also in the other

case.

That is the way I prove it, and, as you recollect, this proof is

based on the equality of the two conditions true and assumed in

regard to the two gamblers, the division is the same in each of the

methods, and if one gains or loses by one method, he will gain or

lose by the other, and the two will always have the same
accounting.

4. Let us follow the same argument for three players and let us

assume that the first lacks one point, the second two, and the third

two. To make the division, following the same method of com-
binations, it is necessary to first discover in how many points the

game may be decided as we did when there were two players.

This will be in three points for they cannot play three throws

without necessarilj' arriving at a decision.

It is now necessary to see how many ways three throws may be

combined among three players and how many are favorable to

the first, howmany to the second, and how many to the third, and to

follow this proportion in distributing the wager as we did in the

hypothesis of the two gamblers.

It is easy to see how many combinations there are in all. This

is the third power of 3; that is to say, its cube, or 27. For if one

throws three dice at a time (for it is necessary to throw three

times), these dice having three faces each (since there are three

players), one marked a favorable to the first, one marked 6 favor-

able to the second, and one marked c favorable to the third,—it is

evident that these three dice thrown together can fall in 27 different

ways as:

a

a

a

T
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Since the first lacks but one point, then all the ways in which

there is one a are favorable to him. There are 19 of these. The
second lacks two points. Thus all the arrangements in which

there are two 6's are in his favor. There are 7 of them. The third

lacks two points. Thus all the arrangements in which there are

two c's are favorable to him. There are 7 of these.

If we conclude from this that it is necessary to give each accord-

ing to the proportion 19, 7, 7, we are making a serious mistake and

I would hesitate to believe that you would do this. There are

several cases favorable to both the first and the second, as abb

has the a which the first needs, and the two 6's which the second

needs. So too, the ace is favorable to the first and third.

It therefore is not desirable to count the arrangements which

are common to the two as being worth the whole wager to each,

but only as being half a point. For if the arrangement aee occurs,

the first and third will have the same right to the wager, each making

their score. They should therefore divide the wager in half.

If the arrangement aab occurs, the first alone wins. It is necessary

to make this assumption:

There are 13 arrangements which give the entire wager to the

first, and 6 which give him half and 8 which are worth nothing to

him. Therefore if the entire sum is one pistole, there are 13

arrangements which are each worth one pistole to him, there are

6 that are each worth j^ ^ pistole, and 8 that are worth nothing.

Then in this case of division, it is necessary to multiply

13 by one pistole which makes 13

6 by one half which makes 3

8 by zero which makes

Total 27 Total 16

and to divide the sum of the values 16 by the sum of the arrange-

ments 27, which makes the fraction i^-^y and it is this amount

which belongs to the first gambler in the event of a division; that

is to say, 16 pistoles out of 27.

The shares of the second and the third gamblers will be the

same:

There are 4 arrangements which are worth 1 pistole; multiplying, 4

There are 3 arrangements which are worth }i pistole; multiplying, l^-o

And 20 arrangements which are worth nothing

Total T? Total SJi'
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Therefore 5^-^ pistoles belong to the second player out of 27,

and the same to the third. The sum of the 5^2, S}^, and 16

makes 27.

5. It seems to me that this is the way in which it is necessary

to make the division by combinations according to your method,

unless you have something else on the subject which I do not know.

But if I am not mistaken, this division is unjust.

The reason is that we are making a false supposition,—that is,

that they are playing three throws without exception, instead of

the natural condition of this game which is that they shall not

play except up to the time when one of the players has attained

the number of points which he lacks, in which case the game
ceases.

It is not that It may not happen that they will play three times,

but it may happen that they will play once or twice and not need

to play again.

But, you will say, why is it possible to make the same assumption

in this case as was made in the case of the two players? Here is

the reason: In the true condition [of the game] between three

players, only one can win, for by the terms of the game it will

terminate when one [of the players] has won. But under the

assumed conditions, two may attain the number of their points,

since the first may gain the one point he lacks and one of the others

may gain the two points whicli he lacks, since they will have

played only three throws. When there are only two players, the

assumed conditions and the true conditions concur to the advan-

tage of both. It is this that makes the greatest difference between

the assumed conditions and the true ones.

If the players, finding themselves in the state given in the

liypotliesis,—that is to say, if the first lacks one point, the second

two, and the third two; and if they now mutually agree and concur

in the stipulation that tliey will play three complete throws; and

if he who makes the points which he lacks will take the entire sum
if he is the only one who attains the points; or If two should attain

them that they shall share equally,

—

in this case, the division

should be made as I give It here: the first shall have 16, the second

53^^, and the third 53-^ out of 27 pistoles, and this carries with it its

own proof on the assumption of the above condition.

But if they play simply on the condition that they will not

necessarily play three throws, but that they will only play until

one of them shall have attained his points, and that then the play
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shall cease without giving another the opportunity of reaching his

score, then 17 pistoles should belong to the first, 5 to the second,

and 5 to the third, out of 27. And this is found by my general

method which also determines that, under the preceeding condi-

tion, the first should have 16, the second S}-i, and the third 53^,

without making use of combinations,—for this works in all cases

and without any obstacle.

6. These, Monsieur, are my reflections on this topic on which I

have no advantage over you except that of having meditated on

it longer, but this is of little [advantage to me] from your point

of view since your first glance is more penetrating than are my
prolonged endeavors.

I shall not allow myself to disclose to you my reasons for looking

forward to your opinions. I believe you have recognized from

this that the theory of combinations is good for the case of two

players by accident, as it is also sometimes good in the case of three

gamblers, as when one lacks one point, another one, and the other

two^ because, in this case, the number of points in which the game

is finished is not enough to allow two to win, but it is not a general

method and it is good only in the case w here it is necessary to play

exactly a certain number of times.

Consequently, as you did not have my method when you sent

me the division among several gamblers, but [since you had]

only that of combinations, I fear that we hold different views on

the subject.

I beg you to inform me how j^ou would proceed in ;your research

on this problem. I shall receive your reply with respect and joy,

even if your opinions should be contrary to mine. I am etc.

Fermat to Pascal

Saturday, August 29, 1654

Monsieur,

1. Our interchange of blows still continues, and I am well

pleased that our thoughts are in such complete adjustment as it

seems since they have taken the same direction and followed the

same road. Your recent Traite du tr'xang,le arithmetique- and its

applications are an authentic proof and if my computations do

' [Evidently a misprint, since two throws may be needed.]

"- [Sec p. 67.)

i
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me no wrong, your eleventh consequence^ went by post from Paris

to Toulouse while my theorem on figurate numbers,^ which is

virtually the same, was going from Toulouse to Paris.

I have not been on watch for failure while I have been at work on

the problem and I am persuaded that the true way to escape failure

is by concurring with you. But if I should say more, it would be

of the nature of a compliment and we have banished that enemy

of sweet and easy conversation.

It is now my turn to give you some of my numerical discoveries,

but the end of the parliament augments my duties and I hope

that out of your goodness you will allow me due and almost neces-

sary respite.

2. I will reply however to your question of the three players who
play in two throws. When the first has one [point] and the

others none, your first solution is the true one and the division

of the wager should be 17, 5, and 5. The reason for this is self-

evident and it always takes the same principle, the combinations

making it clear that the first has 17 changes while each of the others

has but five.

3. For the rest, there is nothing that I will not write you in the

future with all frankness. Meditate however, if you find it

convenient, on this theorem : The squared powers of 2 augmented

by unity^ are always prime numbers. [That is,]

The square of 2 augmented by unity makes 5 which is a prime

number;

The square of the square makes 16 which, when unity is added,

makes 17, a prime number;

The square of 16 makes 256 which, when unity is added, makes

257, a prime number;

The square of 256 makes 65536 which, when unity is added,

makes 65537, a prime number;

and so to infinity.

This is a property whose truth I will answer to you. The proof

of it is very difficult and I assure you that I have not j^et been

able to find it fully. I shall not set it for you to find unless I

come to the end of it.

^ [From the Traite du triangle aritbmetique,—"Each cell on the diagonal is

double that which preceded it in the parallel or perpendicular rank."]

^ [/. e., the theorem that A{A + 1) is double the triangular number 1 +
2 + 3 +...A, Seep. 553.]

' [/. e. 2^" + 1. Euler (1732) showed the falsity of the statement.)
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This theorem serves in the discovery of numbers which are in a

given ratio to their aliquot parts, concerning which I have made
many discoveries. We will talk of that another time.

I am Monsieur, yours etc.

Fermat.

At Toulouse, the twenty ninth of August, 1654.

Fermat to Pascal

Friday, September 25, 1654

Monsieur,

1. Do not be apprehensive that our argument is coming to an

end. You have strengthened it yourself in thinking to destroy

it and it seems to me that in replying to M. de Roberval for your-

self you have also replied for me.

In taking the example of the three gamblers of whom the first

lacks one point, and each of the others lack tw^o, w'hich is the case

in which you oppose, I find here only 17 combinations for the first

and 5 for each of the others; for when you say that the combination

ace is good for the first, recollect that everything that is done after

one of the players has won is worth nothing. But this combination

having made the first win on the first die, what does it matter that

the third gains two afterwards, since even when he gains thirty

all this is superfluous? The consequence, as you have well called

it "this fiction," of extending the game to a certain number of

plays serves only to make the rule easy and (according to my
opinion) to make all the chances equal; or better, more intelligibly

to reduce all the fractions to the same denomination.

So that you may have no doubt, if instead of three parties you

extend the assumption to /our, there will not he 27 combinations

only, but 81 ; and it will be necessary to see how many combinations

make the first gain his point later than each of the others gains

two, and how many combinations make each of the others win

two later than the first wins one. You will find that the combina-

tions that make the first win are 51 and those for each of the other

two are 15, which reduces to the same proportion. So that if

you take five throws or any other number you please, you will

always find three numbers in the proportion of 17, 5, 5. And
accordingly I am right in saying that the combination ace is

[favorable] for the first only and not for the third, and that eca

is only for the third and not for the first, and consequently my
law of combinations is the same for three players as for two, and

in general for all numbers. •
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2. You have already seen from my previous letter that I did

not demur at the true solution of the question of the three gamblers

for which I sent you the three definite numbers, 17, 5, 5. But
because M. de Roberval will perhaps be better satisfied to see a

solution without any dissimulation and because it may perhaps

yield to abbreviations in many cases, here is an example:

The first may win in a single play, or in two or in three.

If he wins in a single throw, it is necessary that he makes the

favorable throw with a three-faced die at the first trial. A single

die will yield three chances. The gambler then has 3^^ of the wager

because he plays only one third.

If he plays twice, he can gain in two ways,—either when the

second gambler wins the first and he the second, or when the third

wins the throw and when he wins the second. But two dice

produce 9 chances. The player than has % of the wager when they

play twice.

But if he plays three times, he can win only in two ways, either

the second wins on the first throw and the third wins the second,

and he the third; or when the third wins the first throw, the second

the second, and he the third; for if the second or the third player

wins the two first, he wdll win the wager and the first player will

not. But three dice give 27 chances of which the first player has

^^7 of the chances when they play three rounds.

The sum of the chances which makes the first gambler win is

consequently 3^^, %, and ^^7, which makes ^^7.
This rule is good and general in all cases of the type where,

without recurring to assumed conditions, the true combinations

of each number of throws give the solution and make plain what
I said at the outset that the extension to a certain number of

points is nothing else than the reduction of divers fractions to the

same denomination. Here in a few words is the whole of the

mystery, which reconciles us without doubt although each of us

sought only reason and truth.

3

.

I hope to send you at Martinmas an abridgment of all that I

have discovered of note regarding numbers. You allow me to be

concise [since this suffices] to make myself understood to a man
[like yourself] who comprehends the whole from half a word.

What you will find most important is in regard to the theorem that

every number is composed of one, two, or three triangles;' of

^ [/. e., triangular numbers.]
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one, two, three, or four squares;^ of one, two, three, four, or five

pentagons; of one, two, three, four, five, or six hexagons, and thus

to infinity.

To derive this, it is necessary to show that every prime number

which is greater by unity than a multiple of 4 is composed of two

squares, as 5, 13, 17, 29, 37, etc.

Having given a prime number of this type, as 53, to find by a

general rule the two squares which compose it.

Every prime number which is greater by unity than a multiple

of 3, is composed of a square and of the triple of another square,

as 7, 13, 19, 31, 37, etc.

Every prime number which is greater by 1 or by 3 than a multiple

of 8, is composed of a square and of the double of another square,

as 11, 17, 19, 41, 43, etc.

There is no triangle of numbers whose area is equal to a square

number.

This follows from the invention of many theorems of which

Bachet vows himself ignorant and which are lacking in Diophantus.

I am persuaded that as soon as you will have known my way
of proof in this type of theorem, it will seem good to you and that

it will give you the opportunity for a multitude of new discoveries,

for it follows as you know that mu/?i pertranseant ut augeatur scientia.

When I have time, we will talk further of magic numbers and I

will summarize my former work on this subject.

I am. Monsieur, most heartily your etc.

Fermat.

The twenty-fifth of September.

I am writing this from the country, and this may perhaps delay

my replies during the holidays.

Pascal to Fermat

Tuesday, October 27, 1654

Monsieur,

Your last letter satisfied me perfectly. I admire your method

for the problem of the points, all the more because I understand

it well. It is entirely yours, it has nothing in common with mine,

and it reaches the same end easily. Now our harmony has begun

again.

But, Monsieur, I agree with you in this, find someone elsewhere

to follow you in your discoveries concerning numbers, the state-

* [See page 91.]
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ments of which you were so good as to send me. For my own part,

I confess that this passes me at a great distance; I am competent

only to admire it and I beg you most humbly to use your earliest

leisure to bring it to a conclusion. All of our gentlemen saw it

on Saturday last and appreciate it most heartily. One cannot often

hope for things that are so fine and so desirable. Think about it

if you will, and rest assured that I am etc.

Pascal.

Paris, October 27, 1654.



DE MOIVRE

On the Law of Normal Probability

(Edited by Professor Helen M. Walker, Teachers College, Columbia

University, New York City.)

Abraham de Moivre (1667-1754) left France at the revocation of the Edict

of Nantes and spent the rest of his life in London, where he solved problems

for wealthy patrons and did private tutoring in mathematics. He is best

known for his work on trigonometry, probability, and annuities. On Novem-
ber 12, 1733 he presented privately to some friends a brief paper of seven pages

entitled "Approximatio ad Summam Terminorum Binomii a -\- b in Seriem

expansi." Only two copies of this are known to be extant. His own transla-

tion with some additions, was included in the second edition (1738) of The

Doctrine of Chances, pages 235-243.

This paper gave the first statement of the formula for the "normal curve,"

the first method of finding the probability of the occurrence of an error of a

given size when that error is expressed in terms of the variability of the dis-

tribution as a unit, and the first recognition of that value later termed the

probable error. It shows, also, that before Stirling, De Moivre had been

approaching a solution of the value of factorial n.

A Method of approximating the Sum oj the Terms of the Binomial

a+b " expanded into a Series, from whence are deduced some prac-

tical Rules to estimate the Degree oJ Assent which is to be given to

Experiments.

Altho' the Solution of Problems of Chance often require that

several Terms of the Binomial a-\-b "be added together, neverthe-

less in very high Powers the thing appears so laborious, and of so

great a difficulty, that few people have undertaken that Task;

for besides James and Nicolas Bernoulli, two great Mathematici-

ans, I know of no body that has attempted it; in which, tho'

they have shewn very great skill, and have the praise which is

due to their Industry, yet some things were farther required;

for what they have done is not so much an Approximation as the

determining very wide limits, within which they demonstrated

that the Sum of the Terms was contained. Now the Method
which they have followed has been briefly described in my Miscel-

lanea Analytica, which the Reader may consult if he pleases,

566



DE MOIVRE 567

unless they rather chuse, which perhaps would be the best, to

consult what they themselves have writ upon that Subject: for

my part, what made me apply myself to that Inquiry was not out

of opinion that I should excel others, in which however I might

have been forgiven; but what I did was in compliance to the desire

of a very worthy Gentleman, and good Mathematician, who
encouraged me to it: I now add some new thoughts to the former;

but in order to make their connexion the clearer, it is necessary

for me to resume some few things that have been delivered by
me a pretty while ago.

I. It is now a dozen years or more since I had found what
follows; If the Binomial 1+ 1 be raised to a very high Power
denoted by n, the ratio which the middle Term has to the Sum of

all the Terms, that is, to 2", may be expressed by the Fraction

2AXn— 1^"

. > wherein A represents the number of which the Hyper-
n"X V^—

1

bolic Logarithm is fi~^jZn+T9^~T7on' &c. but because the

n—

1

1"
Quantity ^— or 1— is very nearly given when n is a high

Power, which is not difficult to prove, it follows that, in an infinite

Power, that Quantity will be absolutely given, and represent the

number of which the HyperboHc Logarithm is — 1 ; from whence

it follows, that if B denotes the Number of which the Hyperbolic

Logarithm is ~^~^Tn~YZ7)'^Tjf?]~T2^' &c. the Expression

above-written will become —, or barely -—r-> and that there-

fore if we change the Signs of that Series, and now suppose that

B represents the Number of which the Hyperbolic Logarithm is

l — T^-{-:r^7\— Twzn~^TTo7\' &c. that Expression will be changed
IZ JoU IZoU iDoU

mto BVn
When I first began that inquiry, I contented myself to determine

at large the Value of B, which was done by the addition of some

Terms of the above-written Series; but as I perceiv'd that ft

converged but slowly, and seeing at the same time that what I

had done answered my purpose tolerably well, I desisted from

proceeding farther, till my worthy and learned Friend Mr. James

Stirling, who had applied himself after me to that inquiry, found
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that the Quantity B did denote the Square-root of the Circum-

ference of a Circle whose Radius is Unity, so that if that Circum-

ference be called c, the Ratio of the middle Term to the Sum of all

2 ^

the Terms will be expressed by —;

—

Vnc
But altho' it be not necessary to know what relation the number

B may have to the Circumference of the Circle, provided its value

be attained, either by pursuing the Logarithmic Series before

mentioned, or any other way; yet I own with pleasure that this

discovery, besides that it has saved trouble, has spread a singular

Elegancy on the Solution.

II. I also found that the Logarithm of the Ratio which the

middle Term of a high Power has to any Term distant from it by
an Interval denoted by /, would be denoted by a very near approxi-

mation, (supposing m = ^n) by the Quantities m+/— |Xlog.

m + /— 1+m — / + ^Xlog.m — /+! — 2mXlog. m + log. .m

Corollary i.

This being admitted, I conclude, that if m or 571 be a Quantity

infinitely great, then the Logarithm of the Ratio, which a Term
distant from the middle by the Interval /, has to the middle Term,

2//

2

IS — -

n

Corollary 2.

The Number, which answers to the Hyperbolic Logarithm

211 , .-— , bemg
n

^ [Under the circumstances of De Moivre's problem, nc is equivalent to

Sa^TT, where a is the standard deviation of the curve. This statement therefore

shows that De Moivre knew the maximum ordinate of the curve to be

(tV2v ]

^ [Since n = 4cr^ under the assumptions made here, this is equivalent to

stating the formula for the curve as

_ xl

y =yoe
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ft follows, that the Sum of the Terms intercepted between the

Middle, and that whose distance from it is denoted by /, will be

2 . , 2/3 4/5 8/7
, 16/9 32/11

Vnc lX3n'2X5nn 6X7n^ ' 2iX9n* 120Xlln&'

Let now / be supposed = s\/n, then the said Sum will be

expressed by the Series

A into f-^P.ili-lCl+i^- ^^i"" &c ^

Vc -^ 3 ^2X5 6X7^24X9 120X11'

Moreover, if / be interpreted by y, then the Series will become

2.11,1 1.1 1
mtOTT— TTTTT-Vc 2 3X4 ' 2X5X8 6X7X16 ' 24X9X32 120X11X64'

&c. which converges so fast, that by help of no more than seven or

eight Terms, the Sum required may be carried to six or seven

places of Decimals: Now that Sum will be found to be 0.427812,

2
independently from the common Multiplicator -y, and therefore to

the Tabular Logarithm of 0.427812, which is 9.6312529, adding the

Logarithm of -^, viz. 9.9019400, the Sum will be 19.5331929, to

which answers the number 0.341344.

Lemma.

If an Event be so dependent on Chance, as that the Probabihties

of its happening or failing be equal, and that a certain given number

n of Experiments be taken to observe how often it happens and

fails, and also that / be another given number, less than |n, then

the Probabihty of its neither happening more frequently than

^n+/ times, nor more rarely than ^n— l times, may be found as

follows.

Let L and L be two Terms equally distant on both sides of the

middle Term of the Binomial 1+ 1^" expanded, by an Interval

equal to /; let also / be the Sum of the Terms included between
L and L together with the Extreams, then the Probability

f
required will be rightly expressed by the Fraction :j^, which being

founded on the common Principles of the Doctrine of Chances,

requires no Demonstration in this place.

^[The long s which De Moivre employed in this formula is not to be

mistaken for the integral sign.]
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Corollary 3.

And therefore, if it was possible to take an infinite number of

Experiments, the Probability that an Event which has an equal

number of Chances to happen or fail, shall neither appear more

frequently than ^n + ^\/n times, nor more rarely than ^n —
^n\/n times, will be express'd by the double Sum of the number

exhibited in the second Corollary, that is, by 0.682688, and con-

sequently the Probabihty of the contrary, which is that of happen-

ing more frequently or more rarely than in the proportion above

assigned will be 0.317312, those two Probabilities together com-

pleating Unity, which is the measure of Certainty: Now the Ratio

of those Probabilities is in small Terms 28 to 13 very near.

Corollary 4.

But altho' the taking an infinite number of Experiments be not

practicable, yet the preceding Conclusions may very well be applied

to finite numbers, provided they be great, for Instance, if 3600

Experiments be taken, make n = 3600, hence ^n will be = 1800,

and ^\/n = 30, then the Probabihty of the Event's neither appear-

ing oftner than 1830 times, nor more rarely than 1770, will be

0.682688.

Corollary 5.

And therefore we may lay this down for a fundamental Maxim,

that in high Powers, the Ratio, which the Sum of the Terms

included between two Extreams distant on both sides from the

middle Term by an Interval equal to ^\/7i, bears to the Sum of

all the Terms, will be rightly express'd by the Decimal 0.682688,

28
that is 2j nearly.

Still, it is not to be imagin'd that there is any necessity that the

number n should be immensely great; for supposing it not to reach

beyond the 900''' Power, nay not even beyond the 100"*, the Rule

here given will be tolerably accurate, which I have had confirmed

by Trials.

But it is worth while to observe, that such a small part as is ^\/n

in respect to n, and so much the less in respect to n as n increases,

28
does very soon give the Probability j^ or the Odds of 28 to 13;

from whence we may naturally be led to enquire, what are the
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Bounds within which the proportion of Equality is contained; I

answer, that these Bounds will be set at such a distance from the

middle Term, as will be expressed by \y/2n very near; so in the

case above mentioned, wherein n was supposed = 3600, l-\/2n will

be about 21.2 nearly, which in respect to 3600, is not above Tyqth

part: so that it is an equal Chance nearly, or rather something

more, that in 3600 Experiments, in each of which an Event may
as well happen as fail, the Excess of the happenings or failings

above 1800 times will be no more than about 21.

Corollary 6.

If / be interpreted by \/ny the Series will not converge so fast

as it did in the former case when / was interpreted by ^\/n, for

here no less than 12 or 13 Terms of the Series will afford a tolerable

approximation, and it would still require more Terms, according

as / bears a greater proportion to \/n, for which reason I make use

in this case of the Artifice of Mechanic Quadratures, first invented

by Sir Isaac Newton, and since prosecuted by Mr. Cotes, Mr,

James Stirling, myself, and perhaps others; it consists in determin-

ing the Area of a Curve nearly, from knowing a certain number
of its Ordinates A, B, C, D, E, F, &c. placed at equal Intervals,

the more Ordinates there are, the more exact will the Quadrature

be; but here I confine myself to four, as being sufficient for my
purpose : let us therefore suppose that the four Ordinates are A, B,

C, D, and that the Distance between the first and last is denoted by

/, then the Area contained between the first and the last will be

1XA+D+3XB+C^
;

. . V .u j^' . n / 1 /
s X /; now let us take the Distances v^. 2v ^.
o D

y\/n, -?y/n, :p\/n, -?y/n, 7\/n, of which every one exceeds the
o o o D

preceding by 7V^* and of which the last is \/n; of these let us

take the four last, viz. -?y/n, i^/n, -^y/n, ^V^. then taking their0000
Squares, doubling each of them, dividing them all by n, and prefix-

1 8 25 2
ing to them all the Sign — , we shall have — => — g> — to' — t'

which must be look'd upon as Hyperbolic Logarithms, of which

consequently the corresponding numbers, viz. 0.60653, 0.41111,

0.24935, 0.13534 will stand for the four Ordinates A, B, C, D.
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Now having interpreted / by ^\/n, the Area will be found to be

2
= 0. 1 70203 X \/"» the double of which being multiplied by —7—

>

ync
the product will be 0.27160; let therefore this be added to the Area

found before, that is, to 0.682688, and the Sum 0.95428 will shew,

what after a number of Trials denoted by n, the Probability will

be of the Event's neither happening oftner than ^n-\r\/n times,

nor more rarely than ^n—\/n, and therefore the Probability of

the contrary will be 0.04572, which shews that the Odds of the

Event's neither happening oftner nor more rarely than within the

Limits assigned are 21 to 1 nearly.

And by the same way of reasoning, it will be found that the

13
Probability of the Event's neither appearing oftner .n-\-^\/n,

13.
nor more rarely than ^n— = \/h will be 0.99874, which will make

it that the Odds in this case will be 369 to 1 nearly.

To apply this to particular Examples, it will be necessary to

estimate the frequency of an Event's happening or failing by the

Square-root of the number which denotes how many Experiments

have been, or are designed to be taken; and this Square-root,

according as it has been already hinted at in the fourth Corollary,

will be as it were the Modulus by which we are to regulate our

Estimation; and therefore suppose the number of Experiments to

be taken is 3600, and that it were required to assign the Probability

of the Event's neither happening oftner than 2850 times, nor

more rarely than 1750, which two numbers may be varied at

pleasure, provided they be equally distant from the middle Sum
1800, then make the half difference between the two numbers

1850 and 1750, that is, in this case, S0 = Jy/n; now having supposed

3600 = n, then \/7i will be = 60, which will make it that 50 will be

= 60/, and consequently f — 77\ — 2f ^^^ therefore if we take the

proportion, which in an infinite power, the double Sum of the

Terms corresponding to the Interval ?y/n, bears to the Sum of

all the Terms, we shall have the Probability required exceeding

near.

Lemma 2.

In any Power a-\-b " expanded, the greatest Term is that in

which the Indices of the Powers of a and 6, have the same propor-



DE MOIVRE 573

tion to one another as the Quantities themselves a and 6; thus

taking the 10"" Power of a+6, which is a^°+lOa^b+^Sa^b^-\-

12Oa763+21Oa«64+252a^6^+21Oa466+12Oa367+45a26«+lOa69+6i0;

and supposing that the proportion of a to 6 is as 3 to 2, then

the Term 210a^6'* will be the greatest, by reason that the Indices

of the Powers of a and 6, which are in that Term, are in the propor-

tion of 3 to 2; but supposing the proportion of a to 6 had been as

4 to 1, then the Term iSa^b^ had been the greatest.

Lemma 3.

If an Event so depends on Chance, as that the Probabilities of

its happening or failing be in any assigned proportion, such as may
be supposed of a to 6, and a certain number of Experiments be

designed to be taken, in order to observe how often the Event will

happen or fail; then the Probability that it shall neither happen

more frequently than so many times as are denoted by
, + /,

nor more rarely than so many times as are denoted by -—r-r— l,

will be found as follows:

Let L and R be equally distant by the Interval / from the greatest

Term; let also S be the Sum of the Terms included between L
and R, together with those Extreams, then the Probability

S
required will be rightly expressed by

Corollary 8.^

The Ratio which, in an infinite Power denoted by n, the greatest

Term bears to the Sum of all the rest, will be rightly expressed by

the Fraction —y—,— , wherein c denotes, as before, the Circumference
\/abnc

of a Circle for a Radius equal to Unity.

Corollary 9.

If, in an infinite Power, any Term be distant from the Greatest

by the Interval /, then the Hyperbolic Logarithm of the Ratio

which that Term bears to that Greatest will be expressed by the

-XI 2

Fraction —^-^

—

Xll; provided the Ratio of / to n be not a finite
2abn

^ [Numbered as in the original. There is no corollary 7 in the text.]
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Ratio, but such a one as may be conceived between any given

number p and \/n, so that / be expressible by py/n, in which case

the two Terms L and R will be equal.

Corollary 10.

If the Probabilities of happening and failing be in any given

Ratio of unequality, the Problems relating to the Sum of the

Terms of the Binomial a-\-b " will be solved with the same facility

as those in which the Probabilities of happening and failing are

in a Ratio of Equality.

From what has been said, it follows, that Chance very little

disturbs the Events which in their natural Institution were

designed to happen or fail, according to some determinate Law;

for if in order to help our conception, we imagine a round piece

of Metal, with two polished opposite faces, differing in nothing

but their colour, whereofone may be supposed to be white, and the

other black; it is plain that we may say, that this piece may with

equal facility exhibit a white or black face, and we may even

suppose that it was framed with that particular view of shewing

sometimes one face, sometimes the other, and that consequently

if it be tossed up Chance shall decide the appearance; but we have

seen in our lxxxvii'^'* Problem, that altho' Chance may produce an

inequality of appearance, and still a greater inequality according

to the length of time in which it may exert itself, still the appear-

ances, either one way or the other, will perpetually tend to a

proportion of Equality; but besides we have seen in the present

Problem, that in a great number of Experiments, such as 3600,

it would be the Odds of above 2 to 1, that one of the Faces, suppose

the white, shall not appear more frequently than 1830 times, nor

more rarely than 1770, or in other Terms, that it shall not be

above or under the perfect Equality by more than y^ part of the

whole number of appearances; and by the same Rule, that if the

number of Trials had been 14400 instead of 3600, then still it

would be above the Odds of 2 to 1, that the appearances either

one way or other would not deviate from perfect Equality by

more than j^y: part of the whole, but in 1000000 Trials it would be

the Odds of above 2 to 1, that the deviation from perfect Equality

would not be more than by ^7^7^x part of the whole. But the
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Odds would increase at a prodigious rate, if instead of taking such

narrow limits on both sides the Term of Equality, as are repre-

sented by ii\^n, we double those Limits or triple them; for in the

first case the Odds would become 21 to 1, and in the second 369

to 1, and still be vastly greater if we were to quadruple them,

and at last be infinitely great; and yet wliether we double, triple

or quadruple them, &c. the Extension of those Limits will bear

but an inconsiderable proportion to the whole, and none, at all,

if the whole be infinite, of which the reason will easily be per-

ceived by Mathematicians, who know, that the Square-root of

any Power bears so much a less proportion to that Power, as the

Index of it is great.

And what we have said is also applicable to a Ratio of Inequality,

as appears from our 9*^^ Corollary. And thus in all cases it will be

found, that altho' Chance produces irregularities, still the Odds

will be infinitely great, that in process of Time, those Irregularities

will bear no proportion to the recurrency of that Order which

naturally results from original Design.
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On Least Squares

(Translated from the French by Professor Henry A. Ruger and Professor

Helen M. Walker, Teachers College, Columbia University, New York City.)

The great advances in mathematical astronomy made during the early year)

of the nineteenth century were due in no small part to the development of the

method of least squares. The same method is the foundation for the calculus

of errors of observation now occupying a place of great importance in the

scientific study of social, economic, biological, and psychological problems.

Gauss says in his work on the Theory of ibe Motions oj the Heavenly Bodies

(1809) that he had made use of this principle since 1795 but that it was first

published by Legendre. The first statement of the method appeared as an

appendix entitled "Sur la Methode des moindres quarres" in Legendre's

Nouvelles methodes pour la determination des orbites des cometes, Paris, 1805.

The portion of the work translated here is found on pages 72-75.

Adrien-iMarie Legendre (1752-1833) was for five years a professor of mathe-

matics in the Ecole Militaire at Paris, and his early studies on the paths of

projectiles provided a background for later work on the paths of heavenly

bodies. He wrote on astronomy, the theory of numbers, elliptic functions,

the calculus, higher geometry, mechanics, and physics. His work on geometry,

in which he rearranged the propositions of Euclid, is one of the most successful

textbooks ever written.

On the Method oj Least Squares

In the majority of investigations in which the problem is to get

from measures given by observation the most exact results which

they can furnish, there almost always arises a system of equations

of the form

E = a + 6x + cv'- + /z + &c.

in which a, b, c, J, &c. are the known coefficients which vary from

one equation to another, and x, y, z, &c. are the unknowns which

must be determined in accordance with the condition that the

value of E shall for each equation reduce to a quantity which

is either zero or very small.

If there are the same number of equations as unknowns x, y, z,

&c., there is no difficulty in determining the unknowns, and the

error E can be made absolutely zero. But more often the number
576
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of equations is greater than that of the unknowns, and it is impos-

sible to do away with all the errors.

In a situation of this sort, which is the usual thing in physical

and astronomical problems, where there is an attempt to determine

certain important components, a degree of arbitrariness necessarily

enters in the distribution of the errors, and it is not to be expected

that all the hypotheses shall lead to exactly the same results;

but it is particularly important to proceed in such a way that

extreme errors, whether positive or negative, shall be confined

within as narrow limits as possible.

Of all the principles which can be proposed for that purpose,

I think there is none more general, more exact, and more easy of

application, than that of which we have made use in the preceding

researches, and which consists of rendering the sum of the squares

of the errors a minimum. By this means there is established

among the errors a sort of equilibrium which, preventing the

extremes from exerting an undue influence, is very well fitted to

reveal that state of the system which most nearly approaches the

truth.

The sum of the squares of the errors E- + E'^ + E"- + &c. being

(a + bx + cy -\- Jz + &c.)"

+ (a' + b'x + c'y +/'z + &c.y

+ (a" + b"x + c"y+J"z + &c.)2

+ &c.,

if its minimum is desired, when x alone varies, the resulting equa-

tion will be

= Jab + xjb' + yjbc + zjbj + &c.,

in which by jab we understand the sum of similar products,

i.e., ab + a'6' + a"b" + &c.; by jb^ the sum of the squares of

the coefficients of x, namely 6^ + b'^ + b"^ + &c., and similarly

for the other terms.

Similarly the minimum with respect to y will be

o = jac + xjbc + yjc^ + zjjc + &c.,

and the minimum with respect to z,

= M + xjbj + yM + zjp + (fee,

in which it is apparent that the same coefficients jbc, JbJ, &c.

are common to two equations, a fact which facilitates the

calculation.
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In general, to Jorm the equation oj the minimum with respect to

one of the unknoivns, it is necessary to multiply all the terms of each

given equation by the coefficient of the unknown in that equation^

taken with regard to its sign, and to find the sum oJ these products.

The number of equations of minimum derived in this manner will

be equal to the number of the unknowns, and these equations are

then to be solved by the established methods. But it will be well

to reduce the amount of computation both in muItipHcation and

in solution, by retaining in each operation only so many significant

figures, integers or decimals, as are demanded by the degree of

approximation for which the inquiry calls.

Even if by a rare chance it were possible to satisfy all the

equations at once by making all the errors zero, we could obtain

the same result from the equations of minimum; for if after having

found the values of x, y, z, &c. which make E, E', &c. equal to zero,

we let X, y, z, &c. vary by 8x, 8y, 8z, &c., it is evident that E^,

which was zero, will become by that variation {adx + bSy + c8z

+ &c.y. The same will be true of £"'-, E"^, &c. Thus we see

that the sum of the squares of the errors will by variation become

a quantity of the second order with respect to 8x, 8y, &c., which is

in accord with the nature of a minimum.

If after having determined all the unknowns x, y, z, &c., we
substitute their values in the given equations, we will find the

value of the different errors E, E', E", &c., to which the system

gives rise, and which cannot be reduced without increasing the

sum of their squares. If among these errors are some which appear

too large to be admissible, then those equations which produced

these errors will be rejected, as coming from too faulty experiments,

and the unknowns will be determined by means of the other

equations, which will then give much smaller errors. It is further

to be noted that one will not then be obliged to begin the calcula-

tions anew, for since the equations of minimum are formed by the

addition of the products made in each of the given equations, it

will suffice to remove from the addition those products furnished

by the equations which would have led to errors that were too

large.

The rule by which one finds the mean among the results of

different observations is only a very simple consequence of our

general method, which we will call the method of least squares.

Indeed, if experiments have given different values a', a", a'",

&c. for a certain quantity x, the sum of the squares of the errors
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will be (a' - x)^ + (a" - x)'- -j- (a'" - x)^ + &c., and on making
that sum a minimum, we have

0= (a' - x) + (a" - x) -r (a"' - x) + &c.,

from which it follows that

a' + a" + a'" + &c.
X = »

n

n being the number of the observations.

In the same way, if to determine the position of a point in space,

a first experiment has given the coordinates a', 6', c'; a second, the

coordinates a", b", c" \ and so on, and if the true coordinates of the

point are denoted by x, y, z; then the error in the first experiment

will be the distance from the point (a', 6', c') to the point (x, y, z).

The square of this distance is

(a'-x)2+(6'-y)2+(c'-z)2.

If we make the sum of the squares of all such distances a minimum,
we get three equations which give

.\ — — > V = — » z — —

»

n ^ n n

n being the number of points given by the experiments. These

formulas are precisely the ones by which one might find the com-

mon center of gravity of several equal masses situated at the given

points, whence it is evident that the center of gravity of any body

possesses this general property.

// we divide the mass of a body into particles which are equal and

sufficiently small to be treated as points, the sum oj the squares of the

distances from the particles to the center of gravity will be a minimum.
We see then that the method of least squares reveals to us, in

a fashion, the center about which all the results furnished by
experiments tend to distribute themselves, in such a manner as

to make their deviations from it as small as possible. The appli-

cation which we are now about to make of this method to the

measurement of the meridian will display most clearly its simplicity

and fertility.^

1 [An application of the method to an astronomical problem follows.]
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Theorem Concerning Mean Values

(Translated from the French by Professor Helen iM. Walker, Teachers College,

Columbia University, New York City.)

The inequality which Chebyshev (Tchebycheff) derived in his paper on

mean values is an important contribution to the theory of dispersion. In this

paper by simple algebra, without approximation or the aid of the calculus, he

reached a result from which both "Jacques Bernoulli's Theorem" and Poisson's

"Law of Large Numbers" can be derived as special cases. The selection

printed here was translated from the Russian into French by .\L N. de Khan-

ikof and appeared in Liouville's Journal de 7natbematiques pures et appliquees ou

recueil mensuel de memoires sur les diverses parties des matbematiques, 2nd

series, XII (1867), 177-184. The same material is to be found in his CEuvres, I

(1899).

Pafnutii Lvovitch Chebyshev (TchebyshefF)! (1821-1894) was, after Loba-

chevsky, Russia's most celebrated mathematician. Even as a small boy he

was greatly interested in mechanical inventions, and it is said that in his first

lesson in geometry he saw the bearing ofthe subject upon mechanics and there-

fore resolved to master it. At the age of twenty he received his diploma from

the University of Moscow, having already received a medal for a work on the

numerical solution of algebraic equations of higher orders.

Chebyshev's father was a Russian nobleman, but after the famine of 1840

the estate was so reduced that for the rest of his life he was forced to practice

extreme economy, spending money freely for nothing except the mechanical

models of his various inventions. He never married, but devoted himself

solely to science.

Chebyshev collaborated with Bouniakovsky in bringing out the two large

volumes of the collected works of Euler in 1849 and this seems to have turned

his thoughts to the theory of numbers, and particularly to the very difficult

problem of the distribution of primes. In 1850 he established the existence

of limits within which must be comprised the sum of the logarithms of primes

inferior to a given number. In 1860 he was made a correspondent of the

Institut de France, and in 1874 an associe itranger. He was also a foreign

member of the Royal Society of London.

From 1847 to 1882 he was professor of mathematics at the University of

St. Petersburg, and at different periods during this time he taught analytic

' The name is spelled in many ways such as Chcbychef, Chebichev, Tchebychev, Tcheby-
cheff, Tschebycheff. For further biographical details the reader is referred to a brochure

by A. Vassilief entitled P. L. Tcbibycbtf et son (Euirt Scienlifique (Turin, 1898) reprinted from

the BoUettino di bibliografia e storia delle scienze malematicbe pubblicato per euro di Gino Loria,

1898, or to the sketch by C. A. Posst in the DictionnaiTC des icrivains et savants russes ridigi

par M. Venguerof, reprinted in Volume II of Markofs edition of Chebyshev's (Euvres.

580
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geometry, higher algebra, theory of numbers, integral calculus, theory of proba-

bilities, the calculus of finite differences, the theory of elliptic functions, and the

theory of definite integrals, and his biographers are agreed that the quality of his

teaching was no less remarkable than that of his research. Chcbyshev made
important contributions to the theory of numbers, theory of least squares,

interpolation theory, calculus of variations, infinite series, and the theory of

probability, and published nearly a hundred memoirs on these and other

mathematical topics, being best known for his work on primes. The very

day before his death he received his friends as usual and discoursed upon the

subject of a simple rule he had discovered for the rectification of a curve.

On the Mean Values

If we agree to speak of the mathematical expectation of any

magnitude as the sum of all the values which it may assume

multiplied by their respective probabilities, it will be easy for us

to establish a very simple theorem concerning the limits between

which shall be contained a sum of any values whatever.

Theorem. // we designate by a, b, c..., the mathematical

expectations of the quantities x, y, z. . ., and by Oi, 61, Ci. . ., the

mathematical expectations of their squares x^, y-, z^ . . . , the proba-

bility that the sum x -{- y -\- z. . .is included within the limits

a + 6 + c + . . . + aVai + 61 + Ci + • . •
- a^ - 62 _ ^2 _

. . .,

and

a + 6 + c + . . .
- aVai + 61 + Ci + . . .

- a^ - 6^ - c^ -

// always be 1

Proof. Let

will always be larger than 1 p no matter what the size of a

Xi, X-z, X3, . . . , Xi,

yi, y2, ys, . .
. , ym,

Zi, Zoj Z3, . . . Znt

be all conceivable values of the quantities x, y, z, . .
.

, and let

Pi. P2, Pz,. .-, Ph

qu 92, ^3, . . ., qm,

I'u ^2, rs, . . ., r„,

be the respective probabilities of these values, or, better, the

probabilities of the hypotheses

x = Xu Xz, X3,. .., Xi,

y = yi,y2,yz,...,yw,

Z = Zi, Z2j Zg, • • • , Znt
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In accordance with this notation, the mathematical expectations

of the magnitudes x, y, z,. . ., and of x^, y-, z^,. . . will be expressed

as follows:

[
a = piXi 4- P2X2 + P3X3 + . . . + pixi,

(1) {i> = QiYi + 92y2 + qaya + • • • + Qmym,

c = riZi 4- roZ2 + rsZs + . . . + r„Zn,

[
ai = pixr + P2Xo^ + P3X32 + . . . + Pixr,

(2)
^^

61 = qiyi^ + gaya^ + gay 3=^ + . . . + g^m",

I
Ci = rizi2 + roZo2 + razs' + . . . + r^zj.

Now since the assumptions we have just made concerning the

quantities x, y, z, . . . are the only ones possible, their probabilities

will satisfy the following equations:

[Pl + P2 +P3 +.. .+ Pi = 1,

(3) I qi -\- q2 -\- qz +...+ Qm = I,

[ri + ro + rs +. . .+ r„ = 1,

It will now be easy for us to find by the aid of equations (1), (2),

and (3), to what the sum of the values of the expression

(xx + y^ + Z;. + • • •
- a - 6 - c — . . .Ypxq^r, . . .

,

will reduce if we make successively

X = 1, 2, 3,. . ., /,

M = 1, 2, 3,. . ., m,
p = \,2, 3,. . ., n^

Indeed when this expression is developed we have

Pxq^r,. . .xx2 + pxq^r,. . .y^- + Pxq^r,.. . .z,^ + . . .

+ Ip^q^jr^. . .xxJ-'m 4- 2p\q^r^. . .x\z^ + 2p\q^r^. . .y^z„ + . . .

— 2(a + 6 + c + . . .)p\q^ry. . .xx

- 2(a + 6 + c + . . . )p\q„r^. . .y^

— 2(a + 6 + c + . . .)p\q^ry. . .z^ — . . .

+ (a + 6 + c +. ..)-p\q^r„...

Giving to X in this expression all the values from X = 1 to X = /,

and summing the results of these substitutions, we will obtain the

sum as follows:

* [The original has here J* + 1, 2, 3, . .
.

, n . . . which is obviously a misprint.)
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q^r„. . . (piXi^ + P2X2^ + P3A-3^ + . . . + pixi^)

+ (pi + P2 + P3 + . . . + Pi)q^r^. . .y^2

+ (Pi + P2 + P3 + . . . + pdQtJu. . .Zv-

+ 2(piXi + P2X2 + P3X3 + . . . + pixi)q^r^. . .y^

+ 2(piXi + P2.V2 + P3X3 + . . . + pixi)q^r,. . .z„

+ 2(pi + P2 + P3 + . . . + pMuXv . .yp7.u

+
- 2(a + 6 + c +...)(Pi^i + P2X2 + P3X3 +. . . + pixi)

q^r,. ..

- 2(a + 6 + c +., .)(pi + P2 + P3 +. . .+ Pi)q^r,. . .y^

- 2(a + 6 + c + . . .)(pi + P2 + P3 + . . .+Pi)q^r,. . .z,- . . .

+ (a + 6 + c +. ..y{pi + P2 + P3 +...+ PiW.. . .

If by means of equations (1), (2), and (3) we substitute in place

of the sums

PlXl + P2X2 + P3X3 + . . . + pixi,

plXl^ + p2X2'^ + PsXz^ + . . . + PlXl^

and

Pi 4-p2 + Pa +. . .+ pz

their values a, oi and 1, we will obtain the following formula:

aiq^Tp . . . + q„r^. . .y^^ + q^r^. . .zj^ -\-
. . .

+ laq^r^. . .y^ + laq^r,. . .z^, + 2q^r^. . .y^z^ + . . .

— 2(a + 6 + c. . .)aq^r„. . .
— 2(a + 6 + c. . .)

q/i'v . . . Zp ...

+ (a + 6 + c. . .yq^r„. .

If we give to /x in this formula the values

M = 1, 2, 3,. . .m,

then sum the expressions which result from these substitutions,

and substitute for the sums

giyi + 92y2 + gays + . . . + qmym,

qiyi^ + g2y2^ + qsyz^ + . .
. + qmym\

qi + q2 +93 + . . . + gm,

their values b, 61, and 1 derived from equations (1), (2) and (3)

we will obtain the following expression:

airp...+ bir^. . .+ r,. . .z/ -\- . . .

+ labty. . . + 2arv. . .z^ + 26r,. . .z^ + . .

.

- 2(a + 6 + c+...)ar,...- 2(a + 6 + c +. . .)6r,. .

.

- 2(a + 6 + c+...K...z, -...+ (a + 6 + c + ...)2r.
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By treating v in the same manner we will see that the sum of ail

the values of the expression

(xx -{- y^ + z^ + . . .
- a - b - c . . . Ypyq^r^. . .

derived by letting X = 1, 2, 3, . . ., /,

n = 1, 2, 3,. . ., m,

v = l,2,3,...,n,

will be equal to

oi + 6i + ci +...+ 2a6 + 2ac + 26c +...- 2(a + 6 + c...)a

- 2(a + 6 + c. . .)6 - 2(a + 6 + c. . .)c - ...

+ (a + 64-c...)2.

Upon developing this expression it reduces to

ai + 61 + C1+...- a2 - 62 - c^..

Hence we conclude that the sum of the values of the expression

(j^x + Jm + 2^ + • • •
— g — 6 — c — . . .y

a'iai + 61 + ci + . . .
- a2 - 62 - c2 - . . .f^^'*^"-

•
•'

which we obtain by making

X = 1,2,3,...,/,

n = 1, 2, 3,. . ., m,

V = 1, 2, 3,. . ., n,

will be equal to -^- Now it is evident that by rejecting from

that sum all the terms in which the factor

Ux + y^ + z^ 4- . . .
- a - 6 - c - . . . )2

ct^ai + 61 + ci + . . . - a2 - 62 - c2 - . .
.

)

is less than 1 and by substituting unity for all those larger than 1,

we will decrease that sum, and it will be less than — But this

reduced sum will be formed of only those products pxq^r^ . . .,

which correspond to the values of x\, y^, Zy,... for which the

expression

(A\ {xx-hy^-\-z, + ...- a - b - c -...)-
^^

a^iai + 61 + ci + . . .
- a2 - 62 - c2 - . . .)

-^ ^'

and it will evidently represent the probability that x, y, z. . . have

values which satisfy condition (4).
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This same probability can be replaced by 1 — P, if we designate

by P the probability that the values of x, y, z, . . . do not satisfy

condition (4), or better—and this is the same thing—that the

quantities have values for which the ratio

(x + y + z + ...-a — 6-c-...)^
a^iai + 6i + Ci + . . .

- a2 - 62 - c2 - . . .

)

is not > 1. Consequently the sum x + y + z . is included within

the limits

a + 6 + c+. . .4- aVoi + 6i + ci + . . .
- a2 - 62 - c2 - . . .

and

a + 6 + c + • — a\/ai + 6i + Ci + . . .
— a^ — 6^ — c^ — . . .

Hence it is evident that the probability P must satisfy the

inequality

\ -P <\,
which gives us

P>\ -\,

which was to have been proved.

If N be the number of the quantities x, y, z, . . ., and if in the

theorem which we have just demonstrated we set

Vn
t

and divide by N both the sum x + y + z + •• • and its limits

a + 6 + c + . . . 4- a\/ai + 6i + Ci + . . .
— a^ — 6^ — c^ — . .

.

and

a + 6 + c + • • — cx\/ai + 6i + Ci + . . .
— a2 — 6^ — c^ — . .

.

,

we will obtain the following theorem concerning the mean values.

Theorem. // the mathematical expectations of the quantities

X, y, z, . . .and x^, y^, z",. . .be respectively a, 6, c, . . .ai, 6i, Ci, . . .,

be probability that the difference between the arithmetic mean oj the

N quantities x, y, z, . . . and the arithmetic mean of the mathematical

expectations oj these quantities will not exceed

l^
+ 6i + ci + . . . a2 + 62 + c2 +

N N
f2

will always be larger than 1 — w whatever the value of t.



586 SOURCE BOOK IN MATHEMATICS

c- ^T c .. ai+ 61 + C1 +... J a2 4-62 + c2+...
Since the tractions t^j and tt

express the mean of the quantities ai, 61, Ci, . . . and ai\ 6iS Ci\ . . .,

whenever the mathematical expectations a, 6, c, ...ai, 61, Ci, ...

do not exceed a given finite limit, the expression

4
ai + 61 + ci + . . . a2 + 62 + c2 +

N N
will have a finite value, no matter how large the number N, and

in consequence we may make the value of

l^+ 61 + ci + . . . a2 + 62 + c2 +
N N

as small as we wish by giving to f a value sufficiently large. Now
since, no matter what the value of f, if the number N approaches

infinity the fraction ^ will approach zero, by means of the preced-

ing theorem, we reach the conclusion:

Theorem. // the mathematical expectations of the quantities

Ui, U2, Us,. . .and of their squares Ui^, Uo^ Ua^, . . .do not exceed a

given finite limit, the probability that the difference between the

arithmetic mean of N of these quantities and the arithmetic meaii

of their mathematical expectations will be less than a given quantity,

becomes unity as N becomes infinite.

For the particular hypothesis that the quantities Ui, U2,

U3, . . . are either unity or zero, as when an event E either happens

or fails on the 1st, 2nd, 3rd,. , .Nth trial, we note that the sum

Ui -{- U2 -}- U3 -\-
. . .-\- (/n will give the number of repetitions

of the event E in N trials, and that the arithmetic mean

N
will represent the ratio of the number of repetitions of the event

E to the number of trials. In order to apply to this case our last

theorem, let us designate by Pi, P2, P3, . . .Pn the probabilities

of the event E in the 1st, 2nd, 3rd. . .Nth trial. The mathematical

expectations of the quantities i7i + U2 -\- U3 -\-
. . .-\- Un and

of their squares Ui\ Ut^, Uz^, . .
.
, Vn^ will be expressed, in con-

formity with our notation, as

Pil + (1 - POO. P2I + (1 - P2)0, P3I + (1 - Pz)0, . .

.

PlP + (1 - P,)02, PoP -f (1 - Po)02, P3P + (1 - P3)0^. . .
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Hence we see that the mathematical expectations are Pi, Pi, Pz,-

and that the arithmetic mean of the first N expectations is

P1 + P2 + P3+...+ PN_
,

that is to say, the arithmetic mean of the probabilities Pi, P2,

P3,...Pn.

As a consequence of this, and by virtue of the preceding theorem,

we arrive at the following conclusion:

When the number oj trials becomes infinite, we obtain a probability

—which may even be approximately one ij we so wish—that the

difference between the arithmetic mean of the probabilities of the

event, during the trials, and the ratio of the number of repetitions

of that event to the total number oj trials, is less than any given quantity.

In the particular case in which the probability remains constant

during all the trials, we have the theorem of Bernoulli.



LAPLACE

On the Probability of the Errors in the Mean Results of a

Great Number of Observations and on the Most
Advantageous Mean Result

(Translated from the French by Dr. Julian L. C. A. Gys, Harvard University,

Cambridge, Mass.)

Pierre-Simon, Marquis de Laplace (1749-1827J, bom at Beaumont-en-Auge

(Calvados), the son of a farmer, was in his early years professor of mathematics

at the military school in his native city. He took part in the founding of the

£cole Polytechnique and the £cole Normale. He dealt mostly with problems

of celestial mechanics, and to the works of Newton, Halley, Clairaut, d'Alem-

bert, and Euler on the consequences of universal gravitation, he added many
personal contributions relating to the variations of the motion of the moon,

the perturbations of the planets Jupiter and Saturn, the theory of the satellites

of Jupiter, the velocity of the rotation of the ring of Saturn, aberration, the

motion of the comets, and the tides. He was also famous for the invention of

the cosmogonic system which bears his name. His Tbeorie analytique des

probabilites ranks among the most important works done in the field of prob-

ability theory. In the edition of Mme. Vve. Courcier, Paris, 1820, it is pre-

ceded by a most interesting introduction which was first published under the

title Essai pbilosopbique sur les probabilites.

were published under the auspices of the Academy of Sciences in 1886.

The extract under consideration has been taken from the CEuvres completes de

Laplace, Vol. VII, published under the auspices of the Academic des Sciences,

Paris, 1886 (Book 2, Chapter IV, pp. 304-327).

The interest in the passage lies in presenting the line of reasoning by which

Laplace arrived at what is generally known as the law of errors of Gauss.

Laplace certainly discovered the law before Gauss published his way of deriving

it from his well-known postulates on errors. The method of Laplace is

entirely different from that of Gauss. It should be noted that De Moivre

gave a proof of the same law in 1733. (See page 566).

CHAPTER IV

On the probability oj the errors in the mean results oj a great num-
ber oj observations and on the most advantageous mean result.

18. Let us now consider the mean results of a great number of

observations of which the law of the frequency of the errors is

known. Let us first assume that for each observation the errors

may equally be

— n, — n -f 1, —n -f 2, . . .
— 1, 0, 1, . . n — 2, n — I, n.

588
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The probability of each error will be ^—r—v- If we call the
2n -f 1

number of observations s, the coefficient of c'""^~^ in the develop-

ment of the polynomial

I
. . . + c-"^^^ + 1 + c"^^^ . . . + c""v/-l

J

will be the number of combinations in which the sum of the errors

is /.^ This coefficient is the term independent of c"'^''^"^ and of its

powers in the development of the same polynomial multiplied by

^ -/w-vZ-T and it is clearly equal to the term independent of w in the

c'""^"^ -f- c~ '"v'-^i

same development multiplied by
^

or by cos /w

Thus we have for the expression of this coefficient,

-/(/to. cos lio. (1 + 2 cos w + 2 cos 2 CO. . . + 2 cos nw)%

the integral being taken from co = to co = tt.

We have seen (Book I, art. 36) that this integral is^

{In + l)»\/3 -^^
\/n.{n + l).257r

the total number of combinations of the errors is (2n + 1)*.

Dividing the former quantity by the latter, we have for the proba-

bility that the sum of the errors of the s observations be /,

V3 y2i-

y/n{n + l).257r

If we set

.Q n(n+l).s

/ = 2^^/^2^3i)5,

the probability that the sum of the errors will be within the limits

+ 27^^+25 and -IT.^'^^f^' will be equal to

2

Vtt

^ [Here c stands for what we now represent by e.]

' [In section 36 of his Book I, Laplace computes the coefficient of a ^' in the

development of the polynomial

(a-n ^ a-n+i ^ _ . ^ o-i + 1 + a -h . . . + a""' + o")*

where a = c*^~^, in the case of a very large exponent.]
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the integral being taken from t = to t = T. This expression

holds for the case of n infinite. Then, calling 2a the interval

between the limits of the errors of each observation, we have

71 = a, and the preceding limits become + —'—^— : thus the

probability that the sum of the errors will be included within the

limits +ar.'\/s is

4l-^''-
,-ti"

This is also the probability that the mean error will be included

ar
within the limits ±~7^; for the mean error is obtained by dividing

the sum of the errors by s.

The probability that the sum of the inclinations of the orbits

of s comets will be included within the given limits, assuming

that all inclinations are equally possible from zero to a right angle,

is evidently the same as the preceding probability. The interval

la of the limits of the errors of each observation is in this case the

interval tr/l of the limits of the possible inclinations. Thus the

probability that the sum of the inclinations will be included within

the limits ±'^^^— is 2.^17^.jdr.

c

which agrees with what

has been found in section 13.^

Let us assume in general that the probability of each error

positive or negative, may be expressed by 4>{x/7i), x and Ji being

infinite numbers. Then, in the function

1 + 2 cos CO + 2 cos 2w + 2 cos 3a; . . . + 2 cos iiw,

each term such as 2 cos xw must be multiplied by <t>{x/n). But wc

have

2*(^).cos X. = 2*Q - '^,^{^-nV + etc.

Thus by putting

X = -» ax — ~y
n n

1 [In that section, Laplace finds the same result by considering the problem

of the inclinations of the orbits as an application of this problem: given an urn

containing (n + 1) balls numbered from to n, to find the probability of

attaining the sum s by i drawings if the ball drawn is returned each time.]
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the function

</)( - j + 2<t>i - j- cos 0) 4- 2(I>1 -
J-
cos 2co . . . + 2<t>l - )• cos nco,

becomes

2n.jdx'.ct>{x') - nW.jx''^dx'.(t>(x') + etc.,

the integrals being taken from x' = to x' = 1. Then let

k = 2jdx'.4>{x'), k" = ix'Hx'.4>{x'), etc.

The preceding series becomes

nki
k"

1 r'^^w^ + etc.
k

Now the probability that the sum of the errors of 5 observations

will lie within the limits ± / is, as is easily verified by the preceding

reasoning,

r, r r I </>(-) + 2<i>\
~ )• cos w + 2^[ - )• cos 2co . .

.

—
I

I do3.dL cos to < ^
^ ^

, V

. . . + 2<^l - J-cosna>

the integral being taken from co = to oj = tt. This probability

is then

2.^'.
j

\doi.dl cos lJ\ - ^-nW - etc.Y. (u)

Let us assume that

( 1
—

u'^^'^^ ~ ^^^'
)
~

In taking hyperbolic logarithms, when s is a large number, we have

very nearly

k"
s.-r-n^o)^ = t^;

which yields

_ t IT

If we then observe that the quantity nk or 2.jdx.<}>(x/n) which

expresses the probability that the error of an observation is
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included within the limits ±n, should be equal to unity, the func-

tion (u) becomes

rnr \k^JfdUu-". cos(^l-^P^:

the integral with respect to t being taken between t = and t =

7rn*/-7^ or to f = 00 , n being assumed to be infinite. But from

Book I, section 25^ we have

2
Jdf.cosg.^)

Then setting

Q—i.- =: _^ Q in* k"s.

I iW's_ — It' •

n \ k

the function (u) becomes

V TT J

Thus, calling the interval included between the limits of errors of

each observation 2a as above, the probability that the sum of the

errors of 5 observations will be included within the limits + ar.y/s is

T C -——- \ drc 4*"

if 0[ -
J

is constant. Then T77- = 6, and this probability becomes

2.yj~ I dr.c-

which is conformable to what we found above.

or <t>{x') is a rational and entire function of x', we have

by the method of section 15, the probability that the sum of the

errors shall be included within the limits ±ar.\rs expressed by a

series of powers of 5, 2s, etc., of quantities of the form

s — fi ± r.^s/s,

' [Result found by Laplace in his chapter on integration by approximation

of differentials which contain factors raised to high powers.]

"<d



LAPLACE 593

in which n increases in arithmetic progression, these quantities

being continuous until they become negative. By comparing

this series with the preceding expression of the same probability,

we obtain the value of the series very accurately. And relative

to this type of sequence we obtain theorems analogous to those

which have been given in section 42, Book I, on the finite difiFer-

ences of powers of one variable.

If the law of frequency of the errors is expressed by a negative

exponential that can extend to infinity and in general if the errors

can extend to infinity then a becomes infinite and some difficulties

may arise with the application of the preceding method. In all

cases we shall set

h being an arbitrary finite quantity. And by following the above

analysis exactly, we shall find for the probability that the sum of

the errors of the s observations be included between the limits

±hr.\/s,

dr.c 4fc",

=^i'
an expression in which we should observe that <i>lr) or <t>(x')

expresses the probability of the error ± x, and that we have

k = 2jdx'.cf>{x'), k" = jx'Hx'.4>{x'),

the integrals being taken from x' = to x' = oo

.

19. Let us now determine the probability that the sum of the

errors of a very greater number of observations shall be included

within the given limits, disregarding the signs of the errors, i. €.,

taking them all as positive. To that end, let us consider the series

nuV— 1

C

<l)
-

) being the ordinate of the probabifity curve of the errors.

corresponding to the error ±x, x being considered as well as n

as formed by an infinite number of unities. By raising this

series to the s-th power, after having changed the sign of the
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negative exponentials, the cocfTicient of an arbitrary exponential,

say c^^+'^'>"^~\ is the probability that the sum of the errors

disregarding their sign, is / + ai5; hence the probability is equal to

1. Cd..
2irJ

^-(l+ ^,)o

+2«{^).cW-,,.+,^^), j-vZ-i

the integral with respect to w being taken from o) = — tt to co = tt.

Then, in that interval, the integral

JJco-c"''"'^''^, or/c/a>-(cosrco — \/— 1 sinrw), vanishes for all values

of r that are not zero.

The development with respect to the powers of co yields

= ..Iog| +2.V^[*(i) + 2*(?). . .+ n*Q]

n/^ 1

— fjiso)\/ — 1.

(1)

Therefore, setting X ,
= dx\

2jdx'-<t>{x') = k, jx'dx'-<t>{x') = k', jx'^dx'-^Pix') = k",

jx''dx'-<p{x') = k"', jx"^dx''<f>{x') = k'^, etc.

the integrals being taken from Ac' = Otox' = 1, the second member

of the equation (1) becomes

:('

2-k'
s-Iogn/e + s-Iog( 1 4-^V--nco\/— 1 r- nW )etc. )

— (jlsoj\/ —\.

As the error of each observation necessarily falls between the Hmits

± n, we have nk = \; and thus the preceding quantity JDecomes

4t - d
By putting

nw - 1 - ^
rir-^ etc.

k
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and neglecting the powers of co higher than the square, this quantity

reduces to its second term and tiie preceding probability becomes

w- I du-c fe2

2irJ

Let

a = 7-
—

> W = ;=? - = r.\/ &
'^ Vkk"-2k'^ n.Vs n

The preceding integral becomes

1 c r -o+'^y
4 2

This integral should be taken from f = — oo to / = <» ; and then

the preceding quantity becomes

r-C

On multiplying by dl or by ndr.-\/s the integral

1 c ^'"''^

will be the probability that the value of / and consequently the

sum of the errors of the observations is included between the

limits -r-- as + ar.\/s, +a being the limits of the errors of each

observation, limits which we designate by ±7i when we imagine

them split up into an infinity of parts.

Thus we see that the most probable sum of the errors, disregard-

ing the sign, is that which corresponds to r = 0. This sum is

Ik' . Ik' 1
-r—as. In the case when 0(x) is constant, -r- = y? the most

probable sum of the errors is then half of the largest possible sum,

which sum is equal to sa. But if <^(x) is not a constant and if it

Ik' .

decreases when the error x increases, then —r- is less than 3^^ and

the sum of the errors disregarding the sign is less than half of the

greatest sum possible.

By the same analysis, we can determine the probability that

the sum of the squares of the errors will be 1 + ^. It is easily

seen that the expression of the probability is the integral

2VJ
£/aj.C~^'+''^)"'^^~^
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taken from w= — 7rtoco = 7r. Following the preceding analysis

precisely, we will have

2n\k"

and putting

the probability that the sum of the squares of the errors of 5

observations will lie between the limits —r-- a^s ± ah.\/s will be

iJ"
/J'VJ

The most probable sum is that which corresponds to r = and

2k"
therefore it is —r-- a^s. If 5 is an exceedingly large number, the

result of the observations will differ very Httle from that value

a'^k"
and will therefore yield very satisfactorily the factor —r—

•

20. When it is desired to correct an element already known to a

good approximation by the totality of a great number of observa-

tions, we form equations of condition as follows: Let z be the

correction of an element and let /3 be the observation, the analytic

expression for which is a function of the element. By substituting

for this element its approximate value plus the correction z and

reducing to a series with respect to z and neglecting the square of

z, this function will take the form h + pz. Setting it equal to the

observed quantity /3 we obtain

/3 = /) + pz;

z would thus be determined if the observation were exact, but since

it is susceptible to error, we have exactly, calling that error e to

terms of order z^

^ + e = h -\- pz;

and by setting

ft
- h = a,

we have
e = pz — a.

Each observation yields a similar equation that may be written

for the (i + l)th observation as follows:
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Combining these equations, we have

5-c('> = 2.5-p(^> - 5-a(»), (1)

where the symbol 5 holds for ail values of i from i = to i =
s — I, s being the total number of observations. Assuming that

the sum of the errors is zero, this yields

This is what we usually call the mean result of the observations.

We have seen in section 18 that the prol^abihty that the sum

of the errors of s observations be included within the limits ± ar.-y/s

^j^.j<fr.c-:-.

Call ±u tlie error in the result z. Substituting ±ar.\^ for

5.6^'^ in equation (1), and o^—(-) ± u for z, this yields

a.y/s

The probability that the error of the result z will be included

within the limits ±u is thus

Vf^,-^-'"-'-/^

du -
/ju«.(S.P«))»

Q ik"a^s

Instead of supposing that the sum of the errors is zero, we may
suppose that an arbitrary linear function of these errors is zero, as

m.e + m(i).c(i> + m^'-Kt^'-^ . . . + m^'-'Ke^'-'K (m)

m, m^^\ m^^^ being positive or negative integers. By substituting in

this function (m) the values given by the equations of condition

in the place of e, e^^^ etc., this becomes

Setting the function (m) equal to zero yields

Let u be the error in this result so that
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The function (m) becomes

Let us determine the probability of the error u, when the number

of the observations is large.

For this, let us consider the product

the symbol / extending over all the values of x, from the extreme

negative value to the extreme positive value. As above, ^l -
)

is the probability of an error x in each observation, x being as is

a, assumed to be formed of an infinite number of parts taken as

unity. It is clear that the coefficient of an arbitrary exponential

f./uV- 1 in the development of this product will be the probability

that the sum of the errors of the observations, multiplied respec-

tively by m, m^^^ etc., in other words, the function (m), shall be

equal to /. Then multiplying the latter product by c"'""*"^^,

the term independent ofc^"^" ^ and of its powers in this new product

will represent the same probability. If we assume as we did here,

that the probability of positive errors is the same as that of negative

errors, we may combine the terms multiplied by c"^xuy/^ and by

f-mxu\/^ in the sum I <^( - j.c"'*"'^^'^. Then this sum will take

the form 2 I 0l - )• cos mxoj. And so for all similar sums. Hence

the probability for the function (m) to be equal to / is

hrf

-'-v'^X 2/#c ""V IX z I 01 - I. COS mxco

X 2
I
d-j-cosm^^ho). . .X 2 I J-\cosm^'-^Kxj}

the integral being taken from oj = — tt to w = r. Reducing the

cosines to a series yields

J*0- ""' ""'" = J*© -
["'"'-'•J ^I-*(aj + etc.

Letting x/a = x' and observing that since the variation of x is

unity, dx' = 1/a; we obtain

Hi) = "!'-'•*(*')•
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As above, let us call k the integral 2jdx'.<i>{x') taken from x' =

to its extreme positive value, and k" the integral jx'^dx' taken

over the same limits, and so on, thus we will have

//x\ ( k" k'^' \
(pi-Lcosmxcj = ak.il r-.m'^a-a:^ + r^^-m''a''co'» — etc. ).

The logarithm of the second member of this equation is

r-'tn^aW -\ r^p .m*a*u)'^ — etc. + log ak,

ak or 2ajdx'.<l)(x') expresses the probability that the error of each

observation shall be included within the hmits, a thing which is

certain. We then have ak = I. This reduces the preceding

logarithm to

j-.m^a^u}'^ H ryp .m*a^(jj^ — etc.

From this it is easy to conclude that the product

2 I J-j.cosmxcoXl 1 4>(-).cosm^^hu). . . X2 I J-jcosm^'-^hu,

is

/, ,
kk'^-ek"^ . a c r^. .

^ -^a^^.s.mcn
( 1 H ryp a^^-5-m('^4 + etc. l.c

^

The preceding integral (i) reduces then to

Sr-J<^-

1 r kk'^' — 6fe"2^ +
12fe2
—a\^^'S-m^'^^ + etc.

Xc *

Setting 50^0)2 = f-, this integral becomes

__jd,.|i + _^-^, ?-•'* + "'

Xc °^ fc s
.

5.m^'^^, S.m^'^'* are evidently quantities of order 5. Thus —^—^— is

of order \/s. Then neglecting the terms of the latter order with

respect to unity, the above integral reduces to

ly/s

2air.

1 r --
^ dt.c

"^
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The integral with respect to w must be taken from co = —t to

w = TT, the integral with respect to t must be taken from

t = — air.\^ to / = av.-y/s, and in such cases the exponential under

the radical sign is negligible at the two limits, either because s

is a large number or because a is supposed to be divided up into

an infinity of parts taken as unity. It is therefore permissible to

take the integral from f = — « to f = « . Letting

V ks '{ 2a.k"-S-m^'^^\'
t' =

the preceding integral function becomes

ki^

4Jfe"-a:-S-m('):

C
•a='0-mi''- y%

^^ .^-''2

„ C «,(02
^

k
2a7rJ^.5.;n('>2

The integral with respect to t' should be taken, just as the integral

with respect to t, from t' = ~ oc to t' = <x: , so that the above

quantity reduces to the following one

*/'-

Jfe".a2.5.m(')»

Setting / = ar.\/s and observing that, since the variation of /

is unity, adr = 1, we will have

4k II ^
-5

—

.o.Tn
k

~ it
.Cj^ , 4/c".5.m(')i

for the probability that the function (m) be included within the

hmits zero and ar.\/S, the integral being taken from r equal to

zero.

Here we need to know the probability of the error u in the element

as determined by setting the function (m) equal to zero. This

function being assumed to be equal to / or to ar.\/s, we have,

according to previous relations

u.5.7?i<'^p^'' = ar.y/s.
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Substituting this value in the preceding integral function, this one

becomes

_ fcu2.(5.m")p('));

5.m^*'p<'^ (*
,

4*".a«.S.m(')2

.C

^»^fi^

(0 n

This is the expression for the probabiHty that the value of u be

included between the limits zero and u. It is also the expression

for the probabiHty that u will be included between the limits zero

and — u. Setting

the preceding integral function becomes

kS-
Now as the probability remains the same, t remains the same, and

the interval of the two limits of u becomes smaller and smaller,

the smaller a.. /_. ^ — becomes. This interval remaining

the same, the value of t and consequently the probability that the

error of the element will fall within this interv^al, is the larger as

the same quantity a.^ ^.yjri^ is smaller. It is then necessary

to chose a system of factors m^'^ which will make this quantity)

a minimum. And as a, k, k" are the same in all these systems,

we must chose the system that will make V a minimum.

It is possible to arrive at the same result in the following way.

Let us consider again the expression for the probability that u

will be within the limits zero and u. The coefficient of du in the

differential of that expression is the ordinate of the probability

curve of the errors u in the element, errors which are represented

by the abscissas of that curve which can be extended to infinity

on both sides of the ordinate corresponding to u = 0. This

being said, all errors whether positive or negative must be looked

on as either a disadvantage or a real loss, in some game. Now
by means of the probability theory, which has been expounded

at some length in the beginning of this book, that disadvantage is

computed by adding the products of each disadvantage by its
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corresponding probability. The mean value of the error to fear

in excess is thus equal to the integral

fcu«.(5.mt')p('))»

judu-S-m^'^P^'\c 4fe".a^.5.m(.)t

-^- 5.m('^2

the integral being taken from u = to u infinite; thus the error is

The same quantity taken with the — sign gives the mean error to fear

in deficiency. It is evident that the system of the factors m^'^ which

must be chosen is such that these errors are miyiima and therefore

such that

is a minimum.

If we differentiate this function with respect to m^'^ we will have,

equating this derivative to zero, by the condition for a minimum,

This equation holds whatever i may be, and as the variation of i

cannot affect the fraction ^^
'

,,, ,.> > setting this fraction equal to

fx, we have

m = n-p, m^^'> = fi.p^^\. . . m^*~*^ = fi.p^'~^^;

and'whatever p,p^^\ etc. may be, we may take ji so that the numbers

m, m^^^ etc., are integers as the above analysis assumes. Then
we have

and the mean error to fear becomes ± y kir Under every

V^.p^'
hypothesis that can be made about the factors m, ?n^'\ etc., this

is the least mean error possible.

If we set the values of m, m'-^\ etc. equal to ±1, the mean
error to fear will be smaller when the sign ± is determined so

that m^'^p'-'^ will be positive. This amounts to supposing that
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1 = m = m^^^ = etc., and to preparing the equations of condition in

such a way that the coefficient of z in each of them be positive.

This is done by the ordinary method. The mean result of the

observations is then

S.p ay

and the mean error to fear whether it be in excess or in deficiency

is equal to

But this error is greater than the former which as has been seen

is the smallest possible. Moreover this can be shown as follows.

It suffices to prove the inequality

Vs ^ l_
or

s.S.p^'^-' > (S.p('))2.

Indeed, 2pp^^^ is less than p^ + p^^^" since (p^^^ — p)^ is positive.

Hence it is permissible to substitute for 2pp^^^ in the second

member of the above inequality the quantity p^ + p^^^^ —
/,

/ being positive. Making similar substitutions for all similar

products, that second member will be equal to the first one minus

a positive quantity. The result

5.p(^>a('>
z =

S.p (i)2

to which corresponds the minimum of the mean error to fear, is

the same as that given by the method of least squares of the errors

of observations; for, as the sum of these squares is

(pz - a)2 + (p(i).z - aa))2^ _^ (p(«-i).z - a(«-i))2;

the minimum condition of this function yields when z varies, the

preceding expression. Preference should thus be given to this

method, for all laws of frequency of the errors whatsoever they

may be are the laws on which the ratio -y depends.

If <f>{x) is a constant, this ratio is equal to 3^^. It is less than 3^^

if <^(x) varies in such a way that it decreases when x increases as
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is natural to suppose. Adopting the mean law of errors given in

section 15, according to which <t>(x) is equal to ;y-. log -» we have

k" I

~r —To' As to the limits +a, we may take for those limits,

the deviations from the mean result which would cause the rejec-

tion of an observation.

But, by means of the observations themselves, it is possible to

determine the factor a- /_ in the expression for the mean
\ k

error. Indeed it has been seen in the preceding section that the

sum of the squares of the errors in the observations is very nearly

a-k"
equal to 25.—r— and that it becomes extremely probable when

there is a great number of observations for the observed sum not

to differ from that value by an appreciable amount. We may
set them equal to each other. Now the observed sum is equal to

5-€^'^2 or to S-{p'-''>-z — a^'^)2. Substituting for z its value

-pT , ..o ; it is found that

The above expression for the mean error to fear in the result z

then becomes

an expression in which nothing appears that is not given by the

observations or by the coefficients of the equations of condition.



V. FIELD OF THE CALCULUS, FUNCTIONS,
QUATERNIONS

Cavalieri's Approach to the Calculus

(Translated from the Latin by Professor Evelyn Walker, Hunter College,

New York City.)

Bonaventura Francesco Cavalicri (Milan, 1598-BoIogna, 1647), a Jesuit, was

a pupil of Galileo. In order to prove his fitness for the Chair of Mathematics

at the University of Bologna, he submitted, in 1629, the manuscript of his

famous work, Geometria Indivisibilibus Continuorum Nova quadam ratione

promota, which he published in 1635. This publication exerted an enormous

influence upon the development of the calculus. Cavalieri was the author of

a number of less important works, among them his Exercitationes Geometries

Sex, which is still sometimes mentioned.

The following extract, known as Cavalieri's theorem, is from the Geometria

Indivisibilibus, Book VII, Theorem 1, Proposition l.i

Any plane figures, constructed between the same parallels, in

which [plane figures] any straight lines whatever having been

drawn equidistant from the same parallels, the included portions

of any straight line are equal, will also be equal to one another;

and any solid figures, constructed between the same parallel

planes, in which [solid figures] any planes whatever having been

drawn equidistant from the same parallel planes, the plane figures

of any plane so drawn included within these solids, are equal, the

[solid figures] will be equal to one another.

Now let the figures compared with one another, the plane as well

as the solid, be called analogues, in fact even up^ to the ruled

lines or paralld planes between which they are assumed to lie, as

it will be necessary to explain.

^ This translation has been compared with and checked by that of G. W.

Evans in Tbe American Mathematical Monthly, XXIV, 10 (December 1917),

pp. 447-451. The diagram and lettering used by Evans have been adopted

as being more convenient than those of Cavalieri, whose diagram is not only

poorly printed, but has its points designated by numbers as well as by botli

Roman and Greek letters.

2 The expression used is "juxta regulas lineas," literally "next to the ruled

lines."]

605
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Let there be any plane figures, ABC, XYZ, constructed between

the same parallels, PQ, RS; but DN, OU, any parallels to PQ,

RS, having been drawn, the portion [s], for example of the DN,
included within the figures, namely JK, LM, are equal to each

other, and besides, the portions EF, GH, of the OU taken together

(for the figure ABC, for example, may be hollow within following

the contour FgG), are hkewise equal to the TV; and let this happen

in any other lines equidistant from the PQ. I say that the figures

ABC, XYZ, are equal to each other

For either of the figures ABC, XYZ, as the ABC, having been

taken with the portions of the parallels PQ, RS, coterminous with

it, namely with PA, RB, let it be superimposed upon the remaining

figure XYZ, but so that the [lines] PA, RB, may fall upon AQ and

CS; then either the whole [figure] ABC coincides with the whole

[figure] XYZ, and so, since they coincide with each other, they

are equal, or not; yet there may be some part which coincides with

another part, as XMC'YThL, a part of the figure ABC, with

XMCYTbL, a part of the figure XYZ.
By the superposition of the figures effected in such a way

that portions of the parallels PQ, RS, coterminous with the two

figures, are superposed in turn, it is evident that whatever straight

lines included within the figures were in line with each other, they

still remain in line with each other, as, for example, since EF, GH,

were in the same line TV, the said superposition having been made,

they will still remain in line wath themselves, obviously E'F',

TH', in line with the TV, for the distance of the EF, GH, from

PQ is equal to the distance [of] TV from the same PQ. Whence,

however many times PA is laid upon AQ, wherever it may be

done, EF, GH, will always remain in line with the TV; which is

clearly apparent also for any other lines whatsoever parallel

to PQ in each figure.

But when a part of one figure, as ABC, necessarily coincides

with a part of the figure XYZ and not with the whole, while the

superposition is made according to such a rule as has been stated,

it will be demonstrated thus. For since, any parallels whatever

having been drawn to the [line] AD, the portions of them included

within the figures, which were in line with one another still remain

in line with one another after the superposition, they, of course,

being equal by hypothesis before superposition, then after super-

position the portions of the [lines] parallel to the AD, included

within the superposed figures, will likewise be equal; as, for
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example, E'F', TH', taken together, will be equal to the TV;
therefore if the E'F', TH', together do not coincide with the whole

TV, then a part coinciding with some part, as TH' with TH'
itself, E'F' will be equal to the H'V, and in fact E'F' will be in the

residuum of the superposed figure ABC, [and] H'V indeed in the

residuum of the figure XYZ upon which the superposition was
made. In the same way we shall show [that] to any [line] whatso-

ever parallel to the PQ, included within the residuum of the super-

posed figure ABC, as it were LB'YTF', there corresponds an equal

straight line, in line [with it], which will be in the residuum of the

figure XYZ upon which the superposition was made; therefore, the

superposition having been carried out in accordance with this

rule, when there is left over any [part] of the superposed figure

^ X

which does not fall on the figure upon which the superposition

was made, it must be that some [part] of the remaining figure also

is left over, upon which nothing has been superposed.

Since, moreover, to each one of the straight lines parallel to

PQ included within the residuum or residuua (because there may
be several residual figures) of the superposed figure ABC or XYZ,
there corresponds, in line [with it], another straight line in the

residuum or residua of the figure XYZ, it is manifest that these

residual figures, or aggregates of residua, are between the same
parallels. Therefore since the residual figure LB'YTF' is between

the parallels DN, RS, likewise the residual figure or aggregate of

the residual figures of the XYZ, because it has within it the frusta

Thg, MC'Z, will be between the same parallels DN, RS. For if

it did not extend both ways to the parallels DN, RS, as, for

example, if it extended indeed all the way to DN, but not all the

way to RS, but only as far as OU, to the straight lines included



608 SOURCE BOOK IN MATHEMATICS

within the frustum E'B'YjF', parallel to the [line] PQ, there would

not correspond in the residuum of the figure XYZ, or [in] the

aggregate of the residua, other straight lines, as, it was proved

above, is necessary. Therefore these residua or the aggregates

of residua are between the same parallels, and the portions of the

[lines] included therein parallel to the PQ, RS, are equal to one

another, as we have shown above. Therefore the remainders or

the aggregates of the remainders, are in that condition in which, it

was assumed just now, were the figures ABC and XYZ; that is,

[they are] hkewise analogues.

Then again let the superposition of the residua be made, but

so that the parallels KL, CY, may be placed upon the parallels

LN, YS, and the part VB"Z of the frustum LB'YTF' may coincide

with the part VB"Z of the frustum MC'Z. Then we shall show,

as above, [that] while there is a residuum of one there is also a

residuum of the other, and these residua, or aggregates of residua,

are between the same parallels. Now let L'VZY'C'F" be the

residuum with respect to the figure ABC, but let the residua

MC'B"V, Thg, whose aggregate is between the same parallels as

the residuum L'VZY'C'F", belong to the figure XYZ, of course

between the parallels DN, RS; then if again a superposition of

these residua is made, but so that the parallels between which they

lie may always be superposed in turn, and it may be understood

that this is always to be done, until the whole figure ABC will

have been superposed, I say [that] the whole [of it] must coincide

with the XYZ; otherwise, if there is any residuum, as of the figure

XYZ, upon which nothing had been superposed, then there would

be some residuum of the figure ABC which would not have been

superposed, as we have shown above to be necessary. But it has

been stated that the whole ABC was superposed upon the XYZ;
therefore they are so superposed one [part] after another, that

there is a residuum of neither; therefore they are so superposed

that they coincide with each other; therefore the figures ABC,
XYZ, are equal to each other.

Now let there be constructed in the same diagram any two sohd

figures whatever, ABC, XYZ, between the same parallel planes

PQ, RS; then any planes DN, OU, having been drawn equidistant

from the aforesaid [planes], let the figures which are included

within the solids, and which lie in the same plane, always be equal

to each other, as JK equal to LM, and EF, GH, taken together

(for a solid figure, for example ABC, may be hollow in any way
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within, following the surface FJGg) equal to the [figure] TV. I

say that these solid figures are equal.

For if we superpose the solid ABC, together with the portions

PA, RC of the planes PQ, RS, coterminous with it, upon the solid

XYZ, so that the plane PA may be upon [the plane] PQ, and [the

plane] RC on the plane RS, we shall show (as we did above with

respect to the portions of the lines parallel to the PQ included

within the plane figures ABC, XYZ) that the figures included

within the solids ABC, XYZ, which were in the same plane, will

also remain in the same plane after superposition, and therefore

thus far the figures included within the superposed solids and
parallel to the PQ, RS, are equal.

Then unless the whole solid coincides with the [other] whole

[solid] in the first superposition, there will remain residual solids,

or solids composed of residua in either solid, which will not be

superposed upon one another; for when, for example, the figures

E'F', TH', are equal to the figure TV, the common figure TH'
having been subtracted, the remainder E'F' will be equal to the

remainder H'V; and this will happen in any plane whatsoever

parallel to the plane PQ, meeting the solids ABC, XYZ. There-

fore having a residuum of one solid, we shall always have a

residuum of the other also. And it will be evident, according to

the method applied in the first part of this proposition concerning

plane figures, that the residual solids or the aggregates of the

residua will always be between the same parallel planes, as the

residua LB'YTF', MC'Z, Thg, are between the parallel planes

DN, RS, and likewise [that they are] analogues.

If therefore these residua also are superposed so that the plane

DL is placed upon the plane LN, and RY upon YS, and this is

understood to be done continually until [the one] which is super-

posed, as ABC, taken all together, as the whole ABC, will be

coincident with the whole XYZ. For the whole solid ABC having

been superposed upon the XYZ, unless they coincide with one

another, there will be some residuum of one, as of the solid XYZ,
and therefore there would be some residuum of the solid XB'C
or ABC, and this would not have been superposed, which is absurd

;

for it has already been stated that the whole solid ABC was super-

posed upon the XYZ. Therefore there will not be any residuum

in these solids. Therefore they will coincide. Therefore the

said solid figures ABC, XYZ, will be equal to each other. Which

[things] were to be demonstrated.



FERMAT

On Maxima and Minima

(Translated from the French by Dr. Vera Sanford, Teachers College, Columbia

University, New York City.)

Supplementing the communication from Fermat to Pascal (see page 289),

giving some of his ideas on analytic geometry, the following letter to Roberval

shows how his mind was working toward one of the combinations of the calcu-

lus with the Cartesian system. The letter was written on Monday, September

22, 1636, a year before Descartes published La Geometrie. See the (Euvres

de Fermat (ed. Tannery and Henry, Vol. II, pp. 71-74, Paris, 1894). For a

biographical sketch of Fermat, see page 397; for the introductory pages of

Descartes, see pages 213, 214.

Monsieur,

1. With your permission, I shall postpone writing you on the

subject of the propositions of mechanics until you shall do me the

favor of sending me the demonstration of your theorems which I

trust to see as soon as possible according to the promise you made
me.

2. On the subject of the method of maxima and minima, you

know that as you have seen the work which M. Despagnet gave

you, you have seen mine which I sent him about seven years since

at Bordeaux.

At that time, I recollect that M. Philon received a letter from

you in which you proposed that he find the greatest cone of all

those whose conical surface is equal to a given circle. He for-

warded it to me and I gave the solution to M. Prades to return

to you. If you search your memory, you will perhaps recall it

and also the fact that you set this question as a difficult one that

had not then been solved. If I discover your letter, which I

kept at the time, among my papers, I will send it to you.

3. If M. Despargnet laid my method before you as I then sent

it to him, you have not seen its most beautiful applications, for

I have made use of it by ampHfying it a little:

(1) For the solution of problems such as that of the conoid

which I sent you in my last letter.

(2) For the construction of tangents to curved lines on which

subject I set you the problem: To draw a tangent at a given point

on the conchoid of Nicomedes.
610
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(3) For the discovery of the centers of gravity of figures of

every type, even of figures that differ from the ordinary ones such

as my conoid and other infinite figures of which I shall show
examples if you desire them.

(4) For numerical problems in which there is a question of

ahquot parts and which are all very difficult.

4. It is by this method that I discovered 672 [the sum of]

whose factors are twice the number itself, just as the factors of

120 are twice 120.

It is by the same method also that I discovered the infinite

numbers that make the same thing^ as 220 and 284, that is to

say, the [sum of the] factors of the first are equal to the second,

and those of the second are equal to the first. If you wish to see

an example of this to test the question, these two numbers 1 7296

and 18416 satisfy the conditions.

I am certain that you told me that this question and others of

its type are very difficult. I sent the solution to M. de Beaugrand

some time ago.

I have also found numbers which exceeded the ahquot parts

of a given number in a given ratio, and several others.

5. These are the four types of problems included in my method

which perhaps you did not know.

With reference to the first, I have squared^ infinite figures

bounded by curved lines; as for example, if you imagine a figure

such as a parabola, of such a type that the cubes of the ordinates^

are in proportion to the segments which they cut from the diameter.

This figure is something like a parabola and it differs from one

only in the fact that in a parat)oIa we take the ratio of the squares

while in this figure I take that of the cubes. It is for this reason

that M. de Beaugrand, to whom I put this problem calls it a

cubical parabola.'^

1 have also proved that this figure is in the sesquialter^ ratio to

the triangle of the same base and height. You will find on investi-

^ [The "amicable numbers" 220 and 284 were known at an early date,

possibly as early as the Pythagoreans. The second pair were discovered by

Fermat whose expression "the infinite numbers" meant that the author had

discovered a general rule for the formation of these numbers.]

2 [Found the area of.]

3
[ . . . que les cubes des appliquees soient en proportion des lignes qu'elles

coupent du diam^tre."]

* ["parabole solide."]

5 [/. e., the ratio of 3 : 2.]
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gation that it was necessary for me to follow another method than

that of Archimedes for the quadrature of the parabola, and that I

should never have found it by his method.

6. Since you found my theorem on the conoid excellent, here

is its most general case: If a parabola with

the vertex B and axis BF and ordinate AF
be revolved about the straight line AD, a

new type of conoid will be produced in which

a section cut by a plane perpendicular to the

axis will have the ratio to the cone on the

same base and with the same altitude that

8 has to 5.

If, indeed, the plane cuts the axis in unequal segments, as at E,

the segment of the conoid ABCE is to the cone of the same base

and altitude as five times the square ED with twice the rectangle

AED and the rectangle of DF and AE is to five times the square

on ED. And likewise the segment of the conoid DCE is to the

cone with the same base and altitude as five times the square AE
added to twice the rectangle AED and the rectangle of DF and

DE is to five times the square on AE.
For the proof, besides the aid which I have from my method, I

make use of inscribed and circumscribed cylindars.

7. I have omitted the principal use of my method which is in

the discovery of plane and solid loci. It had been of particular

service to me in finding the plane loci which I found so difficult

before:

If from, any number of given points, straight lines are drawn

to a single point, and if these lines are such that they are equally

spaced by a given amount from each other, then the point lies on

a circle which is given in position.

All that I shall tell you are but examples, for I can assure you that

for each of the preceding points I have found a very great number

of exceedingly beautiful theorems. I shall send you their proof

if you wish. May I however beg you to try them soon and to give

me your solutions.

8. Finally, since the last letter which I wrote you, I have

discovered the theorem which I set you. It caused me the greatest

difficulty and it did not occur to me at an earlier date.

I beg you to share some of your reflections with me and to

believe me etc.
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NEWTON

On Fluxions

(Translated from the Latin by Professor Evelyn Walker, Hunter College,

New York City.)

Sir Isaac Newton (1642-1727) was the son of a Lincolnshire farmer. In

1660 he entered Trinity College, Cambridge, where he became the pupil of

Isaac Barrow by whom his future work was strongly influenced. His discov-

eries in mathematics and physics began as early as 1664, although he did not

publish any of his work until many years later. In 1669 he succeeded Barrow
as Lucasian professor of mathematics at Trinity. Later he became warden of

the mint and member of parliament, and was knighted by Queen Anne. He
was elected fellow of the Royal Society in 1672, and from 1703 until his death

was its president. In 1699 he was made foreign associate of the Academic des

Sciences. He is buried in Westminister Abbey.^

His best known work is the Principia, or to give it its full title, Pbilosopbiae

Naturalis Principia Matbematica, published in 1687, containing his theory of

the universe based on his law of gravitation. Every high-school boy knows
his name in connection with the binomial theorem, and more advanced stu-

dents in connection with infinite series and the theory of equations. But his

mathematical fame is due most of all to his invention of the calculus. His

first development of the subject proceeded by means of infinite series as told

by Wallis in his Algebra, 1685, Later he used the method that is most com-

monly associated with his name, that of fluxions, as exemplified in the Quadra-

tura Curvarum, 1704.^ Both of these naturally entail the use of infinitely

small quantities. Finally in his Principia he explains the use of prime and

ultimate ratios. The following quotations from the sources specified show

the three points of view.

[Integration by Means of Infinite Series^

He doth therein, not only give us many such Approximations . .

.

but he lays down general Rules and Methods. . . And gives

1 For a brief summary of the life of Newton and a good bibliography for the same, see

David Eugene Smith, History oj Mathematics, Vol. I, p. 398.

2 Charles Hayes published this method of Newton in a work of his own, A Treatise oj

Fluxions: or. An Introduction to Mathematical Philosophy, London, 1704. Nine years after

Newton's death John Colson published The Method of Fluxions and Infinite Series. . .from

the Author's Latin Original not yet made publick . . ..London, 1736.

3 [John Wallis (see page 46) says in his Algebra (1685, p. 330) that he had

seen the two letters written by Newton to Oldenburg, June 13 and October 24,

1676, containing Newton's discoveries in the realm of infinite series. The

quotation is from Wallis.]

613
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instances, how those Infinite or Interminatc Progressions maybe
accommodated, to the Rectifying of Curve Lines. . , ; Squaring of

Curve-lined Figures; finding the Length of Archs, ....

[Newtojis Method of Fluxions^]

Therefore, considering that quantities, which increase in equal

times, and by increasing are generated, become greater or less

according to the greater or less velocity with which they increase

and are generated; I sought a method of determining quantities

from the velocities of the motions, or [of the] increments, with

which they are generated; and calHng these velocities of the

motions, or [of the] increments, fluxions, and the generated quanti-

ties y?uenf5, I fell by degrees, in the years 1665 and 1666, upon the

method of fluxions, which I have made use of here in the quadra-

ture of curves.

Fluxions are very nearly as the augments of the fluents generated

in equal, but very small, particles of time; and, to speak accurately,

they are in the first ratio of the nascent augments; but they may
be expounded by any Hues which are proportional to them.

It amounts to the same thing if the fluxions are taken in the

ultimate ratio of the evanescent parts.

-

Let the quantity x flow unijormly, and let it be proposed to find the

fluxioti oj .v".

In the time that the quantity .v, by flowing, becomes x -f o,

the quantity .v" will become x + o]", that is, by the method of

infinite series,

Ti^ — n
.V" + nox"~'^ H X

—

oox'^~' + etc.

1 [The quotation that follows is from Quadratura Curvarum, published with

Newton's Opticks: or, a Treatise of the Reflexions, Refractions, hiflexions and

Colours of Light. Also Two Treatises of the Species and Magnitude of Curvi-

linear Figures, London, 1704. The second of the treatises mentioned is the

Quadratura Curvarum, pp. 165-211. We quote from the Introduction and

give one proposition from the work itself. The translation as given here does

not differ, except in a few unimportant details, from that of John Stewart,

published in London, 1745.]

2 [Newton here gives some examples. He makes the tangent coincide with

the limiting position of the secant by making the ordinate of the second point

of intersection of the secant with the curve move up into coincidence with that

of the first. See page 617.]
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n^ — nAnd the augments o and nox''~^ H ^

—

oox""'^ + etc. are to

one another as

1 and nx""' H ^— ox""^ -|- etc.

Now let these augments vanish, and their ultimate ratio will

be as

1 to nx"~^

From the fluxions to find the fluents is a much more difficult

problem, and the first step of the solution is to find the quadrature

of curves; concerning which I wrote the following some time ago.^

In what follows I consider indeterminate quantities as increasing

or decreasing by a continued motion, that is, by flowing or ebbing,

and I designate them by the letters z, y, x, v, and their fluxions

or velocities of increasing I denote by the same letters pointed

z, y, X, v. There are likewise fluxions or mutations, more or less

swift, of these fluxions, which may be called the second fluxions

of the same quantities z, y, x, v, and may be thus designated:

z, y, X, v; and the first fluxions of these last, or the third fluxions

of z, y, X, V, thus: z, y, x, V; and the fourth fluxions thus: z, y, x, v.

And after the same manner that z, y, x, v, are the fluxions of the

quantities z,y, x, v, and these the fluxions of the quantities z,y, x, v,

and these last the fluxions of the quantities z, y, x, v; so the quanti-

ties z, y, X, V, may be considered as the fluxions of others which I

shall designate thus: z, y, x, v; and these as fluxions of others

z, y, X, v; and these last as the fluxions of still others z, y, x, v.

Therefore Z, z, z, z, z, z, z, z, etc., designate a series of quantities

whereof every one that follows is the fluxion of the preceding, and

every one that goes before is a flowing quantity having the succeed-

ing one as its fluxion.

And it is to be remembered that any preceding quantity in this

series is as the area of a curvilinear figure of which the succeeding

quantity is the rectangular ordinate, and [of which] the abscissa

is z;. . .

1 [This is the end of the introduction.]
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Prop. 1. Prob. 1. An equation being given involving any

number oj flowing quantities, to find the fluxions.

Solution. Let every term of the equation be multiplied by the

index of the power of every flowing quantity that it involves, and

in every multiplication let a side [or root] of the power be changed

into its fluxion, and the aggregate of all the products, with their

proper signs, will be the new equation.

Explication. Let a, b, c, d, etc., be determinate and invariable

quantities, and let any equation be proposed involving the flowing

quantities z, i', .v, r, etc., as

x^ — x\- + a-z — 6^ = 0.

Let the terms be first multiplied by the indices of the powers of .v,

and in every multiplication, for the root or .v of one dimension,

write -v, and the sum of the terms will be

3.V.V- — .VI-.

Let the same be done in i-, and it will produce

— 2.xtl'1'.

Let the same be done in z, and it will produce

cua.

Let the sum of these results be placed equal to nothing, and the

equation will be obtained

3.V.V- — .vi'- — 2xyy + aaz = 0.

I say that the relation of the fluxions is defined by this equation.

Demonstration.—For let o be a very small quantity, and let

oz, oy, ox, be the moments, that is the momentaneous synchronal

increments, of the quantities z, i-, x. And if the flowing quantities

are just now z, y, x, these having been increased after a moment of

time by their increments oz, oy, ox, these quantities will become

z + zo, y + oy, x + ox; which being wTrtten in the first equation

for z, y and x, give this equation

:

A"^ + 3.X-0.V + 3.V00.V.V + olv' — xy- — o.iy- — 2xo\y — 2.voVy

- .vony — xoHy + a-z + a-oz — b^ = 0.

Let the former equation be subtracted [from the latter] and the

remainder be divided by 0, and it will be

3.VX- -f Sxxox 4- x^o- — xy- — 2x\y — 2.voiH' — xoiy — xoKy

+ ah = 0.
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Let the quantity o be diminished infinitely, and, neglecting the

terms which vanish, there will remain

3xx^ — XV- — 2xvy + a'^z = 0.

Q. E. D.i

If the points are distant from each other by an interval, however
small, the secant will be distant from the tangent by a small

interval. That it may coincide with the tangent and the last

ratio be found, the two points must unite and coincide altogether.

In mathematics errors, however small, must not be neglected.

[The Method of Prime and Ultimate Ratios^]

Quantities, as also ratios of quantities, which constantly tend

toward equality in any finite time, and before the end of that time

approach each other more nearly than [with] any given difference

whatever, become ultimately equal . . .

The objection is that there is no ratio^ of evanescent quantities,

which obviously, before they have vanished, is not ultimate;

when they have vanished, there is none. But also by the same
like argument it may be contended that there is no ultimate

velocity of a body arriving at a certain position; for before the

body attains the position, this is not ultimate; when it has attained

[it], there is none. And the answer is easy: By ultimate velocity

I understand that with which the body is moved, neither before

it arrives at the ultimate position and the motion ceases, nor there-

after, but just when it arrives; that is, that very velocity with which

the body arrives at the ultimate position and with which the motion

ceases. And similarly for the motion of evanescent quantities

is to be understood the ratio of the quantities, not before they

vanish, nor thereafter, but [that] with which they vanish. And
likewise the first nascent ratio is the ratio with which the}' begin.

And the prime and ultimate amount is to be [that] with which they

begin and cease (if you will, to increase and diminish). There

^ [The Quadratura Curvarum, 1704, besides explaining the method effluxions,

also anticipates the method of prime and ultimate ratios, which is practically

the modern method of limits. The paragraph which follows occurs earlier in

the text.]

' [This translation has been made from Pbilosopbix Naturalis Principia

Matbtmatica Auctore Isaaco Newtono. Amsterdam, 1714. The first edition

was published in 1687. The selections are from pages 24 and 33.]

' [Newton's word is "proportio."]
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exists a limit which the velocity may attain at the end ofthe motion,

but [which it may] not pass. This is the ultimate velocity. And
the ratio of the Hmit of all quantities and proportions, beginning

and ceasing, is equal . ,

.

The ultimate ratios in which quantities vanish, are not really

the ratios of ultimate quantities, but the limits toward which the

ratios of quantities, decreasing without limit, always approach;

and to which they can come nearer than any given difference, but

which they can never pass nor attain before the quantities are

diminished indefinitely.^

^Acknowledgment is hereby made to G. H. Graves, whose article, "Devel-

opment of the Fundamental Ideas of the Differential Calculus," in The Mathe-

matics Teacher, Vol. Ill (1910-1911), pp. 82-89, has been freely used.
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LEIBNIZ

On the Calculus

(Translated from the Latin by Professor Evelyn Walker, Hunter College,

New York City.)

Gottfried Wilhelm, Freiherr von Leibniz (Leipzig, 1646- Hannover, 1716)'

ranks with Newton as one of the inventors of the calculus. He was an infant

prodigy, teaching himself Latin at the age of eight, and taking his degree in

law before the age of twenty-one. In the service of the Elector of Mainz, and
later in that of three successive dukes of Braunschweig-Liineburg, he travelled

extensively through England, France, Germany, Holland, Italy, everywhere

seeking the acquaintance of prominent scholars. He finally settled at Han-
nover as librarian to the duke. In 1709 he was made a Baron of the Empire.

When, in 1714, the Duke of Hannover crossed to England to become George

I., he refused to allow Leibniz to accompany him. This embittered the last

years of Leibniz's life.

His was a most versatile genius. He wrote on mathematics, natural science,

history, politics, jurisprudence, economics, philosophy, theology, and philology.

He invented a calculating machine that would add, subtract, multiply, divide,

and even extract roots.

He was elected to membership in the Royal Society of London (1673), and

to foreign membership in the Academic des Sciences (1700). He founded the

Akademie der Wissenschaften (1700), and became its president for life.

Many of his articles appear in the Acta Eruditorum, the organ of the last

named society.*

His interest in the calculus must have been aroused while he was visiting

England in 1672, where he probably heard from Oldenburg that Newton had

some such method. His own development of the subject seems, however, to

have been independent of that of Newton, while it shows the influence of both

Barrow and Pascal.^ He never published a work on the calculus, but confined

himself to short articles in the Acta Eruditorum, and to piecemeal explanations

of his discoveries in letters which he wrote to other mathematicians.

Clearly we are indebted to him for the following contributions to the develop-

ment of the calculus:

1. He invented a convenient symbolism.

2. He enunciated definite rules of procedure which he called algorithms.

3. He realized and taught that quadratures constitute only a special case of

integration; or, as he then called it, the inverse method of tangents.

4. He represented transcendental lines by means of differential equations.

1 For a brief sketch of the life of Leibniz see Smith, History oj Mathematics, Vol. L, p. 417;

also other histories of mathematics and the various encyclopedias.

- For example, his use of a characteristic triangle.

619
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These points are illustrated in the following selections from two articles

that were published in the Acta Eruditorum.^

The following extract is from "A new method for maxima and minima. .
."

by Gottfried Wilhelm von Leibniz.*

Let there be an axis AX and several curves, as VV, WW, YY,
ZZ, whose ordinates VX, WX, YX,
ZX, normal to the axis, are called

respectively, v, w, y, 2; and the AX,
cut off from the axis, is called .v. The
tangents are YB, WC, YD, ZE, meeting

the axis in the points B, C, D, E, re-

spectively. Now some straight line

chosen arbitrarily is called dx, and the

straight [line] which is to dx as v (or w,

or y, or z) is to VB (or WC, or YD, or

ZE), is called dv (or div, or dy, or dz)

or the difference of the v's (or the w's,

or the y's, or the z's). These things

assumed, the rules of the calculus are

as follows:

If a is a given constant,

da = 0,

and

if

dax = adx;

y = v>

(or [if] any ordinate whatsoever of the curve YY [is] equal to any

corresponding ordinate of the curve VV),

dy = dv.

Now, addition and subtraction:

if

z — y -\- w -\- x = V,

dv.dz — y -j- w -}- X
or

= dz — dy -^ div -{- dx.

' The Latin is frequently bad. The translator wishes to acknowledge her indebtedness to

Professors Carter and Hahn, both of Hunter College, who kindly made a number of correc-

tions.

2 "Nova methodus pro maximis & minimis, itemquc tangentibus, qua nee irrationales

quantitates moratur, & singularc pro illis calculi genus, per G.G.L." (his Latin initials)

Acta Eruditorum, October, 1684.
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or by placing
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dvx = xdv + vdx,

y = XV,

dy = xdv + vdx.

Yet it must be noticed that the converse is not always given

by a differential equation, except with a certain caution, of which

[I shall speak] elsewhere.

Next, division:

,y _ + vdy + ydv

y ~
yy

or z being placed equal to
;)

^ ^ + vdy + ydv

yy

Until this sign may be correctly written, whenever in the calculus

its differential is simply substituted for the letter, the same sign

is of course to be used, and -\-dx [is] to be written for -j-x, and
— dx [is] to written for —x, as is apparent from the addition

and subtraction done just above; but wlien an exact value is

sought, or when the relation of the z to x is considered, then [it is

necessary] to show whether the value of the dz is a positive

quantity, or less than nothing, or as I should say, negative; as

will happen later, when the tangent ZE is drawn from the point

Z, not toward A, but in the opposite direction or below X, that

is, when the ordinates z decrease witli the increasing abscissas x.

And because the ordinates v sometimes increase, sometimes

decrease, dv will be sometimes a positive, sometimes a negative

quantity; and in the former case the tangent I VIB is drawn toward

A, in the latter 2V2B is drawn in the opposite direction. Yet

neither happens in the intermediate [position] at M, at which

moment the v's neither increase nor decrease, but are at rest; and

therefore dv becomes equal to 0, where nothing represents a

quantity [which] may be either positive or negative, for +0 equals

— 0; and at that place the v, obviously the ordinate LM, is maxi-

mum (or if the convexity turns toward the axis, minimum) and

the tangent to the curve at M is drawn neither above X, where

it approaches the axis in the direction of A, nor below X in the

contrary direction, but is parallel to the axis. If dv is infinite
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with respect to the dx, then the tangent is perpendicular to the

axis, or it is the ordinate itself. If dv and dx [are] equal, the

tangent makes half a right angle with the axis. If, with increasing

ordinates v, their increments or differences dv also increase (or if,

the dv's being positive, the ddv's, the differences of the differences

are also positive, or [the dvs being] negative, [the ddv's are also]

negative), the curve turns [its] convexity toward the axis;

otherwise [its] concavity.^ Where indeed the increment is

maximum or minimum, or where tlie increments from decreasing

become increasing, or the contrary, there is a point of opposite

flexion, and the concavity and convexity are interchanged, pro-

vided that the ordinates too do not become decreasing from

increasing or the contrary, for then the concavity or convexity

would remain; but it is impossible that the amounts of change^

should continue to increase or decrease while the ordinates become
decreasing from increasing or the contrary. And so a point of

flexion occurs when, neither v nor dv being 0, yet ddv is 0. Whence,

furthermore, problems of opposite flexion have, not two equal

roots, nice problems of maximum, but tliree.

Powers:'
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(Hence

for in this case a Is 1, and 6 is 2; therefore rv^.x°~* is J'^v^y"^; now

y~^ is the same as -; from the nature of the exponents of a

geometric progression, and -rj- is \/y~'^.)

vy

J 1 — adx

Again the rule for an integral power would suffice for determin-

ing fractions as well as roots, for the power may be a fraction while

the exponent is negative, and it is changed into a root when the

exponent is a fraction; but I have preferred to deduce these conse-

quences myself rather than to leave them to be deduced by others,

since they are completely general and of frequent occurrence;

and in a matter which is itself involved it is preferable to take

ease^ [of operation] into account.

From this rule, known as an algorithm, so to speak, of this

calculus, which I call differential, all other differential equations

may be found by means of a general calculus, and maxima and

minima, as well as tangents [may be] obtained, so that there may
be no need of removing fractions, nor irrationals, nor other aggre-

gates, which nevertheless formerly had to be done in accordance

with the methods published up to the present. The demonstra-

tion of all [these things] will be easy for one versed in these matters,

who also takes into consideration this one point which has not

received sufficient attention heretofore, that dxy dy, dv, dw, dz,

can be treated as proportional to the momentaneous differences,

whether increments or decrements, of x, y, v, w, z (each in its

order).-

^ [The word used is "facilitati."]

'' [Leibniz now proceeds to illustrate his rules by means of a number of

examples. These are followed by selections from the article "On abstruse

geometry...," "De geometria recondita et analysi indivisibilium atque

infinitorum, addenda bis qua sunt in Actis a. 1684, Maji, p. 233; Octob. p. 467;

Decern, p. 585." G. G. L. Acta Eruditorum, June, 1686.

The errors in the pages to which reference is made have been corrected by
the translator.]
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Since, furthermore the method of investigating indefinite quadra-

tures or their impossibilities is with me only a special case (and

indeed an easier one) of the far greater problem which I call the

inverse method of tangents, in which is included the greatest part

of all transcendental geometry; and because it could always be

solved algebraically, all things were looked upon as discovered;^

and nevertheless up to the present time I see no satisfactory

result from it; therefore I shall show how it can be solved no less

than the Indefmite quadrature itself. Therefore, inasmuch as

algebraists formerly assumed letters or general numbers for the

quantities sought, in such transcendental problems I have assumed

general or indefmite equations for the lines sought, for example,

the abscissa and the ordinate [being represented] by the usual x

and y, my equation for the line sought is,

= a + 6.V + cy + exy + Jx- + gy^ etc.;

by the use of this indefinitely stated equation, I seek the tangent

to a really definite line (for it can always be determined, as far

as need be),^ and comparing what I find with the given property

of the tangents, I obtain the value[s] of the assumed letters, a,

b, c, etc., and even establish the equation of the line sought,

wherein occasionally certain [things] still remain arbitrary; in

which case Innumerable lines may be found satisfying the question,

which was so involved that many, considering the problem as not

sufficiently defined at last, believed it Impossible. The same

things are also established by means of series. But, according to

the calculation to be effected, I use many things, concerning which

[I shall speak] elsewhere. And If the comparison does not succeed,

I decide that the line sought Is not algebraic but transcendental.

Which being done, in order that I may discover the species of

the transcendence (for some transcendentals depend upon the

general section of a ratio, or upon logarithms, others upon the

general section of an angle, or upon the arcs of a circle, others

upon other more complex indefinite questions); therefore, besides

the letters x and y, I assume still a third, as v, which signifies a

transcendental quantity, and from these three I form the general

' [The Latin is, ... & quod algebraice semper posset solvi, omnia reperta

habercntur, & vero nihil adhuc de eo extare video satisfaciens, . . . .)

^ [The Latin of this parenthesis is: (semper enim dcterminari potest, quous-

que assurgi opus sit). This is not good Latin, but the meaning is probably as

we have given it.]



LEIBNIZ 625

equation for the line sought, from which I look for the tangent to

the line according to my method of tangents published in the Acta,

October, 1684, which does not preclude^ transcendentals. Thence,

comparing what I discover with the given property of the tangents

to the curve, I find, not only the assumptions, the letters a, 6, c,

etc., but also the special nature of the transcendental.

Let the ordinate be ,y, the abscissa y, let the interval between

the perpendicular and the ordinate. . .be p; it is manifest at once

by my method that

pdy = xdx,

which differential equation being turned into a summation becomes

jpdy = jxdx.

But from what I have set forth in the method of tangents, it is

manifest that

d^xx = xdx;

therefore, conversely,

2

^^xx = jxdx

(for as powers and roots in common calculation, so with us sums
and differences or / and d, are reciprocals). Therefore we have

jpdx = lyXX. Q. E. D.

Now I prefer to employ dx and similar [symbols], rather than

letters for them, because the dx is a certain modification of the

X, and so by the aid of this it turns out that, since the work must

be done through the letter x alone, the calculus obviously proceeds

with its own^ powers and differentials, and the transcendental

relations are expressed between x and another [quantity]. For

which reason, likewise, it is permissible to express transcendental

1 [The Latin word is "moratur" which means, literally, "it does not linger,"

or "it does not take into consideration." But as the method given really

does include the case of transcendentals, accuracy of translation must be

sacrificed in the interest of truth.]

2 [That is the powers and differentials of the x.]
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lines by an equation; for example, if the arc is a, the versine .v,

then we shall have

a = jdx: \/2x — XX,

and ify is the ordinate of the cycloid, then

y = -ylx — XX + jdx : \/2x — xx,

which equation perfectly expresses the relation between the

ordinate y and the abscissa x. and from it all the properties of the

cycloid can be demonstrated; and the analytic calculus is extended

in this way to those lines which hitherto have been excluded for

no greater cause than that they were beheved unsuited^ to it;

also the Wallisian interpolations and innumerable other things

are derived from this source.

It befell me, up to the present a tyro in these matters, that, from

a single aspect of a certain demonstration concerning the magni-

tude of a spherical surface, a great light suddenly appeared. For

I saw that in general a figure formed by perpendiculars to a curve,

and the lines applied ordinatewise to the axis (in the circle, the

radii), is proportional to the surface of that solid which is generated

by the rotation of the figure about the axis. Wonderfully

delighted by which theorem, since I did not know that such a

thing was known to others, I straightway devised the triangle

which in all curves I call the characteristic [triangle], the sides of

which would be indivisible (or, to speak more accurately, infinitely

small) or differential quantities; whence immediately, with no

trouble, I established countless theorems, some of which I after-

ward observed in the works of Gregory and Barrow.

Finally I discovered the supplement of algebra for transcendental

quantities, of course, my calculus of indefinitely small quantities,

which, the differential as well as [that] of either summations or

quadratures, I call, and aptly enough if I am not mistaken, the

analysis of indivisibles and infinites, which having been once

revealed, whatever of this kind I had formerly wondered about

seems only child's play and a jest.

^ [The Latin is "incapaces," literally, "incapable of."]
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Analyst and Its Effect upon the Calculus

(Selected and Edited by Professor Florian Cajori, University of California,

Berkeley, Calif.)

By the publication of the Analyst in 1734, Dean (afterward Bishop) Berkeley

profoundly influenced mathematical thought in England for more than half a

century. His brilliant defence of his views against the criticisms of James
Jurin of Cambridge and John Walton of Dublin, and the controversies among
the mathematicians themselves which were started by Berkeley's Analyst (Lon-

don, 1734), led to a clarifying of mathematical ideas as found in two important

English books:—Benjamin Robin's Discourse Concerning the Nature and
Certainty of Sir Isaac Newtons Method oj Fluxions and of Prime and Ultimate

Ratios, 1735, and Colin Maclaurin's Treatise of Fluxions, 1742. Robins

greatly improved the theory of limits. Both Robins and Maclaurin banished

from their works the fixed infinitesimal. In some recent books, one meets

with the statement that it was Weierstrass who first banished the fixed infini-

tesimal from the calculus. This claim needs to be qualified by the historical

fact that already in the eighteenth century the fixed infinitesimal was excluded

from the works on the calculus written by Robins, Maclaurin, and also by
Simon Lhuilier on the Continent.

The treatment of the calculus as initiated by Leibniz, became known in

Great Britain earlier than the theory of fluxions. The Scotsman, John Craig,

used the Leibnizian notation, in print, in 1685. The Ne\vtonian fluxional

notation was first printed in John Wallis's Algebra of 1693. Harris, Hayes, and
Stone, though using the term "fluxion" and the notation of Newton, neverthe-

less drew their inspiration, on matters relating to mathematical concepts,

from continental writers who followed Leibniz. These facts explain the reason

why Berkeley devoted considerable attention to the calculus of Leibniz.

The Analyst is a book of 104 pages. It is addressed to " an infidel mathemati-
cian," generally supposed to have referred to the astronomer, Edmund Halley.

There is no evidence of religious skepticism in Halley's published writings; his

alleged "infidelity" rests only upon common repute. In the selections here
given no eff"ort has been made to preserve the capitalization of many of the
words as in the original edition.

The Analyst:

A Discourse Addressed to an Infidel Mathematician

Though I am a stranger to your person, yet I am not. Sir, a
stranger to the reputation you have acquired in that branch of

627
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learning which hath been your peculiar study; nor to the authority

that you therefore assume in things foreign to your profession;

nor to the abuse that you, and too many more of the Hke character,

are known to make of such undue authority, to the misleading of

unwary persons in matters of the highest concernment, and whereof

your mathematical knowledge can by no means quahfy you to be

a competent judge. .

.

Whereas then it is supposed that you apprehend more distinctly,

consider more closely, infer more justly, and conclude more

accurately than other men, and that you are therefore less religious

because more judicious, I shall claim the privilege of a Free-

thinker; and take the hberty to inquire into the object, principles,

and method of demonstration admitted by the mathematicians

of the present age, with the same freedom that you presume to

treat the principles and mysteries of Religion; to the end that all

men may see what right you have to lead, or what encouragement

others have to follow you . . ,

The Method of Fluxions is the general key by help whereof the

modern mathematicians unlock the secrets of Geometry, and

consequently of Nature. And, as it is that which hath enabled

them so remarkably to outgo the ancients in discovering theorems

and solving problems, the exercise and appHcation thereof is

become the main if not the sole employment of all those who in

this age pass for profound geometers. But whether this method

be clear or obscure, consistent or repugnant, demonstrative or

precarious, as I shall inquire w^ith the utmost impartiality, so I

submit my inquiry to your own judgment, and that of every

candid reader.—Lines are supposed to be generated^ by the motion

of points, planes by the motion of lines, and sohds by the motion

of planes. And whereas quantities generated in equal times are

greater or lesser according to the greater or lesser velocity where-

with they increase and are generated, a method hath been found

to determine quantities from the velocities of their generating

motions. And such velocities are called fluxions: and the quanti-

ties generated are called flowing quantities. These fluxions are

said to be nearly as the increments of the flowing quantities,

generated in the least equal particles of time; and to be accurately

in the first proportion of the nascent, or in the last of the evanescent

increments. Sometimes, instead of velocities, the momentaneous

* Introd. ad Quadraturam Curvarum.
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increments or decrements of undetermined flowing quantities are

considered, under the appellation of moments.

By moments we are not to understand finite particles. These

are said not to be moments, but quantities generated from

moments, which last are only the nascent principles of finite

quantities. It is said that the minutest errors are not to be

neglected in mathematics: that the fluxions are celerities, not

proportional to the finite increments, though ever so smaH; but

only to the moments or nascent increments, whereof the propor-

tion alone, and not the magnitude, is considered. And of the

aforesaid fluxions there be other fluxions, which fluxions of fluxions

are cafled second fluxions. And the fluxions of these second

fluxions are called third fluxions: and so on, fourth, fifth, sixth,

etc., ad infinitum. Now, as our Sense is strained and puzzled

with the perception of objects extremely minute, even so the

Imagination, which faculty derives from sense, is very much
strained and puzzled to frame clear ideas of the least particles of

time, or the least increments generated therein: and much more

so to comprehend the moments, or those increments of the flowing

quantities in statu nascenti, in their very first origin or beginning to

exist, before they become finite particles. And it seems stiH more

difficult to conceive the abstracted velocities of such nascent

imperfect entities. But the velocities of the velocities—the

second, third, fourth, and fifth velocities, etc.—exceed, if I mistake

not, all human understanding. The further the mind analyseth

and pursueth these fugitive ideas the more it is lost and bewildered

;

the objects, at first fleeting and minute, soon vanishing out of

sight. Certainly, in any sense, a second or third fluxion seems an

obscure Mystery. The incipient celerity of an incipient celerity,

the nascent augment of a nascent augment, i. e., of a thing which

hath no magnitude—take it in what light you please, the clear

conception of it wifl, if I mistake not, be found impossible; whether

it be so or no I appeal to the trial of every thinking reader. And
I'f a second fluxion be inconceivable, what are we to think of third,

fourth, fifth fluxions, and so on without end?. . .

AH these points, I say, are supposed and believed by certain

rigorous exactors of evidence in religion, men who pretend to

believe no further than they can see. That men who have been

conversant only about clear points should with difficulty admit

obscure ones might not seem altogether unaccountable. But he

who can digest a second or third fluxion, a second or third diff'er-
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ence, need not, methinks, be squeamish about any point in divinity

Nothing is easier than to devise expressions or notations for

fluxions and infinitesimals of the first, second, third, fourth, and

subsequent orders, proceeding in the same regular form without

end or limit x. x. x. x etc. or dx. ddx. dddx. ddddx. etc. These

expressions, indeed, are clear and distinct, and the mind finds no

difficulty in conceiving them to be continued beyond any assignable

bounds. But if we remove the veil and look underneath, if, laying

aside the expressions, we set ourselves attentively to consider the

things themselves which are supposed to be expressed or marked

thereby, we shall discover much emptiness, darkness, and confu-

sion; nay, if I mistake not, direct impossibilities and contradictions.

Whether this be the case or no, every thinking reader is entreated

to examine and judge for himself. . .

This is given for demonstration.^ Suppose the product or

rectangle AB increased by continual motion: and that the momen-
taneous increments of the sides A and B are a and 6. When the

sides A and B were deficient, or lesser by one half of their moments,

the rectangle was A — -^a X. B — ^b, i. e., AB — aB — ^bA

+ ,ab. And as soon as the sides A and B are increased by the

other two halves of their moments, the rectangle becomes A + -a

X B + Tib or AB + ^aB + ^bA + .at. From the latter
/ z z 4

rectangle subduct the former, and the remaining difference will

be aB + bA. Therefore the increment of the rectangle generated

by the entire increments a and 6 is aB -|- bA. Q. E. D. But it

is plain that the direct and true method to obtain the moment or

increment of the rectangle AB, is to take the sides as increased by

their whole increments, and so multiply them together, A + a by

B -\- b, the product whereofAB + aB + 6A + a6 is the augmented

rectangle; whence, if we subduct AB the remainder aB + bA

+ ab will be the true increment of the rectangle, exceeding that

which was obtained by the former illegitimate and indirect method

by the quantity ab. And this holds universally by the quantities

a and b be what they will, big or little, finite or infinitesimal,

increments, moments, or velocities. Nor will it avail to say that

^ Pbilosopbiae Naturalis Principia Matbematica, Lib. II, lem. 2.
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ab is a quantity exceedingly small: since we are told that in rebus

mathematicis errores quam minimi non sunt contemnendi^ . . .

But, as there seems to have been some inward scruple or con-

sciousness of defect in the foregoing demonstration, and as this

finding the fluxion of a given power is a point of primary impor-

tance, it hath therefore been judged proper to demonstrate the

same in a different manner, independent of the foregoing demon-
stration. But whether this method be more legitimate and con-

clusive than the former, I proceed now to examine; and in order

thereto shall premise the following lemma:—"If, with a view to

demonstrate any proposition, a certain point is supposed, by virtue

of which certain other points are attained; and such supposed

point be itself afterwards destroyed or rejected by a contrary

1 Introd, ad Quadraturam Curvarum.

[Of interest are the remarks on Newton's reasoning, made in 1862 by Sir

William Rowan Hamilton in a letter to Augustus De Morgan: "It is very

difficult to understand the logic by which Newton proposes to prove, that the

momentum (as he calls it) of the rectangle (or product) AB is equal to aB -\- hA,

if the momenta of the sides (or factors) A and B be denoted by a and b. His

mode of getting rid of ab appeared to me long ago (I must confess it ) to involve

so much of artifice, as to deserve to be called sophistical; although I should not

like to say so publicly. He subtracts, you know (A — ~a)(B ~ ^bj from

f A -^- 2^ ]( fi + 2^"' whereby, of course, ab disappears in the result. But

by what right, or what reason other than, to give an unreal air of simplicity to

the calculation, does he prepare the products thus? Might it not be argued

similarly that the difference,

(a + jaV - (a - ^aV = 3aA2 + ~a^

was the moment of A^; and is it not a sufficient indication that the mode of

procedure adopted is not the fit one for the subject, that it quite masks the

notion of a limit; or rather has the appearance of treating that notion as foreign

and irrelevant, notwithstanding all that had been said so well before, in the

First Section of the First Book? Newton does not seem to have cared for

being very consistent in his philosophy, if he could anyway get hold of truth-

or what he considered to be such. . .
" From Life oj Sir William Rowan Hamil-

ton by R. P. Graves, Vol. 3, p. 569.

We give also Weissenborn's objection to Newton's procedure of taking half

of the increments a and b; with equal justice one might take, says he,

(a + ?a)(B + ?6) - (a - la)(B - ii),

and the result would then be Ab -\- Ba + -xab. From H. Weissenborn's

Principien der boheren Analysv; in ibrer Entwickelung von Leibniz bis auj

Lagrange, Halle, 1856, p. 42.]
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supposition; in that case, all the other points attained thereby,

and consequent thereupon, must also be destroyed and rejected,

so as from thenceforward to be no more supposed or applied in the

demonstration."^ This is so plain as to need no proof.

Now, the other method of obtaining a rule to find the fluxion of

any power is as follows. Let the quantity x flow uniformly, and

be it proposed to find the fluxion of x". In the same time that .v

by flowing becomes .v + o, the power a-" becomes x -\- o;", {. e., by

the method of infinite series

, , ,
nn — n » < o

X" + nox"~^ i ^ oox"~^ -f- &c.,

and the increments

, , ,
nn — n n , o

o and nox" ^ H ^ oox'' - + &c.

are one to another as

- , ,
7171 — 71 n , O

1 to 7ix"-i H 2— ^^ + ^^•

Let now the increments vanish, and their last proportion will be

1 to 7ix"~^ But it should seem that this reasoning is not fair or

conclusive. For when it is said, let the increments vanish, i. e.,

let the increments be nothing, or let there be no increments, the

former supposition that the increments were something, or that

there were increments, is destroyed, and yet a consequence of that

supposition, {. e., an expression got by virtue thereof, is retained.

Which, by the foregoing lemma, is a false way of reasoning.

Certainly when we suppose the increments to vanish, we must

^ [Berkeley's lemma was rejected as invalid by James Jurin and some other

mathematical writers. The first mathematician to acknowledge openly the

validity of Berkeley's lemma was Robert Woodhouse in his Principles oj

Analytical Calculation, Cambridge, 1803, p. XII. Instructive, in this connec-

tion, is a passage in A. N. Whitehead's Introduction to Mathematics, New York
and London, 1911, p. 227. Whitehead does not mention Berkeley's lemma

and probably did not have it in mind. Nevertheless, W^hitehead advances

an argument which is essentially the equivalent of Berkeley's, though expressed

(x + h)- — x'-

in different terms. When discussing the difference-quotient r— ,

Whitehead says: "In reading over the Newtonian method of statement, it is

tempting to seek simplicity by saying that Ix -|- ib is 2.v, when h is zero. But

this will not do; Jor it thereby abolishes the interval from x to x -\- h, over which

the average increase was calculated. The problem is, how to keep an interval

of length h over which to calculate the average increase, and at the same time

to treat h as if it were zero. Newton did this by the conception of a limit, and

we now proceed to give Weierstrass's explanation of its real meaning."]
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suppose their proportions, their expressions, and everything else

derived from the supposition of their existence, to vanish with

them . .

.

I have no controversy about your conclusions, but only about

your logic and method: how you demonstrate? what objects you

are conversant with, and whether you conceive them clearly?

what principles you proceed upon; how sound they may be; and

how you apply them?. .

.

Now, I observe, in the first place, that the conclusion comes out

right, not because the rejected square of dy was infinitely small,

but because this error was compensated by another contrary and

equal error^. .

.

The great author of the method of fluxions felt this difficulty,

and therefore he gave in to those nice abstractions and geometrical

metaphysics without which he saw nothing could be done on the

received principles: and what in the way of demonstration he

hath done with them the reader will judge. It must, indeed, be

acknowledged that he used fluxions, like the scaff^old of a building,

as things to be laid aside or got rid of as soon as finite fines were

found proportional to them. But then these finite exponents are

found by the help of fluxions. Whatever therefore is got by such

exponents and proportions is to be ascribed to fluxions: which must

therefore be previously understood. And what are these fluxions?

The velocities of evanescent increments. And what are these

same evanescent increments? They are neither finite quantities,

nor quantities infinitely small, nor yet nothing. May we not call

them the ghosts of departed quantities . . . ?

You may possibly hope to evade the force of all that hath been

said, and to screen false principles and inconsistent reasonings,

by a general pretence that these objections and remarks are

metaphysical. But this is a vain pretence. For the plain sense

and truth of what is advanced in the foregoing remarks, I appeal

to the understanding of every unprejudiced intelligent reader. . .

And, to the end that you may more clearly comprehend the force

and design of the foregoing remarks, and pursue them stiU farther

in your own meditations, I shall subjoin the following Queries:

—

Query 1. Whether the object of geometry be not the propor-

tions of assignable extensions? And whether there be any need

' [Berkeley explains that the calculus of Leibniz leads from false principles

to correct results by a "Compensation of errors." The same explanation was
advanced again later by Maclaurin, Lagrange, and, independently, by L.

N. M. Carnot in his Reflexions sur la m^tapbysique du calcul infinitesimal, 1797.]
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of considering quantities either infinitely great or infinitely small?

Qu. 4. Whether men may properly be said to proceed in a

scientific method, without clearly conceiving the object they are

conversant about, the end proposed, and the method by which it

is pursued?. . .

Qu. 8. Whether the notions of absolute time, absolute place,

and absolute motion be not most abstractely metaphysical?

Whether it be possible for us to measure, compute, or know them?

Qu. 16. Whether certain maxims do not pass current among
analysts which are shocking to good sense? And whether the

common assumption, that a finite quantity divided by nothing is

infinite, be not of this number?^. . .

Qu. 31. Where there are no increments, whether there can be

any ratio of increments? Whether nothings can be considered as

proportional to real quantities? Or whether to talk of their

proportions be not to talk nonsense? Also in what sense we are

to understand the proportion of a surface to a line, of an area to

an ordinate? And whether species or numbers, though properly

expressing quantities which are not homogeneous, may yet be

said to express their proportion to each other?. . .

Qu. 54. Whether the same things which are now done by
infinites may not be done by finite quantities? And whether this

would not be a great relief to the imaginations and understandings

of mathematical men?. .

.

Qu. 63. Whether such mathematicians as cry out against

mysteries have ever examined their own principles?

Qu. 64. Whether mathematicians, who are so delicate in

religious points, are strictly scrupulous in their own science?

Whether they do not submit to authority, take things upon trust,

and beheve points inconceivable? Whether they have not

their mysteries, and what is more, their repugnances and

contradictions?" . . .

' [The earliest exclusion of division by zero in ordinary elementary algebra,

on the ground of its being a procedure that is inadmissible according to reason-

ing based on the fundamental assumptions of this algebra, was made in 1828,

by Martin Ohm, in his Versuch eines vollkommen consequeriten Systems der

Matbematik, Vol. I, p. 112. In 1872, Robert Grassmann took the same posi-

tion. But not until about 1881 was the necessity of excluding division by zero

explained in elementary school books on algebra.



CAUCHY

On the Derivatives and Differentials of Functions of a
Single Variable

(Translated from the French by Professor Evelyn Walker, Hunter College,

New York City.)

Augustin-Louis Cauchy^ (1789-1857), the well-known French mathema-

tician and physicist, at the age of twenty-four gave up his chosen career as an

engineer in order to devote himself to the study of pure mathematics. Soon

afterward he became a teacher at the £coIe Polytechnique. In 1816 he won
the Grand Prix of the Institut for his memoire on wave propagation. His

greatest contributions to mathematics are embodied in the rigorous methods

which he introduced. Of treatises and articles in scientific journals he pub-

lished in all seven hundred and eighty-nine. His greatest achievement in the

domain of the calculus was his scientifically correct derivation of the differen-

tial of a function, which he accomplished by means of the device that has

come to be known as Cauchy's fraction. His treatment of the matter is as

follows.^

Third Lesson

Derivatives^ of Functions oj a Single Variable

When the function y = /(x) lies continuously between two given

limits of X, and there is assigned to the variable a value included

between these two limits, an infinitely small increment given to

the variable produces an infinitely small increment of the function

itself. Consequently, if we then place Ax = i, the two terms of

the ratio oj the differences

Ax i

will be infinitely small quantities. But while these terms indefi-

nitely and simultaneously approach the limit zero, the ratio

itself may converge toward another limit, either positive or nega-

1 See C. A. Valson, La Vie et les Traveaux du Baron Caucby, Paris, 1868.

2 The two extracts quoted are from Resumi des Lefons donnies a I'Ecole Royale Polytecb-

nique sut le Calcul Infinilksimal, Paris, 1823. The present translation was made from the

same work as republished in (Euvres Complices d'Augustin Caucby, Shr. II, Tome IV, Paris,

1889.

' [Cauchy's word is "deriv^es"]

635
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tive. This limit, when it exists, has a fixed value for each

particular value of .v; but it varies with x. Thus, for example, if

we take/(.v) = .v"', m designating a whole number, the ratio between

the infinitely small differences will be

fv 4- i)"" — v"* m(m — D
^ ^

\
^ = rn.v"-i + 12

^"''^ +-+ i'-S

and it will have for [its] limit the quantity mx'"~^ that is to say,

a new function of the variable .v. It will be the same in general,

only the form of the new function which serves as the limit of the

ratio — r—^^ will depend upon the form of the given

function y = /(.v). In order to indicate this dependence, we give

to the new function the name derived Junction, and we designate

it, with the help of an accent, by the notation

y'or/'(.v).

1

Fourth Lesson

Differentials oj Functions oj a Single Variable

Let y = /(.v) always be a function of the independent variable x;

i an infinitely small quantity, and b a finite quantity. If we place

i = ab, a also w411 be an infinitely small quantity, and we shall

have identically

J(x -\- i) - Six) _ J{x-\-ab)-fix)
i ab

whence there will result

(1)
/(V + ai>)-/(A-) ^ J(x + i) - /(a-)

^_
a i

The limit toward which the first member of equation (1) converges,

while the variable a approaches zero indefinitely, the quantity b

remaining constant, is what is called the differential of the function

y = Six)- We indicate this differential by the characteristic d,

as follows:

dy or dj(x).

* [Cauchy then differentiates various functions using the above definition.]
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It is easy to obtain its value when we know that of the derived

function y' or/'(x). Indeed, taking the limits of the two members
of equation (1), we shall find generally

(2) dj(x) = bfix).

In the special case where /(x) = x, equation (2) reduces to

(3) dx = h.

Therefore the differential of the independent variable x is nothing

else than the finite constant h. That granted, equation (2) will

become

(4) dj{x) = /'(x)(/x

or, what amounts to the same thing,

(5) dy = y'dx.

It follows from these last [equations] that the derived function

y' = j'{x)dx of any function y = j{x) is precisely equal to dy/dx,

that is to say, to the ratio between the differential of the function

and that of the vai iable, or, if we wish, to the coefficient by which

it is necessary to multiply the second differential in order to obtain

the first. It is for this reason that we sometimes give to the

derived function the name of differential coefficient.
^

^ [After this Cauchy gives the rules for differentiating various elementary

functions, algebraic, exponential, trigonometric and antitrigonometric]



EULER

On Differential Equations of the Second Order

(Translated from the Latin by Professor Florian Cajori, University of

California, Berkeley, Calif.)

Euler's article from which we here quote represents the earliest attempt to

introduce general methods in the treatment of differential equations of the

second order. It was written when Leonhard (Leonard) Euler was in his

twenty-first year and was residing in St. Petersburg, now Leningrad.

The title of the article is "A New Method of reducing innumerable differen-

tial equations of the second degree to differential equations of the first degree"

(Nova methodvs innvmerabiles aeqvationes differentiales secvndi gradvs

redvcendi ad aequationes differentiales primi gradvs). It was published in

the Commentarii academiae scientiarvm imperialis Petropolitanae, Tomvs III

ad annvm 1728, Petropoli, 1732, pp. 124-137.

When Euler in this article speaks of the "degree" of a differential equation,

he means what we now call the "order" of such an equation. Observe also

that he uses the letter c to designate 2.718. . ., the base of the natural system

of logarithms. The first appearance (see page 95) of the letter e, in print, as

the symbol for 2.178..., is in Euler's Mecbanica (1733). We quote from

Euler's article of 1728:

1. When analysts come upon differential equations of the second

or any higher degree [order], they resort to two modes of solution.

In the first mode they inquire whether it is easy to integrate

them; if it is, they attain what they seek. When, however, an

integration is either utterly impossible or at least more difiicult,

they endeavor to reduce them to differentials of the first degree,

concerning which it is certainly easier to tell whether they can be

resolved. Thus far no differential equations, save only those of

the first degree, can be resolved by known [general] methods. . .

3. However, if in a difFerentio-differential equation one or the

other of the indeterminates [variables] is absent, it is easy to reduce

it to a simple differential, by substituting in the place of the

differential of the missing quantity an expression composed of a

new indeterminate muItipHed by the other differential ... As

in the equation Pdy"" = Qdv" + dv"~'^ddv, where P and Q signify

any functions of y, and dy is taken to be constant. Since v does

638
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not appear in the equation, let dv = zdy, then ddv — dzdy. Sub-

stituting these, yields the equation Pdy" = Qz^'dy" + z''~'^dy''~^dz,

and dividing by dy''~\ gives the equation Pdy = Qz^'dy + z''~'^dz;

this is a simple differential.

4. Except in this manner, no one, as far as I know, has thus far

reduced other differentio-differential equations to differentials of

the first degree, unless, perhaps, they admitted of being easily

integrated directly. It is here that I advance a method by which

to be sure not all, but numberless differentio-differential equations

in whatever manner affected by any one variable, may be reduced

to a simpler differential. Thus I am brought around to those reduc-

tions in which, by a certain substitution, I transform them [the

differential equations] into others in which one of the indetermi-

nates is wanting. This done, by the aid of the preceding section,

the equations thus treated are reduced finally to differential equa-

tions of the first degree.

5. In this connection I observe this property of the exponential

quantities, or rather powers, the exponent of which is variable,

the quantity thus raised remaining constant, that if they are

differentiated and differentiated again, the variable itself is

restricted, so that it always affects only the exponent, and the

differentials are composed of the integral itself multiplied by the

differentials of the exponent. A quantity of this kind is c^ where

c denotes the number, the logarithm of which is unity; its differ-

ential is c^dx, its differentio-differential c^{ddx + dx"^), where x

does not enter, except in the exponent. Considering these things,

I observed that if in a differentio-differential equation, exponentials

are thus substituted in place of the indeterminates, these variables

remain only in the exponents. This being understood, these

quantities must be so adapted, when substituted in place of the

indeterminates that, after the substitution is made, they do not

resist being removed by division; in this manner one in determinate

or the other is eliminated and only its differentials remain.

6. This process is not applicable in all cases. But I have noticed

that it holds for three types of differential equations of the second

degree. The first type embraces all those equations which have

only two terms. .

.

7. All equations of the first type are embraced under this

general formula: ax^^dx^ = y^dyp~'^ddy, where dx is taken to be

constant. . .To reduce that equation I place .v = c«", and y = c^t.

There result dx = ac^^'dv, and dy = c''{dl + tdv). And from this,
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ddx = ac^^'iddv + oidv"^) and ddy = c"(ddt + Idtdv + tddv + tdv-).

But since dx is taken constant, one obtains ddx — 0, and ddv =
— adv"^. Writing this in place of ddv, there follows ddy = c".

{ddt + Idtdv + (1 — a)tdv^). Substituting these values in place

of X and y in the given equation, it is transformed into the follow-

ing, ac^^'^'^+p^aPc^vP = c'-^'+P-^^Tidt + tdv)p-~{ddt + Idtdv +(\ - a),

tdv'').

8. Now a should be so determined that the exponentials may
be eliminated by division. To do this it is necessary that av{m-\rp)

= (n -{ p — l)r, whence one deduces a = j Thus,m -\- p
a being determined, the above equation is changed to the following

Jn + P - l
y^^p ^ ^„(^^ _^ tdvy-\

\ m + p /

(ddt + Idtdv + "" ~
7

"^ ^
tdv\

This may be deduced from the given equation directl;y, if I place

^ _ ^(n+p-i)vAm+p)^ andy = c't. But n + p — I is the number of

the dimensions which y determines; and m -\- p which x determines.

It is easy, therefore, in any special case to find a and to substitute

the result. In the derived equation, since v is absent, place dv

= zdty then ddv = zddt + dzdt, but

ddv = -adv^ = ^ ~ "" ~ ^zMt\m -\- p

From this follows ddt = 1
\

zdt-. After sub-
z m -]- p

stituting these, there emerges

J^ + P- ^

\\pdtp = r'idt + tzdty-{ ^ ~
"I

~ ^
zdt'

z m -j- p I

This divided by c?/''"' gives

\m + p/ \ m-\- p
dz . m —
z m -\-+ P I
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9. The proposed general equation ax"'dx^ = y^dy^'^ddy is thus

reduced to this differential of the first degree

Jn±p-iy^^^,^^ = r(l + tzy-{^-±^^-^^^^z^dt
\ m + p / \ m -{- p

H i
tz^di — dz ),m + p /

the derived equation being multiplied by z. This equation may
be obtained in one step from the one given, by placing in the

first substitution I zdt in place of v. One should therefore take

^ _ f,{n+p-i)j2dt:(m+p) ^j^j [^ placc of y take c/^'"f; or what amounts

to the same thing, place x = c^^+p""/^*^' and y = c^'^+p) J^'^'f . .

.

10. We illustrate what we have derived in general terms by
particular examples. Let xdxdy = yddy, which by division by
dy, is reduced to xdx = ydy~^ddy. Comparing this with the

general equation one obtains a = \, m = 1, p = 1, n — 1. Sub-

stituting these in the differential equation of the first degree, the

given equation reduces to

^z^dt = til + tz)-'{^z''dt + ^tz'dt - dz\

which becomes z^dt + tz^dt = 3tz^dt + f^z^dt — Itdz. The given

equation, xdxdy = yddy, may be [directly] reduced to this by

taking x=c^^'^^ and y = c^-*^ 'f. Therefore, the construction

[i. €., resolution] of the proposed equation depends upon the

construction of the derived differential equation . .

.

11. The second type of differential equations which by my
method I can reduce to differentials of the first degree, encompasses

those which in the separate terms hold the same number of

dimensions which the indeterminates and their differentials

establish.^ A general equation of this kind is the following:

Q^my-OT-i(/^pjy2-p _[_ Jjxy-^-^dx'^dy^-i = ddy. In its separate

terms the dimensions of the indeterminates [and their differentials]

is unity. Also, dx is taken constant. This assumed equation is

composed of only three terms, but as many as desired may be

added to the above, the procedure remaining the same. There

may be added exy~''~^dx'^dy^~^ and as many of this kind as may
be desired . .

.

^ [That is, the differential equations are homogeneous in x,y, dx, dy, and d^y.]
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12. I reduce the given equation by substituting c" for x, and

c^t for y. Since therefore x = c" and y = c^t, there follows dx
= c^dv and dy = c''(dt + tdv); and from these, ddx = c"{ddv + c/i?^)

and c/(/y = c"(c/Jf + Idtdv + fc/v^ + tddv). Since dx is taken to

be constant, ddx = and therefore ddv = —dv"^, and from this

there results ddy = c^iddt + Idtdv). These values of x, y, dx,

dy, and c/c/y, when placed in the equation, transform it into the

following:

acH-'^-^dv^idt + tdvY'^ + bc'l-''-^dv''{dt + tdv)^-^ =
e{ddt + Idtdv).

Dividing by c", this becomes

at-^^-^dv^idt + fc?v)2-p + ht-^'-^dv^idt + ^t/i')^"^ = Jc/f + Idtdv.

Since f is absent from the equation, I place dv = zdt, and there

will be ddv = zddt + dzdt, but JJi; = —dv'^= —z^dt^; therefore,

ddt = -zdt^ - ^^
z

From this results the equation,

at-^^-h^dtPidt + ztdt)^~p 4- ht-''-h'idti{dt + ztdt)^-" =

2

or in better arrangement,
dz

at-^-^zPdt{l + zt)^-" + 6r"-iz'(/f(l + zO^~' = zdt .

z

13. This differential equation of the first degree may be derived

from the given one by a single step, namely the straightway

assumption that x = c-'^
' and y = c^' h. .

.

18. The third type of equations, which I treat by this method of

reducing, comprises those in which one or the other of the indeter-

minates in the separate terms hold the same number of dimensions.

Here two cases are to be distinguished, according as the differential

of the variable having everywhere the same dimension, is to be

taken constant or not. To the first case^ belongs the following

general equation

p^mJym+2 _|_ Q;cm-5J^6jym+2-6 =, dx^'ddy.

In this, x has the dimension m in each term, and dx is taken constant.

Here P and Q signify any functions of y. For reducing this there

' [That is, the case in which the differential equation is homogeneous in x and

dx.\
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is need of only one substitution to wit, x = c", so that dx = c^dv

and ddx = c^iddv + dv'^) = 0, and consequently, ddv — —dv^.

There results from this substitution

Pd[y«+2 _|_ Q(fi;6jym+2-6 ^ dv^ddy,

of course, after dividing by c"".

19. Because of the absence of v in the derived equation, it can

be reduced by substituting zdt for dv. .

.

20. The other case of equations of the third type relates to the

following general equation,

Py.m^ym+1 _}_ Qx^-bdx^dy"^-^^ = dx'^-Wx.

In this equation dy is taken constant, P and Q denoting any

functions of y. And as one sees, x has the same dimension m
in each term.^ Take as before x = c"; then dx = c^dv, and ddx =

c^iddv + dv"^). When these are substituted in the equation, there

results after division by c""",

Pc(y'"+i + Qdv^dy^-^-^^ = c?r'"+^ + dv'^'^ddv.

This equation is reduced as follows: Since v is absent, take dv =
zdy, and, dy being constant, ddv = dzdy. Consequently, the last

equation is changed to

pjym+i _|_ Qz^'c/y'^+i = 2'»+Wy'«+i + z'^-'^dy'^dz.

But this, divided by Jy"*, gives Pdy + Q^dy = z"'+'c?y + z^~^dz.

Upon the reduction of this derived equation depends, therefore,

the reduction of the given equation.

21. From this it will be understood, I trust, how differential

equations of the second degree relating to one or another of the

three types may be treated. . .

.

' [That is, the differential equation is homogenous in x, dx, and ddx.]
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On the Brachistochrone Problem

(Translated from the Latin by Dr. Lincoln La Paz, National Research Fellow

in Mathematics, The University of Chicago, Chicago, III.)

Jean (Johann, John) Bernoulli was born in Basel, Switzerland in 1667.

He was professor of physics and mathematics at Groningen from 1695 until

the chair of mathematics at Basel was vacated by the death of his elder

brotiier, Jacques (Jakob, James) in 1705. Thereafter he was professor of

mathematics at Basel until his own death in 1748. For further biographical

details consult Merian, Die Matbematiker Bernoulli (Basel, 1860) or Allgemeine

Deutsche Biograpbie, II, pp. 473-76.

The material translated in the following pages is collected in convenient

form in Johannis Bernoulli, Opera Omnia, Lausanne and Geneva, 1742, vol. I,

p. 161, pp. 166-169, pp. 187-193. The original sources are cited below in

connection with the translations.

The calculus of variations is generally regarded as originating with the papers

of Jean Bernoulli on the problem of the brachistochrone. It is true that

Galileo in 1630-3 8^ and Newton in 1686" had considered questions later

recognized as belonging to the field of the calculus of variations. Their

inquiries, however, are not looked upon as constituting the origin of this sub-

ject; since generality escaped them not only in the conception and formulation

of their problems but also in the methods of attack which they devised.

On the contrary the writings of Jean Bernoulli show that he was not only

fully aware of the difference between the ordinary problems of maxima and

minima and the more difficult question he proposed, but also that he attained a

fairly complete if not precise idea of the simpler problems of the calculus of

variations in general. The terms in which he stated the problem of the brachis-

tochrone may be readily extended to cover the formulation of the general case

of the simplest class of variation problems in the plane. The curves he intro-

duced under the name of syncbrones for this problem furnish the first illustra-

tion of that important family of curves, now known as transversab, which is

associated with the extremals of a problem in the calculus of variations; and in

the fact noted by him, that the times of fall are equal along arcs intercepted by

a synchrone on the cycloidal extremals of the brachistochrone problem which

pass through a fixed point, we have the first instance of the beautiful transversal

theorem of Kneser.'

Galileo, Dialog iiber die beiden bauptsixchlicbtsen Weltsysteme (1630) translation by Strauss,

pp. 471-72; Dialogues concerning Two New Sciences (1638), translation by Crew and De
Saivio, p. 239.

2 Newton, Principia, Book II, Section VII, Scholium to Proposition XXXIV.
' Kneser, Lebrbucb der Variationsrecbnung, 1900, p. 48;

Bulza, Lectures on tbe Calculus of Variations, University of Chicago Press, 1904, §33.

644
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The reader of the translation which follows will note Jean Bernoulli's state-

ment that he found a second or direct solution of the problem he proposed.

In fact such a direct solution is mentioned in several of the letters which passed

between Leibniz and Jean in 1696 as well as in the remarks which the former

made on the subject of the brachistochrone problem in the Acta Eruditorum

for May, 1697. However this direct demonstration which rests on the funda-

mental idea ofgeneral applicability employed by Jacques Bernoulli in obtaining

his solution of the problem (namely that if a curve as a whole furnishes a

minimum then the same property appertains to every portion of it) was not

published until 1718 when both Jacques and Leibniz were dead. This fact is

apparently regarded by those who believe Jean plagiarized from his brother

Jacques as invalidating the former's claim of having secured a second solution.

Jean for his part asserted that he delayed the publication of his second method
in deference to counsel given by Leibniz in 1696.^

In any event it is regrettable that estimates of the relative value of the more
mature methods of the two brothers often seem to be influenced by opinions

which have been expressed with regard to the relative generality of their early

solutions of the original brachistochrone problem, opinions which have in many
cases been unfavorable to Jean Bernoulli. It is interesting to note in this

connection that it was the opinion of as well qualified a student as Lagrange, if

we may judge by statements made in his famous paper of 1762,^ that all of the

early solutions of the brachistochrone problem were found by special processes.

In fact Lagrange emphasizes the part of Jean no less than that of Jacques in

pioneering work on a general method in the calculus of variations.

New Problem

Which Mathematicians Are Invited to Solve^

// two points A and B are given in a vertical plane, to assign to a

mobile particle M the path AMB along which, descending under its

own weight, it passes from the point A to the point B in the briefest

time.

To arouse in lovers of such things the desire to undertake the

solution of this problem, it may be pointed out that the question

proposed does not, as might appear, consist of mere speculation

having therefore no use. On the contrary, as no one would readily

beheve, it has great usefulness in other branches of science such

as mechanics. Meanwhile (to forestall hasty judgment) [it may
be remarked that] although the straight line AB is indeed the

shortest between the points A and B, it nevertheless is not the

1 Consult in regard to this matter: Cantor, Gescbicbte der Matbematik, Vol. Ill, chap. 96,

especially p. 226, p. 430, p. 439; Leibniz and Jean Bernoulli, Commercium Pbilosopbicum et

Malbematicum, Lausanne and Geneva, 174S, vol. I, p. 167, p. 178, especially p. 183 pp.

25 3-4, p. 266; Jean Bernoulli, Opera Omnia, vol. II, pp. 266-7.

2 Lagrange, Miscellanea Taurinensia, vol. II, p. 173.

3 [From the Acta Eruditorum, Leipzig, June, 1696, p. 269,]
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path traversed in the shortest time. However the curve AMB,
whose name I shall give if no one else has discovered it before the

end of this year, is one well known to geometers.

Proclamation

Made Public at Groningen, [Jan.], 1697

Jean Bernoulli public professor of mathematics pays his best

respects to the ynost acute mathematicians oj the entire world.

Since it is known with certainty that there is scarcely anything

which more greatly excites noble and ingenious spirits to labors

which lead to the increase of knowledge than to propose difficult

and at the same time useful problems through the solution of

which, as by no other means, they may attain to fame and build

for themselves eternal monuments among posterity; so I should

expect to deserve the thanks of the mathematical world if, imitat-

ing the example of such men as Mersenne, Pascal, Fermat, above

all that recent anonymous Florentine enigmatist,^ and others, who
have done the same before me, I should bring before the leading

analysts of this age some problem upon which as upon a touchstone

they could test their methods, exert their powers, and, in case

they brought anything to light, could communicate with us in

order that everyone might publicly receive his deserved praise

from us.

The fact is that half a year ago in the June number of the

Leipzig Acta I proposed such a problem whose usefulness linked

with beauty will be seen by all who successfully apply themselves

to it. [An interval of] six months from the day of publication

was granted to geometers, at the end of which, if no one had

brought a solution to light, I promised to exhibit my own. This

interval of time has passed and no trace of a solution has appeared.

Only the celebrated Leibniz, who is so justly famed in the higher

geometry has written^ me that he has by good fortune solved this,

1 Vincentius Viviani, A°. 1692. Aenigma Geomctricum proposuit, d°

miro opificio Testudinis quadrabilis Hemisphaericae; see Acta Eruditorum of

this year, June, p. 274, or Vita Viviani in Hist. Acad. Reg. Scient., Paris, A.e

1703. [The problems proposed by the other mathematicians referred to are

well known.]

* [Leibniz and Jean Bernoulli, Commercium Pbibsopbicum et Matbematicum,

vol. I, p. 172. Leibniz in Acta Erud., May, 1697, p. 202 credits Galileo with

originally proposing the brachistochrone problem.]
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as he himself expresses it, very beautiful and hitherto unheard of

problem; and he has courteously asked me to extend the time limit

to next Easter in order that in the interim the problem might be

made public in France and Italy and that no one might have

cause to complain of the shortness of time allotted. I have not

only agreed to this commendable request but I have decided to

announce myself the prolongation [of the time interval] and shall

now see who attacks this excellent and difficult question and after

so long a time finally masters it. For the benefit of those to whom
the Leipzig Acta is not available, I here repeat the problem.

Mechanical—Geometrical Problem on the Curve of Quickest Descent.

To determine the curve joining two given points, at different

distances from the horizontal and not on the same vertical line,

along which a mobile particle acted upon by its own weight and

starting its motion from the upper point, descends most rapidly to the

lower point.

The meaning of the problem is this: Among the infinitely many
curves which join the two given points or which can be drawn

from one to the oilier, to choose the one such that, if the curve is

replaced by a thin tube or groove, and a small sphere placed in it

and released, then this [sphere] will pass from one point to the

other in the shortest time.

In order to exclude all ambiguity let it be expressly understood

that we here accept the hypothesis of Galileo, of whose truth, when
friction is neglected, there is now no reasonable geometer who has

doubt: The velocities actually acquired by a heavy falling body are

proportional to the square roots of the heights fallen through.

However our method of solution is entirely general and could be

used under any other hypotheses whatever.

Since nothing obscure remains we earnestly request all the

geometers of this age to prepare, to attack, to bring to bear every-

thing which they hold concealed in the final hiding places of their

methods. Let who can seize quickly the prize which we have

promised to the solver. Admittedly this prize is neither of gold

nor silver, for these appeal only to base and venal souls from

which we may hope for nothing laudable, nothing useful for science.

Rather, since virtue itself is its own most desirable reward and

fame is a powerful incentive, we offer the prize, fitting for the man
of noble blood, compounded of honor, praise, and approbation;

thus we shall crown, honor, and extol, publicly and privately, in

letter and by word of mouth the perspicacity of our great Apollo.



648 SOURCE BOOK IN MATHEMATICS

If, however, Easter passes and no one is discovered who has

solved our problem, then we shall withhold our solution from the

world no longer; then, so we hope, the incomparable Leibniz will

permit to see the light his own solution and the one obtained by

us which we confided to him long ago. If geometers will study

these solutions which are drawn from deep lying sources, we have

no doubt they will appreciate the narrow bounds of the ordinary

geometry and will value our discovery so much the more, as so

few have appeared to solve our extraordinary problem, even

among those who boast that through special methods, which they

commend so highly, they have not only penetrated the deepest

secrets of geometry but also extended its boundaries in marvellous

fashion; although their golden theorems, which they imagine

known to no one, have been published by others long before.^

The curvature of a beam of light in a non-uniform medium, and

the solution of the problem proposed in the Acta 1696, p. 269, oj

finding the brachistochrone, i. e., the curve along which a heavy

particle slides down from given point to given point in the shortest

time; and of the construction of the synchrone, or the wave-front of

the beam."^

Up to this time so many methods which deal with maxima and

minima have appeared that there seems to remain nothing so

subtle in connection with this subject that it cannot be penetrated

by their discernment—so they think who pride themselves either

as the originators of these methods or as their followers. Now
the students may swear by the word of their master as much as

they please, and still, if they will only make the effort, they will

see that our problem cannot in any way be forced into the narrow

confines imposed by their methods, which extend only so far as

to determine a maximum or minimum among given quantities

finite or infinite in number. Truly where the very quantities

which are involved in our problem, from among which the maxi-

mum or minimum is to be found, are no more determinate than

the very thing one is seeking—this is a task, this is difficult labor!

Even those distinguished men, Descartes, Fermat, and others,

who once contended as vigorously for the superiority of their

* [This remark is to be regarded as a covert thrust at Newton. As a matter

of fact Newton, when the problem finally came to his attention, solved it

immediately.!

2 [From the Acta Eruditorum, Leipzig, May, 1697, p. 206.)
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methods as if they fought for God and country^ or in their place

now their disciples, must frankly confess that the methods handed

down from these same authorities are here entirely inadequate.

It is neither my nature nor my purpose to ridicule the discoveries

of others. These men certainly accomplished much and attained

in admirable fashion the goal they had set for themselves. For

just as in their writings we fmd no consideration whatever of this

type of maxima and minima, so indeed they have not recommended

their methods for any but common problems.

I do not propose to give a universal method, [a thing] that one

might search for in vain ; but instead particular methods of pro-

cedure by means of which I have happily unraveled this problem

—

methods which, indeed, are successful not only in this problem but

also in many others. I decided to submit my solution immediately

to the celebrated Leibniz, while others sought other solutions, in

order that he might publish it together with his own in case he

found one. That he would indeed fmd a solution I had no doubt,

for I am sufficiently well acquainted with the genius of this most

sagacious man. In fact, while I write this, I learn from one of the

letters with which he frequently honors me that my problem had

pleased him beyond [my] expectation, and (since it attracted him

by its beauty, so he says, as the apple attracted Eve) he was

immediately in possession of the solution. The future will show

what others will have accomplished. In any case the problem

deserves that geometers devote some time to its solution since

such a man as Leibniz, so busy \vith many affairs, thought it not

useless to devote his time to it. And it is reward enough for them

that, if they solve it, they obtain access to hidden truths which

they would otherwise hardly perceive.

With justice we admire Huygens because he first discovered

that a heavy particle falls down along a common cycloid in the same

time no matter from what point on the cycloid it begins its motion.

But you will be petrified with astonishment when I say that

precisely this cycloid, the tautochrone of Huygens is our required

brachistochrone.'^ I arrived at this result along two diff"erent

' [For an interesting first hand account of this dispute between Fermat and

Descartes on the subject of maxima and minima see the sequence of letters

collected in (Euvres de Fermat, Paris, 1894, vol. II, pp. 126-168. See also

page 610 of this Source Book.]

* [For a description of the cycloid and its properties see Teixeira, Traite des

Courbes Spkciales Remarquables, 1909, vol. II, pp. 133-149, especially §540.

See also R. C. Archibald, "Curves, Special, in the Encyclopaedia Britannica,

14th edition.]
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paths, one Indirect and one direct. When I followed the first

[path] I discovered a wonderful accordance between the curved

orbit of a ray of light in a continuously varying medium and our

brachistocbrone curve. I also observed other things in which I

.do not know what is concealed which will be of use in dioptrics.

Consequently what I asserted when I proposed the problem is

true, namely that it was not mere speculation but would prove to

be very useful in other branches of science, as for example in dioptrics.

But as what we say is confirmed by the thing itself, here is the

first method of solution

!

Fermat has shown in a letter to de la Chambre (see Epist.

Cartesii Lat., Tome III, p. 147, and Fermatii Opera Mathem. p.

156 et. seq.) that a ray of light which passes from a rare into a

dense medium is bent toward the normal in such a manner that

the ray (which by hypothesis proceeds successively from the source

of hght to the point illuminated) traverses the path which is

shortest in time. From this principle he shows that the sine of the

angle of incidence and the sine of the angle of refraction are

directly proportional to the rarities of the media, or to the recipro-

cals of the densities; that is, in the same ratio as the velocities

with which the ray traverses the media. Later the most acute

Leibniz in Act. Erud., 1682, p. 185 et. seq., and soon thereafter the

celebrated Huygens in his treatise de Lumine, p. 40, proved in

detail and justified by the most cogent arguments this same

physical or rather metaphysical principle, which Fermat, contented

with his geometric proof and all too ready to renounce the validity

of his [least time] principle, seems to have abandoned under the

pressure of Clerselier.^

' [The following remarks supply the historical background necessary for an

appreciation of these statements of Bernoulli:

Fermat in a letter to de la Chambre in 1657 (see Oeuvres de Fermat, II, p.

354) emphasized his belief that Descartes had given no valid proof of his law of

refraction (the law now credited to Snell). Fermat formulated his Least Time
Principle in this letter and guaranteed that he could deduce from it all of the

experimentally known properties of refraction by use of his method for solving

problems of maxima and minima.

In 1662 Fermat, in compliance with a request made by de la Chambre,

actually applied his Principle to the determination of the law of refraction.

(Oeuvres, II, p. 457.) Since the Cartesian (Snell) law of refraction had been

deduced by Descartes on the hypothesis that the velocity of light in a rare

medium is less than in a dense medium, an assumption that Fermat regarded as

obviously false; Fermat, employing the contrary hypothesis, looked forward

with certainty to the discovery of a different law of refraction. To his amaze-
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If we now consider a medium which is not uniformly dense but

[is] as if separated by an infinite number of sheets lying horizontally

one beneath another, whose interstices are filled with transparent

material of rarity increasing or decreasing according to a certain

law; then it is clear that a ray which may be considered as a tiny

sphere travels not in a straight but instead in a certain curved

path. (The above-mentioned Huygens notes this in his treatise

de Lumiiie but did not determine the nature of the curve itself.)

This path is such that a particle traversing it with velocity con-

tinuously increasing or diminishing in proportion to the rarity,

passes from point to point in the shortest time. Since the sines

of [the angles of] refraction in every point are respectively as the

rarities of the media or the velocities of the particle it is evident

also that the curve will have this property, that the sines of its

[angles of] inclination to the vertical are everywhere proportional

to the velocities. In view of this one sees without difficulty that

the brachistochrone is the curve which would be traced by a ray of

ment he found on ca.rying through all the details of his minimizing process

that the application of his Principle led to precisely the same law of refraction

as that established by Descartes. Fermat was so confounded by this unex-

pected result that he agreed to cede the victory to the Cartesians; although

his distrust of Descartes' mode of proof was manifest.

The Cartesian Clerselier impressed by the fact that if the Least Time Princi-

ple were true Descartes' hypothesis with regard to the velocity of light must

be false (for he could find no error in Fermat's geometrical proof) applied

himself zealously to overthrowing this principle. (CEuvres, II, letter CXI II,

p. 464; letter CXIV, p. 472.)

Fermat {CEuvres, II, p. 483) apparently disgusted with the matter wrote in

his answer to Clerselier:

"As to the principal question, it seems to me that I have often said not only

to M. de la Chambre but to you that I do not pretend and I have never pre-

tended to be in the secret confidence of nature. She moves by paths obscure

and hidden which I have never made the attempt to penetrate. I have

merely offered her a little aid from geometry in connection with the subject of

refraction, in case this aid would be of use to her. But since you assure me
that she can take care of her own affairs without this assistance, and that she is

content to follow the patii prescribed to her by M. Descartes, I abandon to you

with all my heart my supposed conquest of physics [i. e. the Least Time
Principle]; and I shall be content if you will leave me in possession of my
problem of pure geometry taken in the abstract, by means of which we can find

the path of a moving particle wiiich passes through two different media and

which seeks to achieve its motion in the shortest time." Fermat's renunciation

of his Principle seems, however, to have been a transitory one; for, in 1664 we
find him again attacking on the basis of this Principle Descartes's deduction of

the law of refraction. {CEuvres, II, letter CXVI, p. 485.)]
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light in its passage through a medium whose rarity is proportional

to the velocity which a heavy particle attains in falling vertically.

For whether the increase in the velocity depends on the nature of

the medium, more or less resistant, as in the case of the ray of

light, or whether one removes the medium, and supposes that the

acceleration is produced by means of another agency but according

to the same law, as in the case of gravity; since in both cases the

curve is in the end supposed to be traversed in the shortest time,

what hinders us from substituting the one in place of the other?

In this way we can solve our problem generally, whatever we
assume to be the law of acceleration. For it is reduced to finding

the curved path of a ray of light in a medium varying in rarity

r
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according to which the velocity of heavy falling bodies varies as

the square root of the distance fallen through; for this indeed is

properly the problem. Under this assumption the given curve

AHE will be a parabola, that is, tt = ax and t = ^yax. If this

is substituted in the general equation we find dy = dx ——

—

from which I conclude that the bracbistochrone curve is the ordinary

cycloid. In fact if one rolls the circle GLK, whose diameter is a, on

AG, and if the beginning of rotation is in A itself; then the point K
describes a cycloid, which is found to have the same differential

equation dy = dx -> calling AC, x, and CM, y. Also this

can be shown analytically from the preceding as Hows:

dx^ / = xdx: \^(ax — xx)\a — x

= adxilx^iax — xx) — (adx — 2xdx):2\/{ax - xx);

also {adx — 2xdx)'2\/{ax — xx) is the differenti I quantity whose

sum^ is s/iax — xx) or LO; and adx: 2 y/(ax — xx) is the differ-

ential of the arc GL itself; and therefore, summing the equation

MOdy = dx —1^^^
— ; we have y or CM — GL — LO, hence

CO — GL + LO. Since indeed (assuming CO = semiperiphery

GLK) CO -GL = LK, we will have MO = LK + LO, and,

cancelling LO, ML = LK; which shows the curve KMA to be the

cycloid.

In order to completely solve the problem we have yet to show

how from a given point, as vertex, we can draw the bracbisto-

chrone, or cycloid, which passes through a second given point.

This is easily accomplished as follows: Join the two given points

A s

B

A, B, by the straight line AB, and describe an arbitrary

cycloid on the horizontal AL, having its initial point in A, and

cutting the line AB in R; then the diameter of the circle which

traces the required cycloid ABL passing through B is to the

^ [Bernoulli uses sum for integral.]
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diameter of the circle which traces the cycloid ARS as AB to

AR.'

Before I conclude, I cannot refrain from again expressing the

amazement which I experienced over the unexpected identity of

Huygens's tautochrone and our brachistochrone. Furthermore I

think it is noteworthy that this identity is found only under the

hypothesis of Galileo so that even from this we may conjecture

that nature wanted it to be thus. For, as nature is accustomed to

proceed always in the simplest fashion, so here she accomplishes

two different services through one and the same curve, while

under every other hypothesis two curves would be necessary the

one for oscillations of equal duration the other for quickest descent.

If, for example, the velocity of a falling body varied not as the

square root but as the cube root of the height [fallen through],

then the brachistochrone would be algebraic, the tautochrone on the

other hand transcendental; but if the velocity varied as the height

[fallen through] then the curves would be algebraic, the one a

circle, the other a straight line.^

^ [Compare Bliss, Calculus of Variations, 1925, pp. 55-57.]

2 [Denote by Bi and Bz the hypotheses which Bernoulli here suggests, and

observe that he is concerned with a particle falling from rest in the velocity

fields specified.

Under both Bi and Bz, in case the initial velocity of the falling particle is

diff"erent from zero, the integrand functions in the corresponding brachi-

stochrone integrals, T = \ — > are regular along the entire arc joining the
Jo V

given points A and B. On the contrary when the initial velocity is zero the inte-

grand functions are singular at the initial point A and further investigation is

necessary. For the corresponding case under the ordinary Galilean hypothesis

consult Bliss, Calculus of Variations, 1925, p. 68; Kneser, Lebrbucb der Varia-

tionsrecbnung, 2nd. Edt., 1925, p. 63.

The hypothesis B2 is inadmissible in the case of the tautochrone. This may
be shown by applying the method of Puiseux (see Jour, de Matb., [Liouville's],

Ser. 1, vol. 9, p. 410; compare Appell, Traite de Mecanique Rationelle,vol. I,

p. 351, and MacMillan, Statics and tbe Dynamics of a Particle, p. 225) to the

integral T = C I
rt, _ ""it

which represents the time of fall from the

height X = b to the height x = along the curve whose equation is y = fix)

when the velocity of fall is proportional to the /;th power of the distance fallen

through. We find in fact that for this integral to be independent of the value

assigned to b it is necessary that 1 + [/'(.v)l^ = 5^x^''~\ Consequently the

integral is not well defined when k = I.

This objection to the hypothesis B2 was first raised and justified, essentially

as above, by P. Stilckel in Oswald's Klassiker der exakten Wissenscbaften,

No. 46, 1894, Anmerkungen, p. 137. The formula for/'(x) obtained in the
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Geometers, I believe, will not be ungrateful if in conclusion I

give the solution of a problem, just as worthy of consideration,

which occurred to me while I was writing out what has gone

before. We require in the ver-

tical plane the curve PB, which

may he called the Synchrone, to

every point B oj which a heavy

particle, descending from A along

the cycloids AB with common

vertex, arrives in the same time.

Let AG be horizontal and AP
vertical. The meaning of the

problem is as follows, that on each cycloid described on AG, a

portion AB should be marked off, such that a heavy particle

descending from A requires the same time to traverse it as it would

require in falling from a given vertical height AP; when this is

done, the point B will be in the synchrone curve PB which we seek.

If what we said above concerning light rays is considered

attentively, it will be very evident that this curve is the same one

which Huygens represents by the line BC in the figure on page 44

of his treatise de Lumine, and calls a wave-Jront; and just as the

wave-front is cut orthogonally by all rays emanating from the

light source A, as Huygens notes most opportunely; so our

[curve] PB cuts all the cycloids with the point A as common vertex,

at right angles. But if one had chosen to state the problem in

this purely geometrical fashion: to find the curve which cuts at right

angles all the cycloids with common vertex; then the problem would

have been very difficult for geometers. However from the other

point of view, regarding it as a falling body [problem], I construct

[the curve] easily as follows. Let GLK be the generator circle of

the cycloid ABK, and GK its diameter. Mark off the arc GL
equal to the mean proportional between the given segment AP
and the diameter GK. I say that LB drawn parallel to the hori-

zontal AG cuts the cycloid ABK in the point B. If anyone wishes

to try out his method on other [problems], let him seek the curve

which cuts at right angles curves given successively in position

(not indeed algebraic curves, for that would be by no means difficult,

but transcendental curves), e. g., logarithmic curves on a common
axis and passing through the same point.

last paragraph shows that the equation of the tautochrone found by StSckel

is wrong. The error remains uncorrected in the revised (1914) edition of his

article.]



ABEL

On Integral Equations

(Translated from the German by Professor J. D. Tamarkin, Brown University,

Providence, R. I.)

The name of Niels Henrik Abel (b. August 5, 1802, d. April 6, 1829) deserves

a place among those of the creators of our science, such as Newton, Euler,

Gauss, Cauchy, and Riemann. During his short life Abel made numerous

contributions to mathematics of the utmost importance and significance.-

Although his work was concentrated primarily on algebra and the integral

calculus, his name will always be remembered in connection with many other

branches of analysis, particularly the theory of integral equations, whose

systematic development by Volterra, Fredholm and Hilbert began some 70

years after Abel's work.

We give here the translation of a short article under the title

"Auflosung einer mechanischen Aufgabe," Journal Jilr die reine

und angeivandte Mathematik (Crelle), Vol. I, 1826, pp. 153~1S7;

CEuvres Completes, Nouvelle edition par L. Sylow et S. Lie, Vol,

I, 1881, pp. 97~101. This is a revised and improved version of

an earlier paper: "Solution de quelques problemes a I'aide

d'integrales definies" (in Norwegian), Magazin for Naturviden-

skaberne, Aargang I, Bind 2, Christiania, 1823; CEuvres Completes.

Vol. I, pp. 11-18.

Abel solves here the famous problem of tautochrone curves by

reducing it to an integral equation which now bears his name.

His solution is very elegant and needs but shght modification to be

presented in modern form. This solution and the formulas

<t>{x) =
I

dqjiq) cos qx, J(q) = ^
I dx(l>(x) cos qx

Jo "" Jo

given by Fourier^ are perhaps the first examples of an explicit

1 "Theorie de mouvement de la chaleur dans Ics corps solides" Mkmoires de

I'Academie royale dcs sciences de I'Institut de France, Vol. 4, 1819-1820 (pub-

lished in 1824) pp. 185-555 (489). This memoir was presented by Fourier in

1811 and was awarded a prize in 1812.

656
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determination of an unknown function from an equation in which
this function appears under the integral sign. An equation which
can be reduced to that of Abel was given almost simultaneously

by Poisson,^ without solution. There exists now an extended

literature devoted to Abel's equation and to analogous integral

equations. The whole question is closely related to the notion

of integrals and derivatives of non-integral order. The possibility

of such operations was first suggested by Leibniz (1695) and Euler;^

the notion was considerably developed by Liouville and Riemann,^
and at present it has many important applications to various

problems of pure and applied analysis.

Solution of a Mechanical Problem

Let BDMA be any curve. Let BC be a horizontal and CA a

vertical line. Let a particle move along the curve under the

action of gravity, starting from the point D. Let

T be the time elapsed when the particle arrives

at a given point A, and let a be the distance

EA. The quantity t is a function of a which

depends upon the form of the curve and con-

versely, the form of the curve will depend upon

this function. We shall investigate how is it pos-

sible to find the equation of the curve by means

of a definite integral, if r is a given continuous function of a.

Let AM = s, AP = x and let t be the time in which the particle

describes the arc DM. By the rules of mechanics we have

^ "Second Memoire sur la distribution de la chaleur dans les corps solides,"

Journal de I'Ecole Polytecbnique, Cahier 19, Vol. 12, 1823, pp. 249-403 (299).

^ Leibniz, Matbematiscbe Scbrijten, herausgegeben by C. L Gerhardt, Halle

Vol. 3, 1855 (letters to Johann Bernoulli), Vol. 4, 1859 (letters to Wallis).

L. Euler, "De progressionibus transcendentibus seu quarum termini

generales algebraice dari nequeunt," Commentarii Academiae Scientiarum

Petropolhanae, Vol. 5, 1730-1731, pp. 36-57 (55-57); Opera Omnia (1)14, pp.
1-25 (23-25).

^ J. Liouville, "Memoire sur quelques questions de geometric et de mecani-

que, et sur un nouveau genre de calcul pour resoudre ces questions," Journal de

rEcole Polytecbnique, Cahier 21, Vol. 13, 1832, pp. 1-69; "Memoire sur le calcul

des differentielles a I'indices quelconques," ibidem, pp. 71-162.

B. Riemann, "Versuch einer allgemeinen Auffassung der Integration und
Differentiation," Werke, 2nd edition, 1892, pp. 353-366.
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—
-J- = V a — x/ whence dt = , Consequently, oninte-

grating from x = a to x = 0,

r ds ^ p ds

Ja Va — X Jo \/a — X

means that the limits of integration correspond to
J-

X = a and x = /3 respectively. Let now t = 0(a) be the given

function; then

,(a) = C'd^
Jo Va — X

will be the equation from which s is to be determined as a function

of X. Instead of this equation we shall consider another, more

general one,

from which we shall try to derive the expression for s in terms of x.

If r(a) designates the function

r(a) = r f/x/iog -V \ r = rv^z«-i(/zi

t is known that

where a and /3 must be greater than zero. On setting /3 = 1 — n

we find

1 y--'dy r(a)r(l - n)

Ilo (1 - y)" r(a + 1 - n)

whence, on putting z = ay,

'dz r(a)r(l - n)

i (a - z)" r(a + 1 - n)
ot—n

1 [If we designate by fo = and v the velocities of the particle at the points

D and M respectively and by g the acceleration due to gravity, then the equa-

tion of energy gives v^ — ro^ = 2g(a — x), whence

V = ^ = - V2g Va - X.

Thus the equation in the text corresponds to a choice of units such that 2g = 1.]
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Multiply by da/{x — a)^~" and integrate from a = to a = x:

J"
da C" z'^-^dz _ r (a)r(l - n) p g'^^'^da

(x - ay-'-}^ (a - zY ~ f(a+r^^)Jg (x - ay--'

Setting a = xy we have

r° fl°-"^q ^ ^„ ri_r:::::^j^ ^ r(a-n + i)r(n)
,

J,
(x-a)i-» "^

J,
(1-y)^-" r(a + l)

'

hence

J
da r°_z

{x-ay-^lia
z^-^dz x«r(n)r(l - n)r(a)

zy r(a + 1)

But, by a known property of the F-function,

r(a + 1) = ar(a),

whence, by substitution,

r^ da f° z^-'dz x«^, ^_,,. .

I 7 vT^ I 7 v; = ~ r(n)r(l — n).

Jq (x - ay-'^ Jq {a- zy a ^ ' ^

Multiplying this by a(t>(a)da and integrating with respect to a

[between any constant limits], we have

r^ da r<'(j(i>ia)az"-'da)dz ^, .^,, ^ f / x .

Setting

j<i>ia)x°da = /(x)

and differentiating, we have

j<t>ia)ax''-'^da = J'{x), f<t)(a)az'^^da = J'{z).

Then

r^V- f/^^ = r(n)r(i - n)Kxy
X (x - a)!-" Jo (a -z)"

1 [This identity follows immediately from the Dirichlet's formula

<*> pdapFia, z)dz = f'^dzf^Fia, z)da (1)

(Bocher, An introduction to the study of integral equations, 1909, p. 4) under

certain restrictive assumptions as to/(z). For instance, it suffices to assume

that/'(z) is continuous and /(O) = 0. Setting in (*)

F{a,z) = (x - ay-^{a - z)-"/'(z),

we see at once that the left-hand member of the equation in the text reduces to

jj'i.2)d2J\x - ay-Ka - zy-da.
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or, since

r(n)r(i - n) = ~.-^^-,
sin nir

^^ ^^ ^

- Jo (^ - «)^-"Jo (« - ^)"'

By means of this formula it is easy to find s from the equation

J, {a- xY

Multiplying this equation by -;

—

_ .^_^ and integrating

from a = to a = X we have

sin nir C" (^{a)da _ sin utt T* da C" ds

^ Jo ('^ - «)'"" ^^Jo (x - a)i-"J (a - x)-'

hence, by (1),

_ sin nw C" (i>{a)da ^

~^^Jo (^ - «")^*

Substituting a = z + <(a: — z) in the interior integral, we reduce it to

•1

X r"(i - O^'^t/t = r(n)r(i - n)

with the final result

p(x - ay-'daf''{a - zri'{z)dz = r(n)r(l - n) f''j'{z)dz =

r(n)r(i - n)/(x).

Strictly speaking, the method used in the text establishes the identity in

question only for the functions /(x) which can be represented by definite

integrals of the form

J4,{a)x'^da

but the investigation of the possibility of such a representation requires the

solution of an integral equation of more complicated form than the given one.]

^ [Two observations should be made concerning the solution obtained.

1. Since the function 5 replaces /(x) of (1), it must satisfy the restrictions

imposed upon/(x), for instance s'{x) must be continuous and s(0) = 0, which

is natural in view of the physical interpretation of s{x). This imposes certain

restrictions upon the given function <^(a); it is easily verified that the condi-

tions above are satisfied provided <i>'{a) is continuous and 0(0) = 0. The
last condition again follows quite naturally from the integral equation of the

problem.

2. If all the conditions above are satisfied, identity (1) shows immediately

that the solution of the problem is unique, for, if /(z) is a solution, then the

interior integral in (1) reduces to <>(a), which yields the solution obtained in

the text.]
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Now let n = H; then

«(a) = r-^
Jo V a - X

_ _ , <i>{a)da

and

If

This equation gives s in terms of the abscissa x, and the curve

therefore is completely determined.

We shall aply the expression above to some examples.

I. If

0(a) = aoWo + oiia^'i + . • • + ocma^n, = Saa"

the expression for 5 will be

^Jo Vx - a^ T^'^y Jo Vx - a/

Setting a = xy we have

Jo Vx"^ ' Jo Vn^ r(M + ^^) '

hence

r(H)v«r(M + i)

+ V2)
X"+H

or, since T(yi) = "v/tt,

"Vx
r(Mo + i)

^,,„ , ^ r(M. + 1)

If m = and hq = 0, the curve in question is an isochrone, and

we find

fi r(l) _ 2aoVx
' - V^ "" r(^) -

TT

which is known to be equation of a cycloid. ^

^ [We omit example II, where the function <^(a) is assumed to be given by

different formulas in different intervals.

In the earlier article mentioned above, Abel gives the same final formula

for the solution but bases his discussion on the assumption that 5 can be repre-

sented by a sum of terms ot the form

He then discusses particular cases where the time of descent is proportional to

a power of the vertical distance a or is constant (isochrone curve). At the
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end of the article Abel gives a striking form to his solution by using the notation

of derivatives and integrals of non-integral order. We define as the derivative

of order a of a function \p (x) the expression

'^^ —DT^ix) if p is an integer and ^ p - 1 < a ^ p,

c being a constant which equals in Abel's discussion. If we assume without

proof that D"D^i// = D"'^^\p, then Abel's integral equation can be written as

4,{x) = r(l - n)D,^-'D,s = r(l - n)Dls.

which can be solved immediately by the formula

To justify this operation Abel proves the identity

D,---^D.-+^J = J,

which also can be derived from the identity (1) above.

In the particular case n = ^i Abel writes the equation and its solution resp>ec-

tively as

At the end of the article Abel remarks: " In the same fashion as I have found 5

from the equation

7 T-
x = (a -x)"

I have determined the function </> from the equation

Ha) = Uixa)Jix)dx

where ^ and / are given functions and the integral is taken between any limits

[constant?]; but the solution of this problem is too long to be given here."

This solution was never published by Abel.

It should be noted finally that Abel's equation and several others analogous

to it were solved by Liouville by using the notion of derivatives and integrals

of non-integral order (loc. cit.)- Liouville's procedure is purely formal, and

he seems to be unaware of Abel's results. It was also Liouville who solved

the equation of Poisson mentioned above (Note sur la determination d'une

fonction arbitraire placee sous un signe d'integration defmie. Journal de I'Ecole

Polytechnique, Cahier 24, Vol. 15, 1835, pp. 55-60). Poisson's equation is

F{r) = x\/7rr""*"^ f ^(r cos w)sin^"'''^ w dta
2 Jo

where Fir) is a given function and the unknown function ^(a) is assumed to be

even, ^(— u) = ^(u). Poisson's equation is reduced to Abel's typ>e by using

(0, ir/2) as the interval of integration and by making the substitution cos w =

{e/x)^\T* = X.]



BESSEL

On His Functions

(Translated from the German by Professor H. Bateman, California Institute of

Technology, Pasadena, Calif.)

Friedrich Wilhelm Bessel was born on July 22, 1784, and died on March 17,

1846. His father was Regierungssecretar and finally obtained the title of

Justizrath. His mother was the daughter of pastor Schrader of Rehme. He
married Johanna Hagen of a Konigsberg family and had two sons and three

daughters. At Olbers's desire and proposal Bessel took the position of inspec-

tor to the private Observatory of the Oberamtmann Schroter in Lilienthal.

This was early in 1806 and from this date Bessel was an astronomer by pro-

fession and worked with great zeal. In his observational work he paid much
attention to the planet Saturn. The portion of his work that seems to be best

known is the experimental work on pendulums but his name has become

famous on account of the work or the functions which now bear his name.

He was not the first to use these functions but he was certainly the first to

give a systematic development of their properties and some tables for the

functions of lowest order. Bessel considered only the functions of order t

where i is an integer, but similar functions of non-integral order have been

found to be of importance in applied mathematics. The literature of the sub-

ject is now quite vast and many differential equations have been solved in

terms of Bessel functions. The values of numerous definite integrals can also

be expressed in terms of these functions; indeed, the functions have been found

to be so useful that the tables of Bessel have been greatly extended and books

have been devoted entirely to the development of the properties. These books

have given most mathematicians all the formulas they require and I believe

that very few men turn to the original memoir. This, however, is still of

much interest and well deserves a place among the most important contribu-

tions to the progress of mathematics. On account of its length the memoir is

not given in full, the extracts consist of the preface and some portions relating

to the properties of the functions.

The translation (pp. 667-669) is from his "Untersuchungen des Theils der

planetarischen Storungen, welcher aus der Bewegung der Sonne entsteht"

(Investigation of the portion of the planetary perturbations which arises from

the motion of the sun) which appeared in the Berlin Abbandlungen (1824),

and in his Werke, Bd. 1, pp. 84-109. The translation was checked by Morgan
Ward, Research fellow in mathematics of California Institute of Technology,

Pasadena.

The disturbance of the elliptic motion of one planet by another

consists of two parts: one arises from the attraction of the disturb-

ing planet on the disturbed planet; the other arises from the motion
663
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of the sun which the disturbing planet produces. The two parts

are combined in previous calculations of planetary disturbances

but it is worth while to try to separate them. The latter can, in

fact, as I shall show in the present memoir, be directly and com-

pletely evaluated and so deserves to be separated from the first

for which the evaluation has so far not been made; the separation

is indeed necessary if we wish to subject to a test the assumption,

generally made so far, that the disturbing planet acts on the

disturbed and the sun with equal mass.^

The two integrals / cos i/j.. cos e.de and / sin ifx. sin t.c/e occurring

in the first six formulae can easily be reduced to

/ cos (he — k sin e)de

where h denotes an integer; this last integer I shall denote by

lirlk'"' We have in fact

J cos iy.. cos e.t/e = J cos ijx[\ — (1 — e cos e)]—

= J cos i^l.dt — / cos i/i.c/ju

where the last part vanishes when taken between ^i = and p.
=

2x thus

J cos iu. cos e.de = — /

Furthermore

J sin ifjL. sin e.de = / cos ijjL. cos e.de — / cos (e + ifj.)de.

or

r sin iu. sin e.de = — / — 2irl

The series expansion for h'' is obtained in the way used in my
memoir on Kepler's problem,^ it is

T(h) r h + l\2j ^ l.2{b + 1)(A + 2)V2/
• • •

J

* [Bessel's fundamental equations are

cos e — e (1)

sin c (2)
a

u = e— e sin e, r = a(l — e cos «).]

* ["Analytische Auflosung der Kepler'sche Aufgabe." Abbandlungen der

Berliner Akademie der Wissenscbajten, malb. CI. (1816-17), p. 49; Werke, Bd.

I, p. 17. The paper was read July 2, 1818. It was also communicated to

Lindenau in a letter written in June, 1818. See Zeitscbr. Jiir Astron., V., p.

367.1
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where

irih) = hi

Not only the equation for the center and the quantities cos 4>,

sin </), r cos 4>, r sin 4>, ^ cos </>, —^ sin (p lead on expansion to these

definite integrals but this is also the case for

log r, r", r" cos m(t>, r" sin m<^, r" cos me, r" sin me,

whenever n and m are integers which may be positive, negative, or

zero. Since most problems of physical astronomy lead to such

expansions in series, a fuller knowledge of these integrals is

desirable.

For brevity the four integrals, taken between and Ir, will be

denoted by symbols as follows:

—

—L = I cos ifx. cos e.df, —L' = \ sin ifi. sin e.de;
e J e J

27r,, Tcos iu. COS e .(/e 27r,,, Tsin iV. sin e.cfe—M = -^ ; M' = -y-^ '

e J ' — e cos e e J I — e cos e

and we must first show that the expansions of the quantities

mentioned involve these quantities.

We denote the coefficient of cos i/x in the expansion of log r by

H'; the expansion being made so that the series runs over both

positive and negative values of i. We have

r, TT Ci • 1 It • • c I
sin iu. sin e.c^e

27r/i^ = I log r. cos XLidu, = - log r. sm la —^ I -;;

J I ij \ — e cos €

thus, with the exception of i =0,

H' = -Im'.

For z = we obtain a logarithmic expansion; in fact, if we denote

-
. by X and take the semi-major axis to be unity we

1 + V 1 — e^

have

1 + 2X cos 6 + 2X2 j,Qs 2e -j- 2X^ cos 3e +

.

r Vl -

and, if we multiply by dr = e sin €C?e and integrate,

log r = c — 2 { X cos € + 3^X2 cos 2e + 3^^X^ cos 3e + . . . }.
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For the determination of the constant c we have, for e = 0,

Iog(l -e) = c- 2{X + HX2 + >^X3+...|

= c + 2 log (1 - X).

.•.Iogr =

log .. _ sg — 2 X cos € + 2^^ ^°s ^6 + ^X' cos 3e + . . . ;

and, if we multiply this hy dn = {I — e cos i)de and integrate

from to 27r,

W = log (TTTp + ^^ = ^«g 2 +
1 + W^^'

Bessel's Recurrence Formulas.

The following recurrence formulae are given in Bessel's paper

and will be quoted here without proof

= kh'-'
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Other integrals can be reduced to the function h^ as the follow-

ing examples will show^_

;i- I cos (te — m cos e — n sin e) de = cos ia.7* , (50)

If.
w- I COS It. COS (m cos c + n sin e)c?e = cos xa.l^ , x even (51)

= i odd

TT- I
sin ie. sin (m cos c + n sin i)de = cos ia./'' , x odd (52)

= i even

Bessel then proves the following relations

~
J

(cos tY' cos {k sin €)c/€ = J^-^^/
~ ^^W (53)

ij'cos^z.d - z^-r'uz = l-3...^(2i-l)
^^, ^^^^

f'"^''^' cos (m sin e)cfe = 1°
, . (55)

3 3 5 7
cos /e./fc" = 1 - -r-T^k"^ + T-Jvy - . .

.

where (7r2) is written for 2 !, and so for similar uses of r.

3 5 3 5 79
3i„fe./,. = fe_JA^a+^_^i._... (56)

The last series can be used for the calculation and interpolation

of a table of the functions and was actually used by Bessel to form

tables of lk° and Ik^ from /z = to /s = 3.2.

The Roots of the Bessel Functions.

"The function h" has in common with the sine and cosine the

remarkable property of vanishing twice and changing sign when

its argument k increases from 2?i7r to (2n + 2)ir. I shall show that

if

m is even h" > from k = rrnr to (m -f }/Qir

'' " odd Ik" < " "

^In these equations tan a = n/m.

/.+/ = +
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If we put sin € = z and k =
^^

t where m denotes a proper

fraction, we have, according to the remark (54)

, 2 fi /2m + m' \ dz
lk° = - I cos ( TTZ

1
-.

Writing v for (2m + m')z this expression becomes

ifc" = —
I cos

ttJo 2 \/(2m + m')' - f^

The integral taken from v = a to v = h, when we write ib -f u for

Vt is

J"''-^

/hjK TTu\ du

„_t ''''a 2 2 yV(2m + mr - (i» + w)^

Taking successively Jb = 1, 3,. . .2m — 1 and a, 6 always h — \,

h -\- \ respectively, the last expression gives

2 n
TTj-l

/*" = -
I sin — du

2

^ V
Vm=^ - (1 + uY Vn' - (3 + u)=

(_)m-l _^ (_),

Vm' - (2m - 3 + u)2 Vm' - (2m - 1 + u)^

f
TTU ,

^
. cos -x-du

The individual terms of this expression are +, the last clearly so

because ttu/I is always <t/2, the other because their part is

greater than the negative; for we have

J
sin -Ty-du I

1 Vfi'-{h+ur~ Jo

. TU J . TTU
,sm -ydu sm -j-du

1
\7m'-(6+w? \/m'-(^"^^

where the denominator of the positive part is always smaller than

that of the negative. Furthermore, each following term is greater

than the preceding on account of the continually decreasing

denominator; the sum of two successive terms has therefore the

sign of the last. I fm is even, the last term in the bracket is positive

and therefore the sum of all terms positive; if m is odd the last

term is negative and therefore the sum of all terms up to the second

negative and the first term as well as the term outside the bracket

is negative. This property does not belong to h" alone but all the
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Ik" possess a similar property. In fact from (46) if for brevity we
k fe2

write Ik' = 2^^'^ and x ^ ^

dx

Therefore K*+^ vanishes when Ri has a maximum or minimum;
but between two values of k or x, for which W vanishes there is

necessarily a maximum or minimum, thus also a vanishing jR*+^

It is therefore clear that lu^ is zero just as often as Ik° is a maximum
or minimum; between two values of k for which Ik^ = there lies

always a maximum or minimum of jR^ therefore a root of Ik^ and

so on."
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On the Barycentric Calculus

(Translated from the German by J. P. Kormes, Hunter College, New York
City.)

August Ferdinand Mobius (1790-1868) was professor of astronomy in

Leipzig and wrote several papers on this subject. His researches in celestial

mechanics led him to an extensive study of geometry. In 1827 he published

his most important contribution to science under the title: Der barycentriscbe

Calcul ein neues Hueljsmittel zur analytiscben Bebandlung der Geometric dar-

gestellt und insbesondere auj die Bildung neuer Classen von Aujgaben und die

Entwickelung mebrerer Eigenscbajten der Kegelscbnitte angewendet, Leipzig,

Verlag von Johann Ambrosius Barth," pp. 1-454.

In this work Mobius introduces for the first time homogeneous coordinates

into analytic geometry. With the aid of the barycentric calculus the treat-

ment of various problems and in particular those relating to conic sections

becomes simple and uniform. He introduces the remarkable classification of

the properties of geometric figures according to the transformations (similar,

affine, collinear) under which these properties remain invariant. Mobius

arrives at the characteristic invariant of the collinear group, the anharmonic

ratio. He also succeeds in establishing the most general principle of duality

of points and straight lines without the use of a conic section.

§2. Through two given points A and B parallel Hnes are drawn.

If a and h are any two numbers in a given ratio such that a + 6

is different from zezo, find a straight hne intersecting the two

parallel lines in A' and B' respectively such that

a.AA' + b.BB' = 0.

Draw the line AB and find on it a point P such that AP:PB =
b:a. Every line through P (and no other hne) intersecting the

two parallel lines will have the required property. From the

similarity of the triangles AA'P and BB'P we have

AA':BB' = APiBP = AP:-PB' = b: -a;

1 [Mobius considers directed segments and triangles. Thus if A and B are

any two points on a straight line, AB + BA = 0; and if B, C, D are three

points on a straight line and A is a point not on the line, then the sum of the

areas of the triangles

ACD + ADB + ABC = 0.]
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hence
aAA' + bBB' = 0.

§3, c. If we place in A and B weights proportional to a and b

respectively, P may be considered as the centroid of the points A
and B with the coefficients a and b.

§8. . .Theorem.—Given a system of n points A, B, C,...N

with the coefficients a, 6, c, . . . n respectively where the sum a + 6 +
c + . . . + n is different from zero, there can always be found one

point and only one point, the centroid S, having the following

property: If parallel lines be drawn through the given points and

through the point 5 in any direction and these lines be intersected

by any plane in the points A', B', C\ . . .S' respectively, we always

have

aAA' + b.BB' + . . . + n.NN' = (a + 6 + . . . + n).SS'.

In particular if the plane passes through 5 we have

a.AA' + b.BB' + . . . + n.NN' = 0.

§9...Ifa + 6 + c + ... + ?i = 0, the centroid is infinitely remote

in the direction determined by the parallel lines.

§13. . .In place of the segments AA', BB',. . .their endpoints

A, B, . . .shall be used. Thus if 5 is the centroid of A, B, C with

the coefficients a, b, —c, we write

a.A + 6.B - cC = (a + 6 - c).S.

§14. The operations with such abbreviated formulas form the

barycentric calculus or a calculus based upon the notion of the

centroid. . .§15. (1) In barycentric calculus points and their

coefficients are considered. The points are denoted by capital

letters, their coefficients by small letters ... (2) The fact that 5
is the centroid of the points A, B, C,. . .with the coefficients a, 6,

c, ... is expressed as follows

:

I. aA + 6S + cC + . . . = (a + 6 + c + . . .)S\ .

.

(3) The fact that the system A, B, C,. . .with the coefficients

a, 6, c, . . . has the same centroid as the system F, G, H,. .

.

with the

^ [aA + bB -\- cC -\- ... = S is used in place of I.]
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coefficients/, g, b,. . . provided the sum of the coefficients a, 6, c, . .

.

equals the sum of the coefficients/, g, 6, ... is expressed as follows:

II. aA + 6B + cC + . . . = /F + gC + 6H + . .

.

(4) The equation III. aA -{- bB -\-
. . . = indicates that the

system A, B,. . .with the coefficients a, b,. . .has no finite centroid
1

§21. Theorem.— If aA -{ bB = C then C is on the line through

A and B and we have:

a:b = BC.CA...

§23. Theorem.— If aA -\- bB -\- cC = D and A, B, C are not

on a straight line, the point D is in the plane A, B, C, and so

a:b:c = DBC:DCA:DAB\ . .

§24. .. If aA + 6B + cC + c/D = then A, B, C, D are in one

plane and we have:

a:6:c:(/ = BCD:-CDA:DAB:-ABC. .

.

§25. Theorem.—If aA + bB -^ cC -\- dD ^ E and A, B, C,

D are not in one plane then we have:

a:b:c'.d = pyramids BCDE:CDEA.DEAB:EABC .

.

.

§28. In order to determine the position of a point be it on a

straight Hne, plane or space quantities of two kinds are essential;

the ones of the first kind remain the same for all points Hke the

axes of the usual system of coordinates, the others, the coordinates

in the most general sense, depend upon the position of the various

points with respect to the quantities of the first kind. By the

method under consideration points shall be determined as follows:

The quantities of the first kind shall be points and we shall call

them "fundamental points" and the point whose position is to

be determined shall be considered as their centroid. These

fundamental points are taken as the system of coordinates. The
coordinates of any point P with respect to these fundamental

points are given by the relations which must exist among the

coefficients of the fundamental points in order that the point P
should be the centroid of these points.

^ [All equations in the barycentric calculus assume one of the forms I, II

or III and retain this form throughout all transformations.]

2 [DBC means the area of A DEC, etc.]
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§36. The change from one system of coordinates to another is

very simple. If A', B',. . ., the new fundamental points, are given

in terms of A, B, ... , then it is sufficient to express the old funda-

mental points A, B,. . .in terms of A', B',. . .If these values be

substituted in the expression for P, P is given in terms of the new

coordinates. The simplicity of this process is illustrated by the

following example: Let A', B', C, the new fundamental points, be

the midpoints of the sides of the fundamental triangle ABC, A'

the midpoint of BC,^ B' the midpoint of CA, and C the midpoint

of AB. We have then

2A' = B + C, IB' = C + A, 2C' = A + B,

and therefore

A = B' + C - A', B = C + A' - JB', C = A' + B' - C.

If the expression for P with respect to the system ABC is

P = pA + qB + rC,

then the expression for P with respect to the new system A'B'C
becomes

P ^ p{B' + C - A') + q{C' + A' - B') + r(A' + B' - C).

or

p^{q^r- p)A' +{r + p- q)B' + (p + g - r)C'.

§144. . .Given a system of points A, B, C, . . ., three of these

may be taken as the fundamental points and any other point in

the plane will be determined if the ratios of the coefficients a:h:c

are given. If in another system of points A', B', C

,

. .the funda-

mental triangle formed by A', B', C has the same sides as the

triangle ABC and the ratios a'lb'ic' are equal to a:b:c for every

point, then any figure formed by the points in the second system

will be equal and similar to the figure formed by the corresponding

points in the first system. If the sides of the fundamental triangle

A'B'C are not equal but are proportional to the sides of the

triangle ABC, the corresponding figures are similar. Now let us

assume that the ratios of the coefficients of corresponding points

are equal but the choice of the fundamental triangle arbitrary.

§145. . .In order to study the relationship between correspond-

ing figures take any three points A', B', C as the new fundamental

points corresponding to the points A, B, C respectively. Should

HSee page 671. According to I. we have: 6B + fcC = (6 + h)S = 26S; put

5 = A'.]
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any point D' correspond to the point D = aA }- bB -{ cC the

expression for D'must be:

D' ^ aA' + bB' + cC
that is the area of the triangles formed by the points A', B', C, D'

must be in the same proportion as the areas of the triangles formed

by the points A, B, C, D...It follows that A'B'C =m.ABC.
This holds true for any two corresponding triangles. . .Since

every figure may be considered as an aggregate of triangles, the

nature of the relations under consideration is revealed in the fact

that the areas of any two parts in one figure are to each other as

the areas of the two corresponding parts in the other figure. .

.

§147. . .The two figures are then said to be affine. .

.

§153. . .In general all relations and properties of a figure which

are expressed in terms of the coefficients of the fundamental

points remain the same in all affine figures. Thus if in one figure

two lines are parallel or if they intersect in a given point, the

corresponding Hues in the affine figure will be parallel or will

intersect in the corresponding point. On the other hand all

relations which cannot be expressed in terms of the coefficients

of the fundamental points are different in affine figures . . .

§217. . .Consider now a relationship under the sole condition

that straight lines correspond to straight lines and planes to

planes. . .This relationship may be characterized as follows: A
correspondence is set up between the points of two planes such

that if in one plane a set of points coincides with a straight line

[collineantur] the corresponding points in the second plane lie on

a straight line. Hence the name for this relation is "collineation"

§200. . .Connect any four points A, B, C, D in a plane by

straight lines. The resulting three points of intersection A', B',

C (Fig. 1) connect again by straight lines thus obtaining six new

points of intersection: A", B", C", F, G and H which in turn may
be again connected with each other and with the seven points

previously obtained by straight lines etc. The system of lines

thus obtained from any four points A, By C, D shall be called a

plane net and the points A, B, C, D shall be called the Jour Junda-

mental points of the net.

§201 . . .Theorem.—If A, B, C, and D = aA + bB + cC are the

four fundamental points of the plane net, every point P of the net

can be represented as follows:

P ^ ipaA-\- xbB + yPcC
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where <p, x» 4' are rational numbers including zero, which depend

only upon the construction of the point P and not upon the four

fundamental points.

§202 . . . Theorem.—Every anharmonic ratio formed in a plane

net is rational and depends only upon the construction of the

straight lines and not upon the four fundamental points.

§219. Every point P of the net in the plane A, B, C, and D =

aA -\- hB -\- cC can be written in the form

P = ipaA + xbB + ^cC,

where <p, x, ^A do not depend upon the coefficients a, b, c. Therefore

every point P' of the net formed from the four fundamental points

A', B\ C, and D' = a'A' + b'B' + c'C may be expressed as

P' = <pa'A' + xb'B' + ^Pc'C,

where tp, x. ^ are the same as in the expression for the point P.

G

B A' C
Since on the other hand every point of the plane ABC can be

expressed in the form: <paA + xbB + ^cC and when the values of

<p, X, and \p are given it is always possible to find the point by mere

drawing of straight lines, the relationship of coliineation may now

be defined as follows: Let any four points A', B', C, D\ no three

of which are on a straight line, correspond to four given points

A, B, C, D, no three of which are on a straight line. To every

point P in the first plane there will correspond a point P' in the

second plane such that if

D = aA-{-bB + cC, P^pA-^-qB-^- rC,

D' = a'A' + b'B' + c'C, P' ^ p'A' + q'B' + r'C.
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Then,

a' b' c a'b'' c

§220. If we determine the four pairs of the corresponding points

A and A', B and B', C and C, D and D' then there corresponds one

and only one point P' in the plane A'B'C to a point P in the plane

ABC. The points A, B, C, D, P determine the ratios a:6:c and

<p:x'-4^, and the points A', B', C, D' determine the ratios a':b':c'.

From these, the ratios (pa' : xb' '• ypc' can be found and thus P' is

uniquely determined. In the expression of two corresponding

points

P ^ (paA-\- xbB + xjycC, and P' = ^pa'A' + xb'B' + xc'C,

if ^a + x6 + "Ac = 0, <pa' + xb' + ^c'

may be different from zero. Thus a finite point may correspond

to a point at infinity. . .

§221, 4. The coHineation is characterized by the consistency of

the ratios (p:x'-4^ for each pair of corresponding points. These

ratios <p:x-^ can be expressed geometrically as anharmonic ratios.

From

D = aA + 6B + cC and P = (paA + xbB + >pcC

it follows

a:b= -BCD'.CDA
and

<pa:xb = -BCPiCPA
hence

<p:x= {B, A, CP, CD) = (A, B, CD, CP)

and similarly

x:^ = {B, C, AD, AP)

(§190. . .where (A, B, CF, DE) is the anharmonic ratio the

four points of which are A, B and the intersections of the line AB
with the lines CE and DE respectively. . .). Therefore coHinea-

tion may be defined directly by means of the equality of anhar-

monic ratios: Two figures are said to be collinear if every expression

of the form

:

ACD AEF
CDB' EFB

is equal to the same expression formed by the corresponding points

in the second figure.



SIR WILLIAM ROWAN HAMILTON

On Quaternions

(Selections Edited by Dr. Marguerite D. Darkow, Hunter College, New York
City.)

William Rowan Hamilton was born in Dublin in 1805. His early training

was in languages. At the age of thirteen, a copy of Newton's Universal

Arilbmetic fell into his hands and turned his thoughts to mathematics. In

1827, although an undergraduate, he was appointed to the chair of Astronomy

in Trinity College, Dublin.

After producing a number of papers on various subjects, Hamilton concen-

trated upon the calculus of directed line-segments in space, and the meaning

to be assigned to their product and their quotient. In 1835 and 1843, he

wrote on this and allied matters in the Transactions of the Royal Irish Acad-

emy, and in 1844 in the Philosophical Magazine. In 1853, he published his

Lectures on Quaternions. In 1866, his Elements of Quaternions (from which

several extracts are to be quoted) appeared posthumously.

Although Hamilton expected his quaternions to prove a tool powerful for

the progress of physics, his expectation has not been completely fulfilled,

perhaps on account of a loss of naturalness in taking the square of a vector to

be a negative scalar. The importance of his quaternions is due rather to the

extension through them of the concept of number and the possibility of a

variation from the hitherto unchallenged "Laws of Algebra."

Hamilton entered upon the mathematical scene at a time when mathe-

maticians were not yet satisfied as to the sense in which v — 1 was to be taken

as a number, and had not quite divested it of all stigma for being "imaginary."

Hamilton, too, was preoccupied with negative and imaginary, and rationalized

these concepts by his view of algebra " as being primarz/y the science of ORDER
(in time and space), and not primarily the science of MAGNITUDE." In

his paper of 1835,' he introduces couples of moments in time (A, B), the

difference A — B of two such moments as being a step a in time, couples of

such steps (a, b), and couples of real numbers (a, b) which may be regarded as

operators upon couples of steps. He defines

(a, 6) (a, b) = (aa - 6b, ah + ha),

a (a, b) = (a, 0)(a, b) = (aa, ah).

Hence (0, l)Ma,b) = (0, 1) (-b, a) = (-a, -b) = -(a, b), whence (0. 1)^ =
-1.

From this beginning, there followed in the paper of 1848^ a generalization

to n-tuples (and in particular to quadruples) of moments and of steps in time.

' Transactions of the Royal Irish Academy, XVII, p. 293.

2 [Ibid XXI, p. i99.\
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He introduced the "momental quaternion" (A, B, C, D), A, B, C, D being

moments of time,—the "ordinal quaternion" (a, b, c, d) = (ao, ai, az, as) with

time-steps as elements, and the 16 X 24 operators R±x.±p.*<f.±T (ir, p, a, r being

some permutation of the integers, 0, 1, 2, 3) such that K^par (ao, ai, a?, aj) =
(a^, ap, a<„ ar);

e. g. R3012 (a, b, c, d) = (d, a, b, c), R_3, o, i, -2 (a, b, c, d) = (— d, a, b, — c)

He defined i as R_], -3, 2, j as R _2, 3, 0, -1, k as R _», -2, 1. 0, whence followed

the equations in operators:

i2 = j2 = k2 = -1, ij = k = -ji, jk = i = -kj, ki = j = -ik,

with their non-commutative multiplication. Then came geometric interpre-

tations and applications.

In the same paper, Hamilton laid a foundation for the modern work in linear

algebras, regarded as a study of the properties of the set of linear combinations

of n linearly independent elements with real or complex coefficients, subject to

a multiplication table containing n^ arbitrary constants, which closed the set

under multiplication. Peacock (1791-1858) and DeMorgan (1806-1871) had

already recognized the possibility of algebras which differ from ordinary alge-

bra. Such algebras had appeared, but had found little recognition. It was

the geometrical application of Hamilton's quaternions that led to a general

appreciation of new algebras, in which the laws of combinations of the ele-

ments need not retain the classical commutativity, associativity, etc.

Hamilton was much concerned with ensuring respectability for his quater-

ions. The method of approach in his previous publications did not satisfy

him. In his last work, he elected from the outset the geometric point of view.

He defined a vector as a directed line-segment in space, and set himself the

task of interpreting the quotient of two vectors, making the following assump-

tions (in which Greek letters denote vectors)

:

1. P/a = q implies /3 = qa, in the sense that q, operating upon a, produces 0.

2. P'/a' = p/a, a' = a, imply /3' = /3.

3. q' = q, q" = q, imply q' = q".

^ T ^ ^ ^ (7 ± 0) .
y/a ^ T,

a ~
tx a ' /3/a /3

c y ^y
' a a

The quotient of two parallel vectors is plus or minus the ratio of their lengths,

according to whether they are similarly or oppositely directed.

Three extracts from the Elements of Quaternions, London, 1866, are

appended. The first (pp. 106-110) examines, on the basis of the preceding

assumptions, the nature of the quotient of two vectors, and justifies the use of

"quaternion" for such a quotient. The second (pp. 157-160) defines i, j, k

and derives their multiplication table; and the third (pp. 149-150) comments
on the source of the multiplicational non-commutativity.

"108. Already we may see grounds for the application of the

name QUATERNION, to such a Quotient of two Vectors as has

been spoken of in recent articles. In the first place, such a quo-



HAMILTON 679

tient cannot generally be what we have called a SCALAR: or in

other words, it cannot generally be equal to any of the (so-called)

reals of algebra, whether of the positive or of the negative kind.

For let X denote any such (actual)^ scalar, and let a denote any

(actual) vector; then we have seen that the product xa denotes

another (actual) vector, say /3', which is either similar or opposite

in direction to a, according as the scalar coefficient, or factor, x,

is positive or negative; in neither case, then, can it represent any

vector, such as j3, which is inclined to a, at any actual angle,

whether acute, or right, or obtuse: or in other words, the equation

j3' = /3, or xa = j8, is impossible, under the conditions here sup-

posed. But we have agreed to write, as in algebra, {xa)/a = x;

we must therefore^. . .abstain from writing also ^/a = x, under

the same conditions: x still denoting a scalar. Whatever else a

quotient of two inclined vectors may be found to be, it is thus, at

least, a NON-SCALAR.
"109. Now, in forming the conception of the scalar itself, as

the quotient of two parallel^ vectors, we took into account not only

relative length, or ratio of the usual kind, but also relative direction,

under the form of similarity or opposition. In passing from a to

xa, we altered generally the length of the line a, in the ratio of

+ x to 1; and we preserved or reversed the direction of that line,

according as the scalar coefficient x was positive or negative, and,

in like manner, in proceeding to form, more definitely than we
have yet done, the conception of the non-scalar quotient, q = )3:

a = OB:OA, of two inclined vectors, which for simplicity may be

supposed to be co-initial, we have still to take account both of the

relative length and of the relative direction, of the two lines com-

pared. But while the former element of the complex relation here

considered, between these two lines or vectors, is still represented

by a simple RATIO (of the kind commonly considered in geome-

try), or by a number* expressing that ratio; the latter element of

the same complex relation is now represented by an ANGLE,
AOB: and not simply (as it was before) by an algebraical sign

+ or-.
"110. Again, in estimating this angle, for the purpose of distin-

guishing one quotient of vectors from another, we must consider

^ [Non zero.]

2 [By the second assumption.]

' [Or collinear.]

* ["The tensor of the quotient."]



680 SOURCE BOOK IN MATHEMATICS

not only its magnitude (or quantity), but also its PLANE: since

otherwise, in violation of the principle^ . . . , we should have

OB'-.OA = OB:OA, if OB and OB' were two distinct rays or sides

of a cone of revolution, with OA for its axis; in which case . . . they

would necessarily be unequal vectors. For a similar reason, we
must attend also to the contrast between two opposite angles, of

equal magnitudes, and in one common plane. In short, for the

purpose of knowing fully the relative direction of two co-initial

lines OA, OB in space, we ought to know not only how many
degrees. . .the angle AOB contains; but also. . .the direction oj the

rotation from OA to OB : including a knowledge of the plane, in

which the rotation is performed; and of the band (as right or left,

when viewed from a known side of the plane), towards which the

rotation is directed.

"111. Or, if we agree to select some one fixed hand (suppose the

right hand), and to call all rotations positive when they are directed

towards this selected hand, but all rotations negative when they

are directed towards the other hand, then, for any given angle AOB,
supposed for simplicity to be less than two right angles, and

considered as representing a rotation i/z a given plane from OA to

OB, we may speak of one perpendicular OC to that plane AOB as

being the positive axis of that rotation; and of the opposite perpen-

dicular OC to the same plane as being the negative axis thereof:

the rotation around the positive axis being itself positive, and

vice-versa. And then the rotation AOB may be considered to be

entirely known, if we know, 1st, its quantity, or the ratio which it

bears to a right rotation; and Ilnd, the direction of its positive axis,

OC, but not without knowledge of these two things, or of some

data equivalent to them. But whether we consider the direction

of an AXIS, or the aspect of a PLANE, we find (as indeed is well

known) that the determination of such a direction, or of such an

aspect, depend on TWO polar coordinates, or other angular elements.

"112. It appears, then, from the foregoing discussion, that /or

the complete determination, of what we have called the geometrical

QUOTIENT of two coinitial Vectors, a System of Four Elements,

admitting each separately of numerical expression, is generally

required. Of these four elements, one serves to determine the

relative length of the two lines compared; and the other three are

in general necessary, in order to determine /u//y their relative direc-

tion. Again, of these three latter elements, one represents the

' [Assumption 2.]
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mutual inclination, or elongation, of the two lines; or the magnitude

(or quantity) of the angle between them; while the two others serve

to determine the direction of the axis, perpendicular to their com-
mon plane, round which a rotation through that angle is to be

performed, in a sense previously selected as the positive one (or

towards a fixed and previously selected hand), for the purpose of

passing (in the simplest way, and therefore in the plane of the

two lines) from the direction of the divisor-line, to the direction of

the dividend-line. And no more than Jour numerical elements are

necessary for our present purpose: because the relative length of

two lines is not changed when their lengths are altered proportion-

ally, nor is their relative direction changed, when the angle which

they form is merely turned about, in its own plane. On account,

then, of this essential connexion of that complex relation between

two lines, which is compounded of a relation of lengths, and of a

relation of directions, and to which we have given (by an extension

from the theory of scalars), the name of a geometrical quotient,

with a System of FOUR numerical Elements, we have already a

motive for saying that 'The Quotient of two Vectors is generally a

Quaternion'."^

" 181 . Suppose that 01, OJ, OK are any three given and coinitial

but rectangular unit lines, the rotation around the first from the

second to the third being positive; and let OF, OJ', OK' be the

three unit vectors respectively opposite to

these, so that ^

or = -01, OJ' = -OJ, OK' = -OK.

Let the three new symbols i, ], k denote a j
system of three right versors,"^ in three mutually

rectangular planes, . . . ; so that . . . i = OK : OJ,

j = 01: OK, k = OJ:OI, as the figure may
serve to illustrate. We shall then have these

^'

other expressions for the same three versors.

i = OJ':OK = OK':OJ' = OJ:OK';

i
= OK':OI = Or:OK' = OK:Or;

k = Or:OJ = OJ':Or = 0I:0J';
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while the three respectively opposite versors may be thus expressed

:

^i = OJ:OK = OK':OJ = OJ':OK' = OK:OJ'
-j = OK:OI = Or:OK = OK'iOI' = OI:OK'
-k = OI:OJ = OJ':OI = Or:OJ' = OJrOI'

and from the comparison of these different expressions several

important symbolical consequences follow. . .

"182. In the ^r5f place, since

i2 = (OJ':OK).(OK:OJ) = OJ':OJ, etc.,

we deduce the following equal values for the squares of the new

symbols

:

I 12 = -1; j2 = _l.k2 = _1^

In the second place, since

ij = (OJ:OK').(OK':OI) = OJ:OI, etc.,

we have the following values for the products of the same three

symbols, or versors, when taken two by two, and in a certain order of

succession . . .:

II ij = k; jk = i; ki = j.

But in the third place . . . , since

ji = (OI:OK).(OK:OJ) = OI:OJ, etc.,

we have these other and contrasted formulae, for the binary products

of the same three right versors, when taken as factors with an

opposite order:

III ji = — k; kj = — i; ik = — j.

O Hence, while the square oj each of the three right versors,

denoted by these three new symbols, i, j, k, is equal to

negative unity, the product of any two of them is equal

either to the third itself, or to the opposite of that

third versor, according as the multiplier precedes

or follows the multiplicand, in the cyclical succession

I, j, k, i, j, . . .

which the annexed figure may give some help towards remembering.

"183. Since we have thus ji = — ij,. . .we see that the laws of

combination of the new symbols, i, j, k, are not in all respects the same

as the corresponding laws in algebra; since the Commutative Property

of Multiplication, or the convertibility of the places of the factors
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without change of value of the product, does not here hold good;

which arises from the circumstance that the factors to be combined

are here diplanar versors. It is therefore important to observe

that there is a respect in which the laws of i, j, k agree with usual

and algebraic laws: namely, in the Associative Property of Multi-

plication ; or in the property that the new symbols always obey the

associative formula

whichever of them may be substituted for i, for k, and for X; in

virtue of which equahty of values we may omit the point in any
such symbol of a ternary product (whether of equal or unequal

factors), and write it simply as i/cX. In particular, we have thus,

i.jk = i.i = i2 = -1; ij.k = k.k - k2 = -1;

or briefly

ijk = -1.

We may, therefore, . . . establish the following important Formula:

i2 = j2 = k2 = ijk = -1;

...which we shall find to contain (virtually) all the laws of the

symbols i, j, k, and therefore to be a sufficient symbolical basis for

the whole Calculus of Quaternions: because it will be shown that

every quaternion can be reduced to the Quadrinomial Form,

q = w + ix + jy + kz,

where w, x, y, z compose a system of Jour scalars, while i, j, k are

the same three right versors as above."

"If two right versors in two mutually rectangular planes, be

multiplied together in two opposite orders, the two resulting products

will be two opposite right versors, in a third plane, rectangular to the

two former; or in symbols . . .

q'q = -qq'

... In this case, therefore, we have what would be in algebra a

paradox. . .When we come to examine what, in the last analysis,

may be said to be the meaning of this last equation, we find it to

be simply this: that any two quadrantal or right rotations, in planes

perpendicular to each other, compound themselves into a third right

rotation, as their resultant in a plane perpendicular to each of them:

and that this third or resultant rotation has one or other of two

opposite directions, according to the order in which the two component

rotations are taken, so that one shall be successive to the other."
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On the Ausdehnungslehre

(Translated from the German by Dr. Mark Kormes, New York City.)

Hermann Giinther Grassmann (1809-1877) was professor at the gymnasium

in Stettin, In 1844 he published Die lineale Ausdehnungslehre, ein neuer

Zweig der Matbematik. . ., which was not generally understood on account of

its abstract philosophical form. Grassmann therefore rewrote his book many
years later and published it in Berlin (1862) under the title Die Ausdehnungs-

lehre, Vollstdndig und in strenger Form bearbeitet. Besides many other impor-

tant contributions to mathematics he distinguished himself as a scholar of

Sanskrit literature.

In his Ausdehnungslehre Grassmann created a symbolic calculus so general

that its definitions and theorems can be easily applied not only to geometry of

n dimensions but also to almost every branch of mathematics. This calculus

forms the basis of vector analysis. By its aid Grassmann derived funda-

mental theorems on determinants and solved many elimination problems in a

most elegant manner. In connection with the problem of Pfaff and the

theory of partial differential equations, his theorems are of great importance.

The following translation is limited to (1) the development of the idea of

non-commutative multiplication—the combinatory (outer) and th^ inner

products; and (2) certain passages relating to geometry. It is taken from the

1862 edition,—the one which made Grassmann's influence felt.

1. We say that a quantity a is derived from the quantities 6,

c. . .by means of numbers /3, 7, . . .if

a = /36 + 7C -f . .

.

where /3, 7 . . . are real numbers, rational or irrational, and may be

equal to zero. We also say in such a case that a is derived

n umerically from b, c. .

.

2. We further say that two or more quantities a, 6, c. . .are

numerically related if one of them can be derived numerically

from the others; for example:

a = /36 + 7C + . .

.

where /3, 7, . . . are real numbers . .

.

3. A quantity from which a set of other quantities may be

derived numerically is called a unit and in particular a unit which

cannot be derived numerically from any other unit is called a

primitive unit. The unit of numbers is called the absolute unit,

684
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all other units are relative. Zero should never be regarded as a

unit,

5. An extensive quantity is any expression derived by means of

numbers from a system of units^ (which system should not consist

solely of the absolute unit). The numbers used are called deriva-

tion-coefficients. For example the polynominal

aiCi + 0:2^2 + • . • or 2ae or XarCr

is an extensive quantity when ai, a2, ...are real numbers and

€1, eo ... is a system of units. Only if the system of units consists

solely of the absolute unit (1) the derived quantity is not an

extensive but a numerical quantity. . .

6. To add two extensive quantities derived from the same system

of units we add the derivation-coefficients of the corresponding

units

:

XarCr + ^PrCr = 2(a, + fir)er

9. All laws of algebraic addition and subtraction hold for the

extensive quantities . . .

10. To multiply an extensive quantity by a number we multiply

all its derivation-coefficients by this number:

13. All laws of algebraic multiphcation and division hold for

the multiplication and division of an extensive quantity by a

number.

37. A product [ab] of two extensive quantities a and 6 is defined

as an extensive quantity (or a numerical quantity) obtained in

the following way: Multiply each of the units from which the first

quantity a is derived by each of the units from which the second

quantity b is derived so that the unit of the first quantity is always

the first factor and the unit of the second quantity is the second

factor of the product; multiply then every such product by the

product of the corresponding derivation-coefficients and add all

the products so obtained:

• [A set of units not related numerically (See 4 in the original text).]

2 [Here follows a similar definition for subtraction. (See 7 in original text.)]

' [Here follows a similar definition for division by a number. (See 11 in the

original text.)]
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Remark. Inasmuch as according to the above definition the

product of extensive quantities is either an extensive or a numerical

quantity, we must be able (see 5) to derive it numerically from a

system of units. What is this system of units and how are we to

derive numerically the products CrCs from it, is not explained in the

definition. Therefore if we are to determine exactly the concept

of a particular product we must agree upon certain necessary

rules. . .Consider, e.g., the product P = [(xiCi + X2€2)(yi€i + Yie^)]

= -Viyi[eiei] + Xiy2[eie2] + X2yi[e2ei] + X2y2[e2e2]. . .We could then

agree that the four products [eiCi], [6162], [e2ei] and [6262] constitute

the system of units from which P is to be derived numerically so

that the numbers Xiy\, Xiy2, X2yu and X2y2 are the derivation-

coefficients. We would have then a particular product charac-

terized by the fact that no equations are necessary for its

determination. We could on the other hand select three of them;

[eiei], [6162] and [e2e2] as units and agree that [e2€i] = [6162], the

derivation-coefficients of P would be then: Xiyi, (xiy2 + X2yi)

and X2y2', this kind of a product is characterized by the fact that the

laws which govern it are identical with those of algebraic multipli-

cation. We could also select [eieo] as a unit and agree that [eiCi] = 0,

[^261] = —[€162], and [eoeo] = 0; in this case the product P would

have only one derivation-coefficient, namely .vij^2 — xoyi. Such

products are subsequently designated as combinatory. We may
finally agree to select a system of units not containing any one

of the products [ciCi], [€162], [e2ei], [€262], and then to determine how
to derive these four products from this system; e.g., we may choose

as the system of units the absolute unit and agree that [ciCi] = 1,

[6162] = 0, [eoCi] = 0, [6262] = 1. Under such conditions P becomes

a numerical quantity namely P = Xjyi + X2y2. These products

are subsequently designated as inner products.

50. Every multiplication for which the determining equations^

remain true if we substitute in place of the units quantities

numerically derived from them is said to be a linear multiplication.

51. Besides the multiplication which has no determining equa-

tion or the multiplication for which all products are zero there

exist only two kinds of linear multiplication: the determining

equation for the one is

(1) [ere,] + [e,er] =

^ [A numerical relation between the products of units. (See 48 in the

original text.)]
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and for the other

(2) [ere,] = [e,er] . .

.

52. A combinatory product is defined as a product the factors

of which are derived from a system of units, provided that the sum

of any two products of units obtained from each other by inter-

changing the last two factors is equal to zero, while every product

consisting solely of different units is not zero. The factors of

this product are called simple factors. If 6 and c are units and A
is an arbitrary set of units the above condition is expressed in

the following form:

[Abe] + [Acb] = 0.

53. In every combinatory product we may interchange the

two last factors provided that we change the sign of the product,

or [Abe] + [Acb] = 0, in the case when A is an arbitrary set of

factors and 6 and c are simple factors.

Proof.—1. Suppose that b and c are units. Since A is a set of

arbitrary factors and since these factors may be derived numeri-

cally from units we obtain after substitution an expression for A
of the form: A = Sa^Er, where Er are products of units. Thus
we have

[Abe] + [Acb] = [-^arErbc] + [Sa.£'.c6]

= Sa,[Er6c] + Sa.[£.c6)]

= Sa.([£,6c] + [Ercb])

= Sa.O (52)

= 0.

2. Suppose now that b and c are numerically derived from the

units ei, e2,...,€. g., b = lifirer, c = XyrCr we have then:

[Abe] + [Acb] = [AS/3.e.S7rer] + [AS7.e.S|8^,]

= 2/3,7,[Ae.e.] + S7,/3r[Ae.e.]

= 2^.7.([Aere,] + [Ae.e.])

= S^.7«0 (proof 1.)

= 0.

55. Any two factors of a combinatory product may be inter-

changed provided that we change the sign of the product:

Pa.b = —Pb.a or Pa, 6 + Pb ,a = 0.
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60. If two simple factors of a combinatory product are equal the

product is equal to zero,

Pa.a = 0.

Proof. . .According to 55 we have: Pa,64- Pb.a= hence if we
put a = by

Pa.a + Pa.a = OT IPa.a = 0;

thus

Pa.a = 0.

61. A combinatory product is equal to zero if its simple factors

are numerically related,

—

i. e., [aiOaas. . .am] = 0,—if one of the

quantities 0102. . Mm can be derived numerically from the others;

e.g., if

Oi = 0202 + OCsa^ + . . . + OCmam.

Proof: If we substitute in the product for ai the above expression

we obtain

[aiaQtta. . Mm] — [(0:202 + ocsas + . • . + 0:^0^)0203. . Mm]
= a2[a2a2a3. . Mm] -\- O:o[030203. . Mm] + . .

-\- 0^10^0203. . .Om]

= asO + 03.0 + . . . + am.O

= 0.

63. In order to obtain a combinatory product of n simple factors

which are derived numerically from the n quantities ai, a2, . . .o„

we form the determinant of the derivation-coefficients where the

coefficients of the first factor form the first row, etc., and we multi-

ply this determinant by the combinatory product of the quantities

Ci, 02. . .Un'.

[(ai(i)ai + . . . 4- aj'^an)(a,^'^ai + . . . + «„(2)a„) . . .

(^.(n)^^ +

68. All laws of combinatory multiplication hold if we substitute

for the n primitive units an arbitrary set of n quantities derived

numerically from these units provided that these n quantities are

not related numerically.

^ [The symbol S + ai^'^aj^^^ . . . aj"^ is used by Grassmann for the determi-

nant

a/»)a2(»)...a„<»>

ai^^az^
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64. Multiplicative combinations from a set of quantities are

defined as combinations without repetition of these quantities

whereby each combination is a combinatory product, the factors

of which are the elements of the combination; e. g., the multipli-

cative combinations of second class from the three quantities

a, h, c are: [ah], [ac] and [6c].

77. The multiplicative combinations of class m of the primitive

units shall be called units of order m. A quantity derived numeri-

cally from units of order m shall be called a quantity of order m.

Such quantity is said to be simple if it may be represented as a

combinatory product of quantities of the first order, otherwise

it is called a composite quantity. The aggregate of all quantities

which can be derived numerically from the simple factors of a

simple quantity is called the domain of this quantity.

776 . . . Remark. As an example of a composite quantity let

us consider the sum (ab) + (cd) where a, 6, c, d are quantities not

related numerically. Suppose (ab) + (cd) were a simple quantity,

e.g., equal to (p.q); we would have [(ab + cd)(ab + cd)] =

[pqpq] = 0. But [(ab + cd)(ab + cd)] = [abed] + [cdab] on

account of [a6a6] and [cdcd] being equal to zero. It is however

[abed] = [cdab]. Hence [(ab + cd).(ab + cd)] = l.[abcd]. If (ab)

-\- (cd) were a simple quantity [abed] would be equal to zero and
a, 6, c, d would be related numerically which contradicts the

assumption.

78. The outer product of two units of higher order is defined as

the combinatory product of the simple factors of those quantities,

whereby the arrangement of these factors remains undisturbed:

[(eie2. . .em)(em+i. .e„)] = [eie2. . .e„]

Note.—^The name outer multiplication is used to emphasize

the fact that this product holds if and only if one factor is entirely

outside of the domain of the other factor.

79. In order to obtain the outer product of two quantities A
and B we form the combinatory product of the simple factors of

the first quantity with those of the second quantity:

[(ah...).(cd...)] = [ab...cd...].

80. The parentheses have no effect on the outer product:

[A(BC)] = [ABC]...

83. Given a sum of simple quantities 5 and a set of m quantities

of the first order a\a2 . . . a^ which are not related numerically.
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If the outer product of 5 with every one of the quantities ai, 02 . .

.

flm is equal to zero, 5 may be represented as an outer product in

which Ci, 02. . .Cm are factors; i. e.,

5 = [ai, a2. . .OmSm)
if

= [a,S] = [a^S] = ...= K5]...

86. The principal domain is the domain of the primitive units

from which the quantities under consideration were derived. .

.

89. Let us consider a principal domain of order n and let us

assume that the product of the primitive units is equal to 1. If

£" is a unit of any arbitrary order (i. e., either one of the primitive

units or a product of a number of them) the complement of E is

defined as a quantity which is equal to the combinatory product

E' of all units which are not in E. The complement is positive or

negative according to whether [EE'] is equal to + 1 or to — 1. We
will denote the complement by a vertical line before the given

quantity. The complement of a number shall be this number
itself. Thus we have: \E = [£'£''1 E' if E and E' contain all the

units €162. . .en, and if [eie2. . .e„] = 1; also \a = a when a is a

number.

90. The complement of an arbitrary quantity A is the quantity

\A obtained if in the expression for A we substitute the comple-

ments in the place of the units; i. e.,

|(aiEi + a2F2 + . • ) = ailEi + a2l£'2 + . .

.

where E1E2 . . are units of any order whatsoever.

91. The outer product of a unit and its complement is equal to

1: [E\E] = 1.

Proof,—If E' is the combinatory product of all primitive units

not contained in E we have (according to 89)

:

\E = +E' according to whether [EE'] = +1.

In the case of the lower sign we have: [E\E] = [EE'] = 1 and

in the case of the upper sign: [E\E] = —[EE'] = —( — 1) = 1.

92. The complement of a complement of a quantity A is either

equal to A or to —A according to whether the product of the

orders of A and of its complement is even or odd; i. e.,

IIA = (-1)''A

if q and r are the orders of A and \A respectively . . .

Note.—If both r and q are odd, as for example in the case of a

domain of order two and complements of quantities of order one,
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we have \\A = —A so that in such a case the symbol
| obeys the

same laws as i = \/— 1, which gives an interpretation of the

imaginary in the real domain . . .

93. If the principal domain is of order n and if n is odd we have

||A = A;
if n is even

||A = (-1M
where q is the order of A . . .

94. If the sum of the orders of two units is equal to or less than

n,

—

i. €., the order of the principal domain,—the outer product

of these units is called a progressive product provided that the

progressive product of the primitive units is equal to 1. If on

the other hand the sum of the orders of two units is greater than

n, the regressive product of these units is given by a quantity whose

complement is equal to the progressive product of the comple-

ments of these units. We shall refer to both the regressive and

progressive products as relative products. . .

97. The product of the complements of two quantities is equal

to the complement of the product of these quantities:

[\A\B] = \[AB]...

... If the product of two quantities is progressive, the product

of their complements is regressive provided that we agree to

consider the product of order zero as a progressive and as a regres-

sive product at the same time. . .

122. A mixed product^ of three quantities [AJBC] is equal to

zero if and only if either [AB] = 0, or all the quantities A, B,

and C are contained in a domain of order less than n, or the

quantities A, B, and C have a domain of order more than in

common . .

.

137. The inner product of two units of an arbitrary order is

defined as the relative product of the first unit and the complement

of the second unit; t. e., i( E and F are units of an arbitrary order

the inner product is given by [£^|F].

138. The inner product of two quantities A and B is equal to

the relative product of the first quantity and the complement of

the second quantity, i. e., [A|B]. . .

139. If the factors of an inner product are of orders a and /5 and

if the principal domain is of order n, the inner product is of order

' (That is, a product in which both the progressive and the regressive multi-

plication is used.]
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71 -fa — /3 or a — /3 according to whether is greater than a or

not. . .

141. The inner product of two quantities of equal order is a

number.

Proof. The difference between the orders is then zero, hence the

inner product is of order zero,

—

i. e., a number.

142. The inner product of two equal units is 1, the inner product

of two different units of equal order is zero; i. e.,

[Er\Er] = \,[Er\E.] =0...

143. If E1E2. . .Em are units of an arbitrary but equal order we
have:

[(aiEi + a2E2 +...+ amEmW.Ei + . . . + ^„E„)] =
aijSl + «2/32 + . . . + Um^m-

144. The two factors of an inner product may be interchanged

provided they are of the same order; i. e.,

[A\B] = [B\A].

Proof.— If El. . .Em are the units and A = l^arEr, B = ^^,Ett

we have from 143,

[A\B] = ^aSr = S/3ra. = [B\A].

145. For the sake of simplicity we write

{A\A] = A\

and we call it the inner square of A . .

.

147. The inner product of two units E and F is not equal to zero

if and only if one of the units is incident^ with the other. .

.

148. U E and F are units and [EF] 9^ 0, we have

\EF\E\ =Fand[F|EFI = |£. .

.

151. The numerical value of a quantity A is defined as the

positive square root of the inner square of that quantity. Two
quantities are said to be numerically equal if their numerical

values, i. e., their inner squares,—are equal.

152. Two quantities different from zero are said to be orthogonal

if their inner product is zero . . .

153. A set of n numerically equal quantities of the first order

which are orthogonal to each other is called an orthogonal system

' [A quantity is said to be incident with another if its domain is incident;

that is all quantities of the domain of the first quantity are also quantities of

the domain of the second quantity, but not vice versa.)
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of order n; in the case that the domain is also of order n we speak

of a complete orthogonal system. The numerical value of the given

quantities is said to be the numerical value of the orthogonal

system. Every orthogonal system having the numerical value 1

is said to be simple. .

.

157. The quantities of an orthogonal system are not related

numerically and every quantity of the first order can be derived

numerically from any arbitrary complete orthogonal system. . .

162. The system of the primitive units is a complete orthogonal

system, whose numerical value is 1.

Proof.— li €ie-2. .e„ are the primitive units, we have

1 = ei^ = eo- = . . . = €n^

= [eileo] = . . .

163. In every domain of order m we can establish an orthogonal

system of order m having an arbitrary numerical value so that this

system is a part of the complete orthogonal system . .

.

168. All previous theorems^ remain true if we replace the system

of the primitive uuits by an arbitrary complete orthogonal system

which has the numerical value 1 . .

.

175. Given two quantities A and B of order m each of which is

composed of m simple factors. The inner product of these two

quantities is equal to the determinant of m rows and m columns

which is obtained by forming inner products of every simple

factor of one quantity with every simple factor of the other

quantity; i.e.

[abc. . .|a'6V. . .] = Determ. [a\a'], [a\b'], [a\c']

[61a'], Wl [b\c']

[cWl [cW], [clc']

216. Given a point E and let us assume that three lines of equal

length and perpendicular to each other are the principal units.

If ai, a2t ci3 are arbitrary numbers the expression:

(a) E + aiCi + a2€2 + ases

defines the point A, obtained in the following manner: From E
we proceed along the segment EB which is equal to aiei, that is,

which has the same direction as ei or the opposite direction accord-

ing to whether ai is positive or negative and the distance EB is

^ [Relative to the inner product.]
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in the same ratio to ei as ai is to 1. We then proceed from B
along the segment BC equal to azCz in the above sense and finally

from C we proceed along the segment CA which is equal to asCs

in the same manner. Furthermore the expression:

(6) aiei + 0262 + asfis

defines a segment, that is, a straight line of a given length and
directions and namely such a particular segment which has the same
length and direction as the fine connecting the point E with the

point

E + ai€i + 0262 + asCs. .

.

229. Every segment of the space may be derived numerically

from three arbitrary segments which are not parallel to a plane . .

.

231. If three segments are related numerically they are parallel

to a plane , .

.

232. All points of the space can be derived numerically from

four arbitrary points which do not lie in one plane . . .

234. Every point of a straight line may be derived numerically

from two arbitrary points of this line . .

.

235. If three points are related numerically they lie in a straight

line. .

.

236. If four points are related numerically they lie in a plane. .

.

237. In the space a domain of first order is a point, the domain

of second order the unlimited straight line, that of third order the

unlimited plane and that of fourth order the unlimited space.

245. The combinatory product of two points vanishes if and only

if the two points coincide; the combinatory product of three

points vanishes if the points lie in a straight line, that of

four points if they lie in a plane and the combinatory product

of five points always vanishes. .

.

249. The product [AB] shall be called a segment and we shall

say that it is a part of the unlimited line AB and that it is of equal

length and direction as the segment AB . . .

273. The sum of two finite segments the lines of which intersect

is a segment and its line passes through the point of intersection

of the other two lines; the direction and length of this segment are

the same as those of the diagonal of the parallelogram formed by

segments of the same length and direction as the two original

segments. .

.

288. Planimetric multiplication is defined as the relative multi-

plication with respect to the plane; stereometric multiplication
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as relative multiplication with respect to the space (as domain of

order four) . .

.

306.* The equation of a point x which lies in a straight line

with the points a and b is given by:

[xab] = 0.

Proof.—[xab] vanishes (according to 245) if and only if x lies

in a straight line with a and 6. . .

307. The equation of a straight line X which passes through the

same point as the straight lines A and B is given by

[XAB] =0...

309. If Pn.x is a planimetric product of order zero in which the

point X is contained n times and if the other factors are only fixed

points or lines, the equation

:

Pna =

is then the point-equation of an algebraic curve of order n, pro-

vided that it is nut satisfied by every point x. . .

310. U P(n, X) IS a planimetric product of order zero in which

the lineX is contained n times and as the other factors are only fixed

points or lines, the equation

P(n, X) =0

is then the line-equation of an algebraic curve of class n . .

.

311. If P„,i is a stereometric product of order zero, which con-

tains the point x n times and as other factors has only fixed points,

lines or planes, the equation:

P„.x =

is the point-equation of an algebraic surface of order n . .

.

323. The equation of a conic section, passing through the five

points a, 6, c, d, e, no three of which lie in a straight line is given

by...

[xaBci.Dex] =

where B = [cd] Ci = [ab.de] D = [b.c] . . .

324. If A, B, C are three straight lines in space no two of which

intersect then:

[xABCx] =

^ [From now on Grassmann uses small letters to denote points and capital

letters to denote lines.]
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is the equation of the surface of second order which contains the

three straight lines A, B, C. .

.

330. For the purpose of inner multiplication we shall always

assume as principal units three segments of equal length and

perpendicular to each other (616263), in the plane two such seg-

ments (6162) and we shall assume that the length of these segments

shall be the unit of length, [616162] the unit of volume and [6160] the

unit of area.

331. For the plane* the concept of length coincides with the

concept of numerical value, orthogonal means perpendicular. . .

^ [Also for the space (see 333 of original text).]
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